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A GENERALIZATION OF MARKOV PROCESSES

By ABEL KLEIN!
University of California, Irvine

Osterwalder-Schrader (OS) positive symmetric stationary stochastic
processes are discussed. A natural construction is given for the associated
positive semigroup structure. Conversely, OS-positive symmetric station-
ary stochastic processes are constructed from positive semigroup structures.
OS-positive processes are seen to be the natural generalization of Markov
processes, positive semigroup structures being the natural generalization
of positivity preserving semigroups. The inheritability of OS-positivity is
discussed.

1. Symmetric stationary stochastic processes. Let {X,},., be a stochastic
process, i.e., for each t ¢ R, X, is a random variable on a probability space (Q,
X, ¢), the base space, with values in the measurable space (E, &), the state
space, where E is a compact Hausdorff space and & is the Baire g-algebra. Let
us assume the process is stationary, i.e., the processes {X.},., and {X, },.p are
equivalent (e.g., [9]) for all se IR, and symmetric, i.e., the processes {X,},., and
{X_.};cg are equivalent. Furthermore let {X,},. be weakly stochastically continu-
ous, in the sense that {f o X,},. is a stochastically continuous process (e.g., [9])
for any real valued continuous function fon E. For I C R, £, will denote the
o-algebra generated by {X,},.,. In particular, we will write X, for X, and
2 (20) for Zpp (2w oy)- We will assume X = Z,. By E; we will denote the
conditional expectation with respect to X,. Let U(s) and R be the measure pre-
serving transformations corresponding to X, — X,,, and X, — X_,, respectively.
U(s) is a one-parameter group of measure preserving automorphisms of L=(Q,
X, p), strongly continuous in measure; it follows U(s) is a strongly continuous
one-parameter group of isometries in all L*(Q, X, ¢), 1 < p < oo [4]. Similarly,
R is a measure preserving automorphism of L>(Q, %, ) and an isometry in all
L*(Q, X, ), 1 < p < oo, such that RE, = E,, R* = I, and RU(s) = U(—s)R.

Given a weakly stochastically continuous symmetric stationary stochastic
process we can define a semigroup on L*Q, Z, ¢) by P(f) = E,U(—1t)E, for
t = 0. In other words,

P(t)F(th’ M} Xc,n) = E(F(Xt]—ta tt 0y th—t) I E+) )

where ¢, ¢, - -+, t, = 0, and F is a bounded measurable function on E”. P(f)is a
semigroup because P(¢)P(s) = E, U(—)E U(—s)E, =E E_, ,,U —)U(—5)E, =
E. E_, U —(t+s)E, =E U(—(t+5))E, = P(t+s) for t,5=0, as U(—NE, =
E_,U(—1t) and E,E_, ., = E,. It is easy to show that P(7) is a strongly

Received July 7, 1976; revised May 31, 1977.

1 Supported in part by the National Science Foundation under Grant MCS 76-06332.

AMS 1970 subject classification. Primary 60J99.

Key words and phrases. OS-positive symmetric stationary stochastic processes, Markov processes.

128

j
y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to Q% )2

The Annals of Probability. RIKOIN

WWWw.jstor.org



GENERALIZATION OF MARKOV PROCESSES 129

continuous contraction semigroup on L*Q, X, #). This space is, however,
too big. We will restrict P(¢) to a smaller subspace £ of L,(Q, Z,, #) which
contains the function 1 and is left invariant by P(f) and by multiplication by
functions in L*(Q, X, ¢£). We recall that L*(Q, X, u) is the closed linear span
of (Ut)f Ut -+ fullty, -+, 8, =0, f1, -+, fLe L™(Q, &y, #)}. Itisalso easy
to check that

E,RE, U(t)f, U(t,) - -« ful = P()fy P(ty)f - - ful

for ¢, -« o, 1, =0, f,, -+, f,e L%(Q, Zy, #). Welet 7" = E, RE, and take 57
to be the range of 2. It follows P(t)7(F) = Z(U(f)F) and f7(F) = Z(fF),
where t = 0, Fe LQ, X, ¢), and fe L=(Q, Z,, p).

On 27, we have a natural sesquilinear form ¢ | . », defined by (7 (F) | 7(G)) =
(Z(F), Gy, where (., «> is the L* inner product. Equivalently, (7 (F)| 7(G))=
{RF, Gy. This sesquilinear form is natural in the sense that it makes P(7) self-
adjoint, i.e. (Z(F) | P(1)Z(G)) = (P()Z(F)| 7(G)) for all F, G e LQ, Z,, ).
Furthermore (7(F)| f7(G)) = <f_“7(F)] Z(G))y for fe L>(Q, Z,, p), LX(Q; Z,,
1) C S, and (. |+ restricted to L¥Q, Z,, p) is the L* inner product.

2. Osterwalder-Schrader positivity. Let {X,},., be a weakly stochastically
continuous symmetric stationary stochastic process. Such a process is said to
be Markov if E,E_ = E_E,E_. Equivalently, the process is Markov if and only
if 27, = L¥Q, %,, p), i.e., P(f) leaves L¥Q, X, ) invariant. In this case P(7)
is a strongly continuous self-adjoint positivity preserving semigroup on L*Q,
2y, ). Conversely, given a strongly continuous self-adjoint positively preserv-
ing semigroup, we can construct a weakly stochastically continuous symmetric
stationary Markov process (Simon [8], Klein and Landau [4]).

Let us now consider a weakening of the Markov property. Instead of re-
quiring that LXQ, X,, ) = 57, we only require that = with the sesquilinear
form (. |.) is a pre-Hilbert space, i.e., (+|+) is positive definite. In other
words, we require the Osterwalder-Schrader positivity condition (Osterwalder and
Schrader [6]): {(RF, Fy = 0 for all Fe L¥Q, X, p), i.e.,

§A(X -0 X (X, -+, X, )dp = 0

for #, ..., 1, =0 and F a bounded measurable function on E*. We will say
that such a process is OS-positive. We can then complete 57 into a Hilbert
space &7~ Moreover ||P(1)7(F)||,, < ||F|lz2q,5,,. for all £ > 0 so P() is a con-
traction on #; (Osterwalder and Schrader [6]; also Klein [3]) and thus P(7)
extends by continuity to a strongly continuous self-adjoint contraction semigroup
on . Furthermore, if fe L=(Q, Z,, ) let us denote byfthe operator on 2
corresponding to multiplication by f, i.e., f7(F) = Z{fF), then f extends by
continuity to a bounded operator on &Z with || f|| = ||f]|., and % = {f|fe
L(Q, Zy, p)} is a commutative von Neumann algebra of operators on 5% having
Q = 77(1) as a separating vector (Klein [3]). Moreover, if , <1, < --- < ¢,
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fo oo [oe L2(Q, Zo ), fo, = U(ty) fi fori =1, - -, n, then

S forfiy o fodp = QAP — ) fy - P(1, — 1) f, Q)

We call (57, P(t), A, Q) the associated semigroup structure.
A positive semigroup structure (52, P(1), 2, Q) consists of

(i) a Hilbert space Z#7;

(ii) a strongly continuous self-adjoint contraction semigroup P(#) or &£;
(iii) a commutative von Neumann algebra 2{ of operators on 5#7;
(iv) a unit vector Q € 577

such that

(v) P(H)Q = Q for all t = 0;

(vi) Qs a cyclic vector for the algebra generated by 2L U {P(¢)|t = 0}, i.e.,
the linear span of {P(t)fiP(t) -+ P(t) fuQ|fir -+ fu€®, ty, -+, 1, = 0} is
dense in 57

(vii) forallf, ..., f,eqAt = {feW|f=0landt, ---,2, =20,

QP LE() - -+ P(1) [,2) 2 0.
We have thus proved the first part of the following theorem:

THEOREM (Klein [3]): Let {X,},.x be a weakly stochastically continuous OS-
positive symmetric stationary stochastic process. Then its associated semigroup
structure (%, P(t), A, Q) form a positive semigroup structure.

Conversely, let (57, P(1), U, Q) be a positive semigroup structure. Then there
exists a weakly stochastically continuous OS-positive symmetric stationary stochastic
process {X,}, ., such that (57, P(t), U, Q) is its associated semigroup structure.

Let us sketch the proof of the converse. As [ is a commutative von Neumann
algebra, A ~ C(Q,), where Q,, the spectrum of 9, is a Stonean space (i.e., a
compact Hausdorff totally disconnected space, e.g., [7]). Let QO = X,.g Q:»
where each Q, is a copy of Q,, and X, the Baire o-algebra on Q. We identify
{F € C(Q)}| there exists fe C(Q,) such that F(q) = f(q,) for all ¢ = (q,),cg € Q}
with C(Q,), and write X, for the o-algebra it generates. We define a Baire
measure ¢ on Q by

(2.1) Vfofoy - fr,dpe = CQUAP(G— 1) fy -+ P(t, — £,2) [ )

wheret, < 1, < -+ < 4, fiy -+, fa€ C(Qy), and f, (9) = fi(q,) fori=1,...,n.
The proof that (2.1) indeed defines a Baire measure involves in a crucial way
the fact that Q, is a Stonean space and thus finite linear combinations of
idempotents are dense in C(Q,). We now define the stochastic process {X.};.y,
having base space (Q, Z, ) and state space Q,, by X,(9) = ¢, for ¢ = (¢;);ex € Q.
Here X is the o-algebra generated by {X,},.,. It can now be shown that {X,}, .
is a weakly stochastically continuous OS-positive symmetric stationary stochastic
process with (57 P(1), %, Q) as its associated semigroup structure.
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We can now characterize, by their associated semigroup structures, those OS-
positive processes that are actually Markov. To do so let us first notice that if
P(t) is a strongly continuous self-adjoint positivity preserving semigroup on
L*(M), M a probability space, then (L*(M), P(f), L=(M), 1) form a positive
semigroup structure. Conversely, a OS-positive process is Markov if and only
if its positive semigroup structure can be put in this form. More precisely:

CoroLLARY (Klein [2]). Let {X,},.x be a weakly stochastically continuous OS-
positive symmetric stationary stochastic process, and let (5, P(t), 57, Q) be its
associated semigroup structure. Then {X,},.q is Markov if and only if Q is a cyclic
vector for 7.

We can thus see that in the semigroup characterization OS-positive processes
are the natural generalization of Markov processes. Markov processes cor-
respond to positive semigroup structures in which condition (vi) is replaced by
the stronger

(viy Qs a cyclic vector for 2(.
In this case (vii) is equivalent to
(viiy forall f, ge A+ = {feW|f=0}and t = 0, (fQ|P(t)gQ) = 0.

3. Inheritability of OS-positivity. Unlike the Markov property, OS-positivity
is inherited under fairly general conditions, for example:

(i) Functions of OS-positive processes. Let {X.},.p be a weakly stochastically
continuous symmetric stationary stochastic process with base space (Q, Z, )
and state space E. Let E’ be another state space, let a: E — E’ be a measura-
ble map, and let us consider the process {Y},.5, Where Y, = a o X,. It follows
{Y,};cx is a weakly stochastically continuous symmetric stationary stochastic
process. Moreover, if {X},cr is OS-positive, so is {Y,};cp.

Functions of Markov processes are not in general Markov, but functions of
OS-positive processes are OS-positive. In particular, functions of Markov pro-
cesses are OS-positive.

(ii) Linear combinations of OS-positive processes. Let us consider weakly
stochastically continuous OS-positive symmetric stationary stochastic processes
with the same base and state space, the state space being a vector space. We
can then consider linear combinations of these processes, those are again OS-
positive. Again, linear combinations of Markov processes are not Markov in
general but they are OS-positive.

4. Comments. The Osterwalder-Schrader positivity condition appeared in
Osterwalder and Schrader’s Euclidean formulation of Quantum Field Theory
[6], where it replaced the Markov property used by Nelson [5] in the recon-
struction of relativistic quantum fields. Euclidean fields (given the existence of
time-zero fields) are examples of weakly stochastically continuous OS-positive
symmetric stationary stochastic processes. Using the characterization of OS-
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positive processes by positive semigroup structures we have been able to de-
termine which relativistic quantum fields correspond to Euclidean fields (Klein

1,
Gaussian processes satisfying OS-positivity will be studied in a forthcoming

3.

paper (Klein [2]).
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