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STOPPING TIMES AND TIGHTNESS!

By Davip ALDOUS
University of Cambridge

A sufficient condition for the tightness of a sequence of stochastic
processes is given in terms of their behavior after stopping times. Asan
application, the conditions for McLeish’s invariance principle for martin-
gales are weakened.

Let D be the space of functions on [0, 1] with discontinuities of at most the
first kind, with the Skorokhod J, topology (see [1] for the theory of weak con-
vergence in D and the definitions of w and w’).

Let {X,} be a sequence of random elements of D. Let {r,, d,} be such that

(1) (i) for each n, =, is a stopping time on the process
{X,(1); 0 < t < 1}, with respect to the natural o-fields,
and 7, takes only finitely many values;

(ii) for each n, 4, is a constant, 0<4,=<1, and

5,,——)0 as n—oco.

We require 7, to take values in [0, 1], but it is technically convenient to regard
each fe D as extended to [0, 2] by putting f(r) = f(1), 1 < ¢ < 2: this enables
us to write X,(z, + d,) instead of X,(min (1, z, + 4,)). For fe D, let J(f) denote
the maximum of the jumps |f(?) — f(t—)|-

We are interested in the following condition on {X,}:

(A) Xn(Tn + 57&) - X’n(Tn) —p 0

for each sequence {r,, d,} satisfying (1).

Observe that if (A) is satisfied, then it remains true even when {r,} are not
required to take finitely many values, by approximating from the right.

The main result in this paper is a sufficient condition for tightness, whose
proof we defer.

THEOREM 1. Suppose that {X,} satisfies (A), and that either
(2) {X,(0)} and {J(X,)} are tight on the line; or
3) {X,(t)} is tight on the line, for each te[0,1].
Then {X,} is tight in D.

Hypotheses (2) and (3) are certainly necessary for tightness, but (A) is not:
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consider
X (=0 0=1<}
=1 {gt<l.

The essential point of Theorem 1 is that we only have to look at the behavior
of the processes after stopping times. If the r, were allowed to be arbitrary
[0, 1]-valued random variables, then the hypothesis is easily seen to be equiv-
alent to

lim,_, lim sup,, .., P(W(X,, 6) > ¢) =0, for each ¢> 0.

And this, together with the hypothesis {X,(0)} is tight, is equivalent to the as-
sertion that {X,} is tight and each weak limit has a.s. continuous sample paths.
This establishes the following result.

COROLLARY 1. Suppose that X, has a.s. continuous sample paths, and that the
finite-dimensional distributions of {X,} converge to those of X,. Then X, —_ X, if
and only if {X,} satisfies (A).

These results and their proof are somewhat similar to those of Billingsley [2].
Indeed, let us write M(X,) = sup, |X, ()|, and let a,(4, ¢, 0) be the smallest number
such that

P(|X,(5) — Xo(tn)] > el| Xo(1)s - - -5 Xo(20))
< a,(4,¢0) a.s. ontheset {max,|X, () <4}

whenever0 <, < - <t, <s<lands—t, <0. Suppose {r,,d,} satisfy
(1): then a simple argument shows that

P(| X, (7, + 0,) — X, (z,)] > ¢) < a,(4,¢0,) + P(M(X,) > 2).

So we can deduce from Theorem 1 the following improvement of [2], Theorem 1.
(This result is also mentioned in [3].)

COROLLARY 2. Suppose that {M(X,)} is tight on the line, and that for each ¢ > 0,
A< o
lim,_, lim sup, ., @,(4,¢,0) = 0.
Then {X,} is tight in D.

This result in [2] has been applied to sequences of Markov processes. However,
that would seem to be the only circumstance in which its hypothesis about condi-
tional distributions is satisfied. It seems plausible that hypothesis (A) is satisfied
in more general situations where we have control over the behavior of the
processes after stopping times. As an example, let us show how the conditions
of McLeish [4] for the invariance principle for martingale difference arrays can
be weakened slightly. We use the notation of [4]: {X, ,} is a triangular array of
random variables adapted to o-fields { &, .}, and {k ()} is a sequence of integer-
valued, nondecreasing, right-continuous functions such that £,(0) = 0. Let
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W (1) = Lk X, ,, and let W denote standard Brownian motion on D. Theorem
2 is a restatement of [4], 2.3, trivially modified. Theorem 3 is a slight improve-
ment of [4], 3.2.

THEOREM 2. Let s* < co. Let {Y, ;} be a martingale difference array such that

“4) max;|Y, ;| —,0

(3) sup,, E(max; |Y, ;|*) < oo
(6) 2 Y —, 5.
Then 3, Y, ;, —_ N, s?).

THEOREM 3. Let {X, ;} be a martingale difference array satisfying (5) and
(M b X2, —,t,  foreach te[0,1].
Then W, —_W.

ProoF. Let us first show that

(®) JW,) = max, |X, | —,0.

Let B, , = {w: | Xti’? X} (0) — jlq| < 1/q for each j =1, ..., g}. Then
%) lim, . P(B,,) =1 for each ¢, by (7).

And for we B, ,,

(10) Sl Xidw) < 3/g,  foreach j=1,...,q.

Hence max, | X, ;* < 3/g on B, ,, and (8) follows.
We will now use Theorem 1 to establish the tightness of {W,}. Let {r,,d,}
satisfy (1). Then

(11) Wﬂ(T'n + 51&) - W'n(Tn) - Zl Xn,iI(An,i)
= Zi Yn,i Sa)’,

where 4, ; = {k,(7,) < i< k,(r, + d,)}. We assert

(12) {ku(zn) < i}e F, ...

For if r < s then

{ka(s) < n {W(r) < a} = Ui ku(s) =} N {Z X, < a}e 5,
and so

tha(s) <} 0 FW(): 0= r<s) C .,

n,i—1
and so
{k () < i} n{r, =s}e F i

from which (12) follows. Using a similar argument,
{k'n(fn + 61&) < l} € ‘g—n,i-l
and hence 4, , ¢ &,

n,i—1°
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So {Y, ,} is a martingale difference array, which certainly satisfies (4) and (5).
Now if w € B, , and 8, < 1/g, then (10) shows that 37, Y2 (o) < 6/g, and so it
follows from (9) that

> Y2, —,0.
Applying Theorem 2, we see that 3, Y, ;—,0. Now (11) shows that (A) is
satisfied, and then (8) and Theorem 1 establish the tightness of {W,}. The con-
vergence of the finite-dimensional distributions of W, to those of W follows
from Theorem 2 and the usual Cramér-Wold argument.

ReMARK. The reader will observe that Theorem 1 leads to a tightness argu-
ment quite different from the usual ones involving maximal inequalities and
moment conditions.

McLeish [4] remarks that his results extend to the situation where k() is,
for each fixed ¢, a stopping time on {<#, ;}. The proof of Theorem 3 goes over
unchanged in this situation.

ProoF oF THEOREM 1. Hypothesis (A) is equivalent to the assertion that,
given ¢ > 0, there exists § > 0 and n, such that, for n > n,

(13) P(X,(z + 8) — X)) 2 ¢) < ¢
for each 0 < &’ < 24, and each stopping time = on X,. So given ¢ > 0, choose

o and n, as above and consider these quantities fixed. Let g > 2/d be a fixed
integer. Then similarly there exist ¢ > 0, n, = n, such that, for n = n,,

(14) P(X\(z + 0) — Xo(7) 2 ¢) < ¢/g
for each 0 < ¢’ < 20, and each stopping time r on X,,.
As in [2], define stopping times {T,;}, i =0, ---, ¢, by T, , =0
Tppp=min{t: T, <t <1, [X,(1) = X (T, )| = 2¢}
=2 if nosuch ¢ exists.
We shall prove later that, for n > n,,
(15) KT,, < 1)< 16c
(16) KT,,<min(1,T,, , + o), forsome i=1,...,9) < 8.
Assume (15) and (16) for the moment. Think of {X,} as being extended to
D[0, 2] as described earlier. Write w'(x, o) for the modulus w,’(s) of [1], page
110, modified for D[0, 2] by taking the infimum over {#;} satisfying 0 = 7, <
< oo < t,=2,t=t_, + 0. Then it follows from (15), (16) and the defini-
tion of {T, ;} that
(17) PW'(X,,0) > 4¢) <24c, n=n,.
Now suppose that hypothesis (2) is in force. Then we can choose 4 such that,
for each n,
PX,(0) 2 2) <«
PUJX,) =) <ce.
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Then from (15) and the definition of {T, ,} it follows that
(18) P(sup, | X, (1)) = (¢ + 1)A + 2¢g¢) < 18, n > n,.

Alternatively, suppose that hypothesis (3) holds. Let S, denote the set of ¢
such that

(19) sup, P(IX, (1) 2 4) < e .

By (3), U.: S: = [0, 2]. Choose 2 so large that [0, 2]\S; has Lebesgue measure
at most ed. We shall prove later that, for n = n,,

(20) P(sup, |X,(1)] = 2 + ¢) < 3.

Now we can apply [1] Theorem 15.2 to (17), together with (18) or (20), and
deduce that {X,} is tight in D[0, 2]. To show that {X, {X,} is also tight when con-
sidered as elements of D = DJ0, 1] is straightforward. Suppose X; —_ X, in
D[0, 2]: to prove convergence in D it is sufficient to show that X, is continuous
in probability at 1, and this is true because, from (13),

lim sup, ., P(|X,(5) — X, ()| = ¢) < ¢ if |s—1<25.

Thus the proof of Theorem 1 has been reduced to the proof of (15), (16), and
(20).

Fix n = n,, and for typographical convenience drop subscripts n from T, ,
and X,. Let & be the o-field generated by X. Let 6 be a random varlable
distributed uniformly on [0, 26] independent of 5.

Temporarily fix feDand 0 < 1, <1, < 1. Suppose

(21) (l) L, — t1<5
(if) P(f(t; + 6) — f)l < ¢) > §, Jj=12.
Then there exists 6, € [¢, + J, ¢, + 28] such that
1f(60) — [zl < e j=12,

and so |f(t,) — f(#,)] < 2¢e. In other words, the set
{(fs 1 1) |f(ty) — f(1)] = 2¢ and t, < 1, + 0}
is contained in the set
((f o 8): POAL; + 0) = L) 2 ) 2 § for j=1 or 2.
Hence fori =1, ..., q
(22) P(IX(T;) — X(Tiy) = 26, T, < To_, + 0) < P(A,) + P(A,_,)

where 4; = {w: P(X(T, + 6) — X(T\)| = ¢|| ) = ).
Now P(A,) < 4P(|X(T; + 8) — X(T,)| = ¢). And from (13),

(23) PX(r + 0) — X(z)| = ¢) < ¢
for each stopping time = on X. Also, |X(T;) — X(T;_,)| = 2¢ on {T, < 1} by



340 DAVID ALDOUS

definition. So (22) implies that

(24) PT; <1, T, <T;_, + ) < 8, i=1,...,q
A similar argument using (14) shows that
(25) T, <1, T, <T,_,+ o) < 8q, i=1,..-,9

Now (16) follows immediately from (25). And
ET,— T,,|T,<1)zZoPT;— T,_, 20|T, < 1)
>0l - AT, —T,_, <06, T, < )/T, < 1)}
= 31 — 8¢/A(T, < 1))
by (24). So 1= ET,|T,<1)=X E(T,—T,_,|T,<1) = qd{1 —8¢/K(T, < 1)}.
Since we chose g > 2/d, (15) follows.

It remains only to prove (20). Let ¢ be a random variable distributed uni-
formly on [0, 1] independent of . Suppose that 0 < r < 1, fe D, and A isa
measurable subset of the line. Then by considering densities,

(26) P(f(t + 0) e 4) < P(f(2¢) e A)[5 .
So if ¢ is a stopping time on X, then

P(X(e) Z 2 +¢) S ¢ + P(X(r + 6) = 4) by (23);
¢ + P(|X(2¢) =2 1)/ by (26);
e + {6 + P(¢ ¢ S;)}/0 by (19);
3¢ by choice of 2.

A IA A

And (20) follows by considering
r=min {t: |[X(#)] = 2 + ¢}

=1 if nosuch 1t exists.
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