A GENERALIZATION OF MARKOV PROCESSES

By ABEL KLEIN¹

University of California, Irvine

Osterwalder-Schrader (OS) positive symmetric stationary stochastic processes are discussed. A natural construction is given for the associated positive semigroup structure. Conversely, OS-positive symmetric stationary stochastic processes are constructed from positive semigroup structures. OS-positive processes are seen to be the natural generalization of Markov processes, positive semigroup structures being the natural generalization of positivity preserving semigroups. The inheritability of OS-positivity is discussed.

1. Symmetric stationary stochastic processes. Let $\{X_t\}_{t\in\mathbb{R}}$ be a stochastic process, i.e., for each $t \in \mathbb{R}$, X_t is a random variable on a probability space (Q, Σ , μ), the base space, with values in the measurable space (E, \mathcal{E}) , the state space, where E is a compact Hausdorff space and \mathscr{E} is the Baire σ -algebra. Let us assume the process is stationary, i.e., the processes $\{X_t\}_{t\in\mathbb{R}}$ and $\{X_{t+s}\}_{t\in\mathbb{R}}$ are equivalent (e.g., [9]) for all $s \in \mathbb{R}$, and symmetric, i.e., the processes $\{X_t\}_{t \in \mathbb{R}}$ and $\{X_{-t}\}_{t\in\mathbb{R}}$ are equivalent. Furthermore let $\{X_t\}_{t\in\mathbb{R}}$ be weakly stochastically continuous, in the sense that $\{f \circ X_t\}_{t \in \mathbb{R}}$ is a stochastically continuous process (e.g., [9]) for any real valued continuous function f on E. For $I \subset \mathbb{R}$, Σ_I will denote the σ -algebra generated by $\{X_t\}_{t\in I}$. In particular, we will write Σ_t for $\Sigma_{\{t\}}$, and $\Sigma_{+}(\Sigma_{-})$ for $\Sigma_{[0,\infty)}(\Sigma_{(-\infty,0]})$. We will assume $\Sigma=\Sigma_{\mathbb{R}}$. By E_{I} we will denote the conditional expectation with respect to Σ_I . Let U(s) and R be the measure preserving transformations corresponding to $X_t \to X_{t+s}$ and $X_t \to X_{-t}$, respectively. U(s) is a one-parameter group of measure preserving automorphisms of $L^{\infty}(Q,$ Σ , μ), strongly continuous in measure; it follows U(s) is a strongly continuous one-parameter group of isometries in all $L^p(Q, \Sigma, \mu)$, $1 \le p < \infty$ [4]. Similarly, R is a measure preserving automorphism of $L^{\infty}(Q, \Sigma, \mu)$ and an isometry in all $L^p(Q, \Sigma, \mu)$, $1 \leq p < \infty$, such that $RE_0 = E_0$, $R^2 = I$, and RU(s) = U(-s)R.

Given a weakly stochastically continuous symmetric stationary stochastic process we can define a semigroup on $L^2(Q, \Sigma, \mu)$ by $P(t) = E_+ U(-t) E_+$ for $t \ge 0$. In other words,

$$P(t)F(X_{t_1}, \dots, X_{t_m}) = E(F(X_{t_1-t}, \dots, X_{t_m-t}) | \Sigma_+),$$

where $t, t_1, \dots, t_n \ge 0$, and F is a bounded measurable function on E^n . P(t) is a semigroup because $P(t)P(s) = E_+U(-t)E_+U(-s)E_+ = E_+E_{[-t,\infty)}U(-t)U(-s)E_+ = E_+E_{[-t,\infty)}U(-(t+s))E_+ = E_+U(-(t+s))E_+ = P(t+s)$ for $t, s \ge 0$, as $U(-t)E_+ = E_{[-t,\infty)}U(-t)$ and $E_+E_{[-t,\infty)} = E_+$. It is easy to show that P(t) is a strongly

Received July 7, 1976; revised May 31, 1977.

¹ Supported in part by the National Science Foundation under Grant MCS 76-06332. AMS 1970 subject classification. Primary 60J99.

Key words and phrases. OS-positive symmetric stationary stochastic processes, Markov processes.

continuous contraction semigroup on $L^2(Q, \Sigma_+, \mu)$. This space is, however, too big. We will restrict P(t) to a smaller subspace \mathcal{H}_0 of $L_2(Q, \Sigma_+, \mu)$ which contains the function 1 and is left invariant by P(t) and by multiplication by functions in $L^{\infty}(Q, \Sigma_0, \mu)$. We recall that $L^2(Q, \Sigma_+, \mu)$ is the closed linear span of $\{U(t_1)f_1\ U(t_2)\cdots f_n\ 1\ |\ t_1, \cdots, t_n \ge 0, f_1, \cdots, f_n \in L^{\infty}(Q, \Sigma_0, \mu)\}$. It is also easy to check that

$$E_{+}RE_{+}U(t_{1})f_{1}U(t_{2})\cdots f_{n}1 = P(t_{1})f_{1}P(t_{2})f_{2}\cdots f_{n}1$$
,

for $t_1, \dots, t_n \geq 0$, $f_1, \dots, f_n \in L^{\infty}(Q, \Sigma_0, \mu)$. We let $\mathscr{V} = E_+ R E_+$ and take \mathscr{H}_0 to be the range of \mathscr{V} . It follows $P(t)\mathscr{V}(F) = \mathscr{V}(U(t)F)$ and $f\mathscr{V}(F) = \mathscr{V}(fF)$, where $t \geq 0$, $F \in L^2(Q, \Sigma_+, \mu)$, and $f \in L^{\infty}(Q, \Sigma_0, \mu)$.

On \mathscr{H}_0 we have a natural sesquilinear form $\langle \cdot | \cdot \rangle$, defined by $\langle \mathscr{V}(F) | \mathscr{V}(G) \rangle = \langle \mathscr{V}(F), G \rangle$, where $\langle \cdot, \cdot \rangle$ is the L^2 inner product. Equivalently, $\langle \mathscr{V}(F) | \mathscr{V}(G) \rangle = \langle RF, G \rangle$. This sesquilinear form is natural in the sense that it makes P(t) self-adjoint, i.e. $\langle \mathscr{V}(F) | P(t) \mathscr{V}(G) \rangle = \langle P(t) \mathscr{V}(F) | \mathscr{V}(G) \rangle$ for all $F, G \in L^2(Q, \Sigma_+, \mu)$. Furthermore $\langle \mathscr{V}(F) | f \mathscr{V}(G) \rangle = \langle \overline{f} \mathscr{V}(F) | \mathscr{V}(G) \rangle$ for $f \in L^{\infty}(Q, \Sigma_0, \mu)$, $L^2(Q, \Sigma_0, \mu) \subset \mathscr{H}_0$, and $\langle \cdot | \cdot \rangle$ restricted to $L^2(Q, \Sigma_0, \mu)$ is the L^2 inner product.

2. Osterwalder-Schrader positivity. Let $\{X_t\}_{t\in\mathbb{R}}$ be a weakly stochastically continuous symmetric stationary stochastic process. Such a process is said to be Markov if $E_+E_-=E_+E_0E_-$. Equivalently, the process is Markov if and only if $\mathscr{H}_0=L^2(Q,\Sigma_0,\mu)$, i.e., P(t) leaves $L^2(Q,\Sigma_0,\mu)$ invariant. In this case P(t) is a strongly continuous self-adjoint positivity preserving semigroup on $L^2(Q,\Sigma_0,\mu)$. Conversely, given a strongly continuous self-adjoint positively preserving semigroup, we can construct a weakly stochastically continuous symmetric stationary Markov process (Simon [8], Klein and Landau [4]).

Let us now consider a weakening of the Markov property. Instead of requiring that $L^2(Q, \Sigma_0, \mu) = \mathcal{H}_0$, we only require that \mathcal{H}_0 with the sesquilinear form $\langle \cdot | \cdot \rangle$ is a pre-Hilbert space, i.e., $\langle \cdot | \cdot \rangle$ is positive definite. In other words, we require the Osterwalder-Schrader positivity condition (Osterwalder and Schrader [6]): $\langle RF, F \rangle \geq 0$ for all $F \in L^2(Q, \Sigma_+, \mu)$, i.e.,

$$\int \bar{F}(X_{-t_1}, \dots, X_{-t_m}) F(X_{t_1}, \dots, X_{t_m}) d\mu \geq 0$$

for $t_1, \dots, t_n \geq 0$ and F a bounded measurable function on E^n . We will say that such a process is OS-positive. We can then complete \mathcal{H}_0 into a Hilbert space \mathcal{H} . Moreover $||P(t)\mathcal{V}(F)||_{\mathscr{H}} \leq ||F||_{L^2(Q,\Sigma_+,\mu)}$ for all $t \geq 0$ so P(t) is a contraction on \mathcal{H}_0 (Osterwalder and Schrader [6]; also Klein [3]) and thus P(t) extends by continuity to a strongly continuous self-adjoint contraction semigroup on \mathcal{H} . Furthermore, if $f \in L^{\infty}(Q, \Sigma_0, \mu)$ let us denote by \tilde{f} the operator on \mathcal{H}_0 corresponding to multiplication by f, i.e., $\tilde{f}\mathcal{V}(F) = \mathcal{V}(fF)$, then \tilde{f} extends by continuity to a bounded operator on \mathcal{H} with $||\tilde{f}|| = ||f||_{\infty}$, and $\mathfrak{A} = \{\tilde{f}||f \in L_{\infty}(Q, \Sigma_0, \mu)\}$ is a commutative von Neumann algebra of operators on \mathcal{H} having $\Omega = \mathcal{V}(1)$ as a separating vector (Klein [3]). Moreover, if $t_1 \leq t_2 \leq \cdots \leq t_n$,

130 ABEL KLEIN

$$f_1, \dots, f_n \in L^{\infty}(Q, \Sigma_0, \mu), f_{t_i} = U(t_i)f_i \text{ for } i = 1, \dots, n, \text{ then}$$

$$\int f_{t_1} f_{t_2} \dots f_{t_n} d\mu = \langle \Omega | \tilde{f_1} P(t_2 - t_1) \tilde{f_2} \dots P(t_n - t_{n-1}) \tilde{f_n} \Omega \rangle.$$

We call $(\mathcal{H}, P(t), \mathfrak{A}, \Omega)$ the associated semigroup structure.

A positive semigroup structure $(\mathcal{H}, P(t), \mathfrak{A}, \Omega)$ consists of

- (i) a Hilbert space \mathcal{H} ;
- (ii) a strongly continuous self-adjoint contraction semigroup P(t) or \mathcal{H} ;
- (iii) a commutative von Neumann algebra $\mathfrak A$ of operators on $\mathcal H$;
- (iv) a unit vector $\Omega \in \mathcal{H}$;

such that

- (v) $P(t)\Omega = \Omega$ for all $t \ge 0$;
- (vi) Ω is a cyclic vector for the algebra generated by $\mathfrak{A} \cup \{P(t) \mid t \geq 0\}$, i.e., the linear span of $\{P(t_1)f_1P(t_2)\cdots P(t_n)f_n\Omega \mid f_1,\cdots,f_n\in\mathfrak{A},\ t_1,\cdots,t_n\geq 0\}$ is dense in \mathcal{H} ;

(vii) for all
$$f_1, \dots, f_n \in \mathfrak{A}^+ = \{ f \in \mathfrak{A} \mid f \ge 0 \}$$
 and $t_1, \dots, t_n \ge 0$,
 $\langle \Omega \mid P(t_1) f_1 P(t_2) \dots P(t_n) f_n \Omega \rangle \ge 0$.

We have thus proved the first part of the following theorem:

THEOREM (Klein [3]): Let $\{X_t\}_{t\in\mathbb{R}}$ be a weakly stochastically continuous OS-positive symmetric stationary stochastic process. Then its associated semigroup structure $(\mathcal{H}, P(t), \mathfrak{A}, \Omega)$ form a positive semigroup structure.

Conversely, let $(\mathcal{H}, P(t), \mathfrak{A}, \Omega)$ be a positive semigroup structure. Then there exists a weakly stochastically continuous OS-positive symmetric stationary stochastic process $\{X_t\}_{t\in\mathbb{R}}$ such that $(\mathcal{H}, P(t), \mathfrak{A}, \Omega)$ is its associated semigroup structure.

Let us sketch the proof of the converse. As $\mathfrak A$ is a commutative von Neumann algebra, $\mathfrak A \approx C(Q_0)$, where Q_0 , the spectrum of $\mathfrak A$, is a Stonean space (i.e., a compact Hausdorff totally disconnected space, e.g., [7]). Let $Q = X_{t \in \mathbb R} Q_t$, where each Q_t is a copy of Q_0 , and Σ_B the Baire σ -algebra on Q. We identify $\{F \in C(Q)\} \mid \text{there exists } f \in C(Q_0)$ such that $F(q) = f(q_0)$ for all $q = (q_t)_{t \in \mathbb R} \in Q\}$ with $C(Q_0)$, and write Σ_0 for the σ -algebra it generates. We define a Baire measure μ on Q by

(2.1)
$$\int f_{t_1} f_{t_2} \cdots f_{t_n} d\mu = \langle \Omega | f_1 P(t_2 - t_1) f_2 \cdots P(t_n - t_{n-1}) f_n \Omega \rangle ,$$

where $t_1 \leq t_2 \leq \cdots \leq t_n$, $f_1, \cdots, f_n \in C(Q_0)$, and $f_{t_i}(q) = f_i(q_{t_i})$ for $i = 1, \cdots, n$. The proof that (2.1) indeed defines a Baire measure involves in a crucial way the fact that Q_0 is a Stonean space and thus finite linear combinations of idempotents are dense in $C(Q_0)$. We now define the stochastic process $\{X_t\}_{t \in \mathbb{R}}$, having base space (Q, Σ, μ) and state space Q_0 , by $X_t(q) = q_t$ for $q = (q_t)_{t \in \mathbb{R}} \in Q$. Here Σ is the σ -algebra generated by $\{X_t\}_{t \in \mathbb{R}}$. It can now be shown that $\{X_t\}_{t \in \mathbb{R}}$ is a weakly stochastically continuous OS-positive symmetric stationary stochastic process with $(\mathcal{H}, P(t), \mathfrak{A}, \Omega)$ as its associated semigroup structure.

We can now characterize, by their associated semigroup structures, those OS-positive processes that are actually Markov. To do so let us first notice that if P(t) is a strongly continuous self-adjoint positivity preserving semigroup on $L^2(M)$, M a probability space, then $(L^2(M), P(t), L^{\infty}(M), 1)$ form a positive semigroup structure. Conversely, a OS-positive process is Markov if and only if its positive semigroup structure can be put in this form. More precisely:

COROLLARY (Klein [2]). Let $\{X_t\}_{t\in\mathbb{R}}$ be a weakly stochastically continuous OS-positive symmetric stationary stochastic process, and let $(\mathcal{H}, P(t), \mathcal{H}, \Omega)$ be its associated semigroup structure. Then $\{X_t\}_{t\in\mathbb{R}}$ is Markov if and only if Ω is a cyclic vector for \mathcal{H} .

We can thus see that in the semigroup characterization OS-positive processes are the natural generalization of Markov processes. Markov processes correspond to positive semigroup structures in which condition (vi) is replaced by the stronger

(vi)' Ω is a cyclic vector for \mathfrak{A} .

In this case (vii) is equivalent to

(vii)' for all
$$f, g \in \mathfrak{A}^+ = \{ f \in \mathfrak{A} \mid f \geq 0 \}$$
 and $t \geq 0, \langle f\Omega \mid P(t)g\Omega \rangle \geq 0.$

- 3. Inheritability of OS-positivity. Unlike the Markov property, OS-positivity is inherited under fairly general conditions, for example:
- (i) Functions of OS-positive processes. Let $\{X_t\}_{t\in\mathbb{R}}$ be a weakly stochastically continuous symmetric stationary stochastic process with base space (Q, Σ, μ) and state space E. Let E' be another state space, let $\alpha: E \to E'$ be a measurable map, and let us consider the process $\{Y_t\}_{t\in\mathbb{R}}$, where $Y_t = \alpha \circ X_t$. It follows $\{Y_t\}_{t\in\mathbb{R}}$ is a weakly stochastically continuous symmetric stationary stochastic process. Moreover, if $\{X_t\}_{t\in\mathbb{R}}$ is OS-positive, so is $\{Y_t\}_{t\in\mathbb{R}}$.

Functions of Markov processes are not in general Markov, but functions of OS-positive processes are OS-positive. In particular, functions of Markov processes are OS-positive.

- (ii) Linear combinations of OS-positive processes. Let us consider weakly stochastically continuous OS-positive symmetric stationary stochastic processes with the same base and state space, the state space being a vector space. We can then consider linear combinations of these processes, those are again OS-positive. Again, linear combinations of Markov processes are not Markov in general but they are OS-positive.
- 4. Comments. The Osterwalder-Schrader positivity condition appeared in Osterwalder and Schrader's Euclidean formulation of Quantum Field Theory [6], where it replaced the Markov property used by Nelson [5] in the reconstruction of relativistic quantum fields. Euclidean fields (given the existence of time-zero fields) are examples of weakly stochastically continuous OS-positive symmetric stationary stochastic processes. Using the characterization of OS-

positive processes by positive semigroup structures we have been able to determine which relativistic quantum fields correspond to Euclidean fields (Klein [1, 3]).

Gaussian processes satisfying OS-positivity will be studied in a forthcoming paper (Klein [2]).

REFERENCES

- [1] KLEIN, A. (1976). When do Euclidean fields exist? Letters in Mathematical Physics 1 131-133.
- [2] KLEIN, A. (1977). Gaussian OS-positive processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 40 115-124.
- [3] KLEIN, A. (1978). The semigroup characterization of Osterwalder-Schrader path spaces and the construction of Euclidean fields. *J. Functional Analysis*, to appear.
- [4] KLEIN, A. and LANDAU, L. (1975). Singular perturbations of positivity preserving semigroups via path space techniques. J. Functional Analysis 20 44-82.
- [5] Nelson, E. (1973). Construction of quantum fields from Markoff fields. J. Functional Analysis 12 97-112.
- [6] OSTERWALDER, K. and SCHRADER, R. (1973). Axioms for Euclidean green's functions, I. Comm. Math. Phys. 31 83-112; II, Comm. Math. Phys. 42 (1975), 281-305.
- [7] SAKAI, S. (1971). C*-Algebras and W*-Algebras. Springer-Verlag, New York.
- [8] Simon, B. (1973). Positivity of the Hamiltonian semigroup and the construction of Euclidean region fields. *Helv. Phys. Acta.* 46 686-696.
- [9] YEH, J. (1973). Stochastic Processes and the Wiener Integral. Dekker, New York.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA IRVINE, CALIFORNIA 92717