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EMPIRICAL DISCREPANCIES AND SUBADDITIVE PROCESSES

By J. MICHAEL STEELE
University of British Columbia

If Xi, i = 1,2, .- are independent and identically distributed vector-
valued random variables with distribution F, and S is a class of subsets of
R, then necessary and sufficient conditions are given for the almost sure
convergence of (1/n)DaS = sup4es |(1/n) T 14(Xs) — F(A)| to zero. The cri-
teria are defined by combinatorial entropies which are given as the time
constants of certain subadditive processes. These time constants are esti-
mated, and convergence results for (1/n)D»S obtained, for the classes of
algebraic regions, convex sets, and lower layers. These results include the
solution to a problem posed by W. Stute.

1. Introduction. One of the most useful tools of probability theory developed
in recent years is the theory of subadditive stochastic processes introduced by
Hammersley and Welsh [10] and perfected by Kingman [11, 12]and Hammersley
[9]. The first objective of this paper is to provide three new examples of such
processes. The underlying motivation for studying these specific processes is
that they provide an effective and unified approach to convergence theorems
for the empirical discrepancy function.

To set the problem precisely, we let X, i = 1, 2, - .. be a stationary sequence
of random variables which are defined on a probability space (Q, P, &) and
which take values in R?, d > 1. The common distribution function of the X,
will be denoted by F; thus for any measurable 4 C R* we have F(A4) = P(X, € A4).
For most of the results obtained here, independence of the X, will be assumed,
but, as indicated in the following, some results only require ergodicity of the
X, process.

Now let S be any class of measurable subsets of R%. For any 4 € S we denote
by 1,(x) the function on R? which is 1 if x € 4 and 0 otherwise. The fundamental
object of concern here is the generalized discrepancy function defined by

(1.1) D, =sup,cq |20, 14(X,) — nF(A4)|.
The most classical choice of S is

S ={(—c0, yi] x (=00, ya] X +++ X (=00, y]: (Yo y» =+ 5 ya) € R},
and in this case (1/n)D,5 is the very well studied Kolmogorov-Smirnov statistic
(see, for example, Durbin [4]). Beyond these classical regions there are, of
course, numerous choices of S of interest. In particular, for S the class of convex
Borel sets the first work is due to R. Ranga Rao [14] and there are refinements
by W. Phillip [13], P. Gaenssler [8], and W. Stute [17, 18].
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The study of general classes S was also begun in R. Ranga Rao [14], and, this
time, followed by Topsge [19]. The approach which is taken here is along the
completely different lines introduced by Vapnik and Chervonenkis [20] and [21].
Their analysis was based on the combinatorial, rather than the topological, prop-
erties of S. The present work is concerned with perfecting and applying the
method of Vapnik and Chervonenkis by means of subadditive ergodic theory.

Since in most cases of interest S is uncountable, the function D,* is not a priori
measurable. Still, for all classes which we consider, D,® is measurable and for
all results quoted here it will be assumed that D,5 is measurable.

The main result of this paper is Theorem 4.2 which gives two necessary and
sufficient conditions for the a.s. convergence of (1/n)D,5 to zero. This result is
preceded by two brief sections which introduce the quantities necessary to de-
fine the convergence criteria. The fifth section applies the main result to the
class of algebraic regions of R?. The sixth section specializes S to the class of
convex sets, and thus obtains a solution to a problem posed by W. Stute [17].
The final section similarly estimates the “time constant” of the subadditive proc-
ess associated to the class of lower layers and consequently obtains as corollaries
results due to Blum [1] and DeHardt [5, 6].

2. The Vapnik-Chervonenkis theorem. We will first observe that there is a
direct relationship between the combinatorial structure of S and the convergence
in probability of (1/n)D,5. If T is any set we denote by |T| the cardinality of T.
Now if W is a finite subset of R? then there are only finitely many distinct sets
W n Afor Ae S, and we let AS(WW) denote the number of such sets. More suc-
cinctly, we have

(2.1) AS(W) = (W A: Ae S} .

To solidify the understanding of this definition we note that for § = {(—oo0, y):
y € R} and W any k element subset of R one has AS(W) = k + 1.

Now if X;, i =1, 2,. .. arei.i.d. with distribution F the Vapnik-Chervonenkis
entropy V(F, S) is defined by

(2.2) V(F, S) = lim, .., % Elog AS(X,, X,, -+, X,,) .

With this definition we now have the main theorem of Vapnik and Chervonenkis:

If X;,,i=1,2, ... arei.i.d. then (1/n)D,5 converges to zero in probability if
and only if V(F, S) = 0.

In addition to this weak law for (1 /n)D Vapnik and Chervonenkis also pro-
vide a strong law under much more stringent conditions on AS(X,, X,, - - -, X)),
(see e.g., Theorem 3, [20]). A principal corollary of the present work is that one
actually has the strong law under precisely the same circumstance as the weak
law. That is, we prove that (1/n)D 5 converges to zero with probability one if and
only if V(F, S) = 0.

3. Combinatorial entropy. The Vapnik-Chervonenkis entropy is clearly a
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useful measure of the complexity of S, but it is not at all easy to compute. For
this reason we introduce a new type of combinatorial entropy which is much
more easily computed, but which is still effective in the study of D,S.

If W’ is a finite subset of R%, we say that W’ is shattered by S provided that
every subset of W’ can be written as W’ n A for some 4 e S. Next we let kS(W)
equal the cardinality of the largest subset W’ c W which is shattered by S. This
set function can also be expressed in terms of AS(W) as follows:

(3.1) kS(W) = max {k: AS(W') = 2k, W' c W, |W'| = k}.
The combinatorial entropy K(F, S) is now defined by the limit

’ n

(3.2) K(F, §) = lim inf, ., - EKS(X,, X,, - - -, X,).
n

In the next section we will prove that (1/n)D, converges a.s. to zero if and only
if K(F, S) = 0. In later sections K(F, S) will be estimated for several specific
classes, in particular for the class of convex subsets of R¢.

4. Three subadditive processes. After Kingman [11, 12] we call a family Y,,
(s < 1) of doubly integer-indexed random variables a subadditive process pro-
vided three conditions hold:

S,. Whenever s < t<u, Y, <Y, +7Y,.;

S,. The joint distributions of the process (Y,,, ,,,) are the same as those of
(Ya,t);

S;. The expectations g, = E(Y,,) exist and satisfy g, > — Ar for some 4 > 0
and all + > 1. '

The most valuable consequence of these properties is brought out by Kingman’s
theorem which says that for any subadditive process there is a random variable
& with finite mean such that

(4.1) ¢ = lim,_, Y/t
with probability one and in mean.
Perhaps the easiest, but most crucial, observation of this section is that the

generalized discrepancy, the Vapnik-Chervonenkis entropy, and the combina-
torial entropy are all essentially related to subadditive processes.

THEOREM 4.1. If X, i = 1,2, ..., is a stationary sequence of random variables
then each of the following is a subadditive process:
(4.2) Dji = sUPyes | Licarr Lu(Xe) — (1 — 9)F(A)]
(4.3) log Af, = log AS(X, .1, X1 -+, X))
(4.4) kf, = K5(X,y1, Xopns -+, X)) .

Proor. The stationarity property S, follows directly from the stationarity of
the X in all three cases. Also, since each of the processes is positive and bounded
we note that S, is valid. Only S, will require individual checking.
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The proof of S, for Dy, is just the triangle inequality. To prove S, for log A},
we first note that for any 4 e S one has

(4'5) AN {Xs+1’ Xa+2’ ] Xta Xt+19 B Xu}
= (A n {Xs+1’ D SPHTE Xt}) U (A n {Xt+1’ Xigp o) Xu}) .

But (4.5) shows that there are fewer sets of the form A n {(Xoir> Xypar -5 X}

than there are pairs of sets (4 N {X,,,, X, -+, X,}, 40 {X,\1, X,y - - -, X))
Since the number of such pairs is A3, AS,, (4.5) proves that

(4.6) AS, < ASAS, .

suU —

On taking logarithms one has S, for log AS,.

Now to prove S, for k§, suppose that W is the largest shattered subset of
{Xovs Xopoo -+, Xopy -+, X}, Then W, = W n {X,,, X,pps + -, X,} and W, =
W {X,11, Xipas - -+, X,} are also shattered. Hence we have
(4.7) ki = [W| = W] + |W,| < kJ\ + k3,

and the proof of Theorem 2.1 is complete.
To state the next result in a symmetric fashion we introduce a constant D(F, S)
defined as follows:

(4.8) D(F, S) = lim inf, ., L Esup,.s |2, 1,(X.) — F(4)] .
n

THEOREM 4.2. If X,, i =1, 2, - . is a stationary ergodic sequence then the fol-
lowing limits hold almost surely and in mean:

1

(4.9) lim, . 1\ D§, = D(F, 5)
n

(4.10) lim, ., 1 log A§, — W(F, S)
n

(4.11) lim, .. * k§, = K(F, S) .
n

Moreover, if the X; are i.i.d. and one of the constants D(F, S), V(F, S), or K(F, S)
is zero then they are all zero.

Proor. The existence of the limits on the left side of equations (4.9), (4.10),
and (4.11) is an immediate consequence of Kingman’s subadditive ergodic theo-
rem and Theorem 2.1. Further since these limits are unchanged by the shift
(X;) — (Xi;,) the ergodicity of the (X,) process implies the limits are constants.
These constants are then identified as above by noting that all the variables above
are bounded by 1 and then applying the dominated convergence theorem.

To prove the second half of the theorem we first recall that if the X, arei.i.d.
the main theorem of Vapnik and Chervonenkis says that n='Dg, converges to
zero in probability if and only if V(F, S) = 0. Hence by the convergence in
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mean of n~1Dj, we have that D(F, S) = 0 if and only if V(F, S) = 0. The theo-
rem is completed once one proves that V(F, S) = 0 if and only if K(F,S) =0
and that will be accomplished by the following lemma.

LEMMA 4.3. If we define h(x) = —log x*(1 — x)'=* for 0 < x < } and h(x) = 1
for 4 < x < 1 we have the inequality

(4.12) K(F, S) < V(F, S) £ iK(F, S)) .
Also we have V(F, S) = 0 if and only if K(F, S) = 0.

PROOF. Since 2k < A§, the first inequality of (4.12) follows by taking loga-
rithms and limits. To prove the second inequality we recall a result due to
N. Sauer [15] (which is only a little sharper than Lemma 1, page 266, [20]).
According to Sauer’s theorem there must exist a shattered k element subset of
X, X, -, X, if A5, = 3%23 (%) + 1. Hence for any 0 < @ < 4 we have that
ks, < [an] 1mp11es

(4.13) A5, < Tl () £ (al)(h) -
By Stirling’s formula one then obtains
(4.14) V(F, S) < ka)

for all « such that K(F, S) < a. Finally by the continuity of A(x) one obtains
(4.12) and the fact that V(F, S) = 0 if and only if K(F, S) = 0.

The proof of Lemma 4.2 completes the proof of Theorem 4.2 and, even though
the result has been obtained effortlessly, we will note in succeeding sections that
it contains numerous known results concerning D§, as well as new ones.

Simplest among the conclusions of Theorem 4.2 is the fact that (1/n)Dg, always
converges a.s., even when the limit is not zero. In the present context this is
not as surprising as it would be if one approached the study of Df, without sub-
additive ergodic theory. Otherwise, it would have been noted long ago.

To demonstrate the applications of the other conclusions of Theorem 4.2 we
will consider specific classes in the following sections and show how K(F, S) can
be computed.

5. An application to algebraic regions. The first special class which we con-
sider is the class of polynomial regions. To describe these we first let P, , denote
the set of all real polynomials in d variables of degree not greater than m. For
example,

Py, = {3 a,;,xyiz% a,; real, 0 < i+ j+ k <2}

Now if g € P, , then g defines a subset 4, of R? in a natural way as follows,

(5.1) A, ={veR*: g(v) = 0}.

Finally, we call the class of sets P,,={A4,: geP,,} the class of mth degree
polynomial regions of R?. One should note, for example, that P, , contains all
the ellipsoids in R® as well as many other regions.
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An especially important class of algebraic regions are the half-spaces H = P, ,.
For these regions the calculation of Al is essentially a classical result due to
Schifli (see [3] and [16]), which we now note.

PROPOSITION 5.1. If y, ¥y, - -+, ), are elements of R* and if H = P, _ then

(5-2) A%(ss Yoy -5 ¥a) £ 2 Limo (") 5
and equality holds in (5.2) provided the y, are in general position (i.e., any 7 or fewer

of the y, are linearly independent).

That an estimate for A§, with § = P, , follows from (5.2) was first observed
by T. Cover [3], whose brief proof we quote.

PROPOSITION 5.2. For S = P, , one has
(5.3) As, <2 X0 (™Y where t© = ("}%).

ProoF. The idea is to associate to each element of § = P, , an element of
H=P. , IfyeRandy = (y(1), »(2), - - -, )(d)) we define ®(y) € R* by
G4 @) = (L y(A)s - 2@ YAPs - Y@y YY) s HA)") -
Now the proof is completed by noting that

A(yn yor -0 ya) = A(B(31)s $(a)s - o5 B(0)) = 2 Tikeo (") -
The preceding estimates naturally yield the following consequence.

CoroLLARY 5.1. If X, i =1,2, ... is a sequence of i.i.d. random variables
with any distribution, and if S = P, , then lim,_,, (1/n)D§, = 0 a.s.

Of course, to prove the above one just notes that A§, is dominated by a poly-
nomial and thus lim,_, (1/n) log Aj, = O a.s. One should note that the corollary
contains the Glivenko-Cantelli theorem for half spaces due to Wolfowitz [22, 23].

6. Convex sets and Stute’s problem. By applying our main result, Theorem
4.2, to the class of convex Borel sets, we can now answer a question posed by
W. Stute [17, page 168].

To state Stute’s problem we first note that for any distribution F, there are
unique finite measures F, and F, such that F = F, 4 F,, F, is atomic, and F, is
non-atomic. Next if C is the class of convex Borel subsets of R? and 4 e C we
write A for the boundary of 4. It was proved by R. Ranga Rao [14] that

(6.1) SUp e Fo(04) = 0

is a sufficient condition for D(F, C) = 0. To provide a comparable necessary
condition, W. Stute [18] introduced e(A), the set of extreme points of 4 and
proved that D(F, C) = 0 implies

(6.2) sup,ec Fo(e(A4)) = 0.

The problem considered of “considerable interest” by W. Stute ([17, page 168])
is to find conditions for D(F, C) = 0 which are stronger than (6.2). The following
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theorem proves a new proof of R. Ranga Rao’s sufficient condition, W. Stute’s
necessary condition, and an answer to W. Stute’s problem.

THEOREM 6.1. Let X,, i=1,2, ..., bea sequence of ergodic stationary random
variables with values in R® and distribution F. For C, the class of convex Borel sets,
one has

(6.3) SUp, ¢ Fi(e(A)) < K(F, C) < sup, .. Fy(0A4) .

Proor. First note that any finite set of distinct elements of e(A) is shattered
by C. Now if D° is the union of all the atoms of F, then by the continuity of
Fon D theset {X;: X,eD,i=1,2, ..., n} contains only distinct points with
probability one. Hence we have for any 4 e C

(6.4) ke(Xy, Xy -0 Xo) 2 D0 Lpnea(X) -
By the ergodic theorem (6.4) yields
lim,_, n=kg, = F(e(A) N D) = Fi(e(A)),

and taking the supremum yields the first inequality in (6.3).
To prove the second inequality we require a simple truncation. Letting B,
denote the ball about 0 of radius m we define k(m) by

(6.5) k(m) = lim,_,, n=%k°({X,, X,, - -+, X,} N B, n D).
By subadditivity we have
(6.6) K(F, C) < k(m) + F(B,°) + lim,__ n7%k°({X,, X,, -- -, X,} n D°).
If 4,, A, - - - denote the atoms of F and G, = |J,, 4,, then for any k > 1
(6.7) nkO({Xy, -, X} N DY) S ntk 4 n7t B 1 (X))
The ergodic theorem yields for all fixed &,
lim,_ n%k°({X,, X,, - -+, X,} N D°) < F(G,).
Since F(G,) — 0 as k — oo, (6.6) simplifies to
(6.8) K(F, C) < k(m) + F(B,°) .

To estimate k(m) we use the Blaschke selection theorem (see Eggleston [7, page
64]) which allows us to choose for each r a finite subclass S, of convex subsets
of B, with the following property:

If E is a convex subset of B,,, there is an 4 ¢ S, such that

OE C {x:inf ., |x — y| < 1/r}.

We note that the set {x: inf,.,, |x — y| < 0} is a “thickened boundary” of 4
and we will denote it by 7(4, 9). Now we have a basic observation:
(6.9)  K({Xp, X, -+, X,} 0 By 1 D) < MaXpep Nt lonus(X) -

The proof of (6.9) consists in noting that for a set of points to be shattered they
must be extreme points of a convex set. Now by the choice of S,, the inequality
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(6.9) implies that
(6:10)  K({X;, X,y -+, X,} 1 B, 0 D) < maX,es Ny Lporeaum(X)
which by the ergodic theorem yields
(6.11) k(m) < max,.s F(T(4, 1]r)).
To take advantage of (6.11) we choose for each r an A, € S, such that
(6.12) k(m) < Fy(T(A4,, 1/r)) forall r.

Again by Blaschke’s theorem there is a convex 4’ C B,, such that one has the
following:
Given any 6 and any R there is an r = r(d, R) such that » > R and
T(A,, 1Jry Cc T(A4',9).
Hence we have

(6.13) lim, . FT(A,, 1)) < F(T(A', 0)),
and by (6.12) and (6.6) this yields
(6.14) K(F, C) < F(B,°) + Fy(T(A4', 9)) .

The countable additivity of F, gives lim,_, F(T(A4’, 9)) = Fy(dA4’) so (6.14) im-
plies the second inequality in (6.3), since F(B,°) can be made as small as we
like. This completes the proof of Theorem 6.1.

Now we need to check that Theorem 6.1 actually provides a solution to Stute’s
problem. We already know from Theorem 4.2 that K(F, C) = 0 is necessary and
sufficient for D(F, C) = 0. But by the inequality of Theorem 6.1 we also have
K(F, C) = 0 is in a very strict sense a stronger necessary condition than

SUp ¢ Fo(e(04)) =0 for D(F,C)=0

One further consequence of Theorem 6.1 is that in the case where all subflats
have measure zero one can prove that

SUP,c¢ Fo(e(0A)) = sup,ee Fy(04)

so the inequalities in (6.3) become equalities. The Theorem 6.1 is then an in-
stance of computing the “time constant” of a subadditive process, and the calcu-
lation of such constants was pointed out by Kingman [13] to be a basic problem
in the theory of subadditive processes. '

7. The class of lower layers. There is an interesting class of sets introduced
by J. Blum [1] which is quite different from the class of convex sets but for which
a twin result to Theorem 6.1 can be proved. A Borelset 4 C R¢ is called a lower
layer provided for all (y;, Yy, - - +» ys) € A We also have

(7'1) {(yl,’yzl’ ""yd,):yi, éyi’i: 1,2, ""d} c4.

To fortify ones understanding of (7.1) it is useful to check that in R? the set
of points which lie below a decreasing function forms a lower layer.
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The class of lower layers in R* will be denoted by L, and we need a notion
of extreme point for 4e L. By analogy to the convex case we say x is an ex-
treme point of 4 € L provided A4\{x} € L. There will be no confusion in denoting
the set of extreme points of 4 by e(A4). If F, is again used to denote the non-
atomic part of F, then the following result holds:

THEOREM 7.2. For X;,i = 1,2, ... a stationary ergodic sequence with values
in R® and distribution F,
(7.2) sup,e . Fy(e(4)) < K(F, L) < sup,., F(04) .

The proof goes so nearly like that of Theorem 6.1 that it can be omitted safely.
The crucial observation is that a set of points {x,, x,, - - -, x,} C R is shattered
if and only if {x,, x,, - - -, x,} C e(A4) for some 4¢ L. Also one needs to know
that there is a compactness theorem due to Brunk, Ewing, and Utz [2] which
plays the same role for L that Blaschke’s theorem plays for C.

As a corollary to Theorem 7.1 we obtain a sufficient condition (due to Blum
[1]) and a necessary condition (due to DeHardt [5, 6]) for a Glivenko—Cantelli
theorem for the class of lower layers.

CoroLLARY 7.2. For X, i=1,2,... iid. one has D(F,L)=0 if
sup,e; Fy(04) = 0, and sup,., Fi(e(4)) = 0 if D(F, L) = 0.
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