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RANDOM MEASURES WITH AFTEREFFECTS

By LARRY P. AMMANN AND PETER F. THALL!
The University of Texas at Dallas

A class of & of random measures, generalizing the class of completely
random measures, is developed and shown to contain the class of Poisson
cluster point processes. An integral representation is obtained for 2,
generalizing the Lévy-Ito representation for processes with independent
increments. A subclass &, c & is defined such that for X € Z,, the distri-
bution of the random vector X(A4,), + -+, X(Am), m > n, Ay, -+ -, An disjoint,
is determined by the distributions of all subvectors X(4i,), - -+, X(4i),
1 <k <n. The class 2, coincides with the class of completely random
measures.

1. Introduction and summary. The purpose of this article is to provide a
general probabilistic framework for infinitely divisible (i.d.) random measures
X which are not completely random (Definition 2.9). Since a completely random
(c.r.) measure takes on values independently on disjoint sets, its distribution is
fully specified by its one-dimensional distributions. The presence of dependence,
however, compels that the finite dimensional distributions of all vectors
X(A,) = (X(4,), - --, X(4,)), m = 1, be specified to determine the distribution
of the measure. It is shown that, in the particular case of limited aftereffects
called n-dependence (defined in Section 2), only the finite dimensional distribu-
tions of dimensions 1, - - ., n are necessary to yield the probability law of the
random measure (Theorem 3.10). Aside from possibly a deterministic compo-
nent, these random measures are purely atomic, and an integral representation
(Theorem 3.7) generalizing the Lévy-It6 representation for processes with inde-
pendent increments is also presented.

The study of random measures is motivated by the study of the class of non-
negative, nondecreasing stochastic processes Y(?) defined on a real parameter ¢,
where X(s, t] = Y(t) — Y(s), s < t, defines the unique Stieltjes measure X cor-
responding to Y. The property of Y having independent increments is equivalent
to X being c.r. When Y(#) does not have independent increments X is said to
be subject to aftereffects, and hereafter the class of random measures which are
not necessarily c.r. will be called random measures with aftereffects.

Kingman (1967), in his study of c.r. measures, provides a canonical represen-
tation for the moment generating function (m.g.f.) of X(4) based on the Lévy
representation for i.d. random variables. He also shows that under a weak
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finiteness assumption X is the sum of a deterministic component and a purely
atomic, i.d. component. '

When X has aftereffects, however, the interdependence among X(4,), - - -,
X(A,), m = 2, leads here to the use of the probability generating functional as
an analytic tool. The elegant representation of this functional for nonnegative,
i.d. stochastic processes given by Lee (1967) is utilized for the study of random
measures with aftereffects.

The class of random measures constructed in Section 3 is shown to contain
several important classes of stochastic processes, including the set of all c.r.
measures, hence all nonnegative, i.d. processes with independent increments.
In addition, it is shown to contain the family of Poisson cluster point processes,
including the Neyman-Scott, Bartlett-Lewis, Vere-Jones, and Gauss-Poisson
processes. See, for example, Daley and Vere-Jones (1972).

2. The probability generating furctional of a random measure. The ideas
developed in this and the following sections draw upon several important papers
on the theory of stochastic processes. The consistency conditions are essentially
those used by Ferguson (1973) in his treatment of Dirichlet processes. The
preliminary results on generating functionals are based upon papers by Westcott
(1972) and Jagers (1972) on the theory of stochastic point processes. Lee’s general
representation for the multivariate m.g.f. of a nonnegative i.d. stochastic pro-
cess is central to the development in Section 3. Finally, the functional given
by (3.1) is a generalization of the probability generating functional of a regular
i.d. stochastic point process, as given in Ammann and Thall (1977).

Some preliminary notation is required. Let T be a g-compact metric space
with o-field .7 of subsets of 7', and take (2, %, P) to be any probability space.
Write R, = [0, oo) and S, = [0, o], the one point compactification of R, by
oo, with corresponding Borel o-fields <2, = 2Z(R,)and &7, = Z%(S,). The set
of all nontrivial measures ¢ defined on .7~ and finite on bounded sets is denoted
by ., with =7 the smallest g-ring generated by the Borel cylinder sets {y:
wA)eB, 1 <i<m), A;e 7, B;e,, 1 <i< m. Arandom measure X w.r.t.
the above probability space is defined to be any & -measurable function X:
Q — _# By a standard abuse of notation, X(w, 4) will be taken to mean y(A)
for ¢ = X(w), ® € Q, with the argument o suppressed in most instances. Since
by assumption X(w, 4) < oo for all bounded 4 e .7 and all w € Q, it follows
from the o-compactness of T that each X(w) is o-finite.

The finite dimensional distributions of X must satisfy certain consistency con-
ditions to insure that they define a unique probability law Z#on (_#, 7). The
conditions given below are those of Ferguson ((1973), page 213) with the addition
of a further condition to insure that X is countably additive.

Consistency conditions.

(i) The distribution of X(4,), ---, X(4,) is identical to the distribution of
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X(4,), - -+, X(4, ) forallm = 1, 4,, ---, 4, € 7 and permutations (i, - - -, i,)
of (1, ..., m).

(ii) For arbitrary 4,, ---, 4, € .7, form the k = 27 sets obtained by taking
all intersections of the A4; and their complements; i.e., define B, = N 4,%,
where i = (i}, ---,4,), i;=0o0r 1, and 4;' = A4,, A,> = T\A4;. Note that {B,}
forms a partition of 7. The distribution of X(A,) is then obtained from the
distribution of {X{B,)} by defining

X(4;) = Zu:ij=1> X(By) -
(iii) For arbitrary disjoint A, -, A,e7, if B=Unp4d,---, Bk =
Uk ndy l=n< - <n=m, then the distribution of 71 X(4,), -
2irk_ 4 X(Ay) s identlcal to the distribution of X(B,), - - -, X(B,).

(iv) If {4,} is a monotone decreasing sequence from 7 such that 4; | ¢ and
X(A,) < oo a.s., then X(4,) | 0 a.s.

Note that a.s. ¢-additivity for X follows from (iv), while (ii) implies X{(¢) is
degenerate at 0.

LemMa 2.1 (Ferguson (1973), page 213). If the finite dimensional distributions
of X satisfy conditions (i)—(iv) then there exists a unique probability measure =7 on
(A, S77) yielding these distributions.

With these preliminaries established, the probability generating functional of
a random measure is now defined. Intuitively, the probability generating func-
tional of a random measure describes its probabilistic structure in a manner
analogous to that in which a m.g.f. describes the law of a random variable.

DEFINITION 2.2. The probability generating functional of a random measure
X is
(2.1) G[£] = Ee*-los¢,

where p o f = {; fdp and the expectation is taken w.r.t. P. If £ = 0 on some
set A then exp(X o log &) is taken to be 0, unless X(4) = 0 (a.s.) in which case
it is taken to be exp[X o (/1 , log §)].

Two classes of functions for which (2.1) is meaningful are given by the follow-
ing definition.

DEFINITION 2.3. (i) V' is the class of all .7-measurable functions &é: 7T —
[0, 1] such that I — & vanishes outside a compact set and (ii) ¥ is the subclass
of functions in ¥ which are bounded away from 0.

V, contains virtually all functions which are of interest here in the sense that,
while G[¢] exists for all £ € V, it is nontrivial for all § € V. Define for positive
integer m, disjoint sets 4;, - -+, 4, € Z,andu, ---,u, cR, the special element
of V,

(2.2) T =1— 21— e_ui)[Ai ’

where I,(f) = 1 if te A, 0 otherwise. In all that follows statements involving
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7., shall be understood to be given for arbitrary m, A, --., A,,and u,, ---, u
as given above. Note that G[7,] is the m.g.f. of X(A,).

m

LEMMA 2.4. G is uniquely determined on V, by 7, and conversely. (See Westcott
(1972).)

The next two theorems give conditions on G for determination of finite dimen-
sional distributions and weak convergence of the corresponding random meas-
ures. The following continuity lemma for G is first required.

LEMMA 2.5. If G is a probability generating functional and {¢,} is a sequence in
V, satisfying the conditions

(i) {1 — &,} vanish outside a common bounded set,
(it) {&.} is uniformly bounded away from 0, and
(i) &, — & pointwise,
then G[£,] — G[£].

If X(A,) = oo a.s. for some (necessarily) unbounded 4, € 7, then finding
the joint distribution of X(A,,) effectively reduces to finding the joint distribu-
tion of X(4,), ---, X(4,,_,). The determination of finite dimensional distribu-
tions of X through evaluation of G at 7, when some A4,’s are unbounded, may
thus be carried out w.l.o.g. under the assumption that P[X(4,) < o] > 0, or
equivalently G[1 — 27,1 > 0,0 <z < I, 1 i< m.

THEOREM 2.6. A functional G on V is the probability generating functional of a
random measure iff, for each 7, G[7,] is the m.g.f. of a random m-vector of non-
negative components.

PrROOF. Necessity is immediate from the definition of G. Sufficiency follows
from verification of the consistency conditions.

Condition (i) is obvious. To show (ii), take arbitrary 4,, - .., 4, and {B,} as
defined in the condition, and let

5 =1- Z(i;eo) [l - exp(_ui)][Bi ‘

The joint distribution of the B,’s is then determined by G[¢], and it follows that
G[¢] is the m.g.f. of X(A,) by setting u, = u; for all i such that i;=1and
defining

X(A;) = D=1 X(By) lsj=sr.

To show (iii), take A, and B, as defined in the condition and note that, for
u"j—]'H: =urj=1;j, 1§j§k,
L—3e (1 - e'"j)]Bj =9, -

Finally, let {4} be a sequence of sets as in (iv), so that G[,] > 0 for §,=1—
zIAj and fixed z, 0 < z < 1. Since é; — 1 pointwise, it follows from Lemma 2.5
that G[§,] — G[1] = 1. Hence X(4,) | 0 in law, and so a.s.
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The finite dimensional distributions generated by G thus extend uniquely to
define a probability law .57 for a random measure X. Since the probability
generating functional G* of X must agree with G for all simple functions & € V,
it follows that G*[§] = G[£] for all £ e V,. []

The probability generating functional of a random measure X thus embodies
the law .27 of X through the functions 7,, € ¥,. The analogous result for stochas-
tic point processes is given by Westcott ((1972), Theorem 4).

A sequence of random measures {X,} with respective probability measures
{ .} is said to converge weakly to a random measure X with probability measure
Fiff Z oh— . Foh for all bounded continuous functions 2 on T. Denote
weak convergence X, — X(w). The following result allows weak convergence
to be expressed in terms of probability generating functionals. Convergence of
the sequence of probability generating functionals {G,} is taken here to mean
that G,[§] converges for all § € V.

THEOREM 2.7. If X, — X(w), then the corresponding probability generating func-
tionals G, converge to the probability generating functional G of X. Conversely, if
a sequence of probability generating functionals {G,} of random measures {X,} con-
verges to a functional G continuous for all sequences &, — 1 which satisfy the con-
ditions of Lemma 2.3, then G is the probability generating functional of a random
measure X and X, — X(w).

Proof. This result is due to Jagers ((1972), Theorem 1), stated there in terms
of characteristic functionals. []

The remainder of this paper is concerned with investigation of purely atomic
i.d. random measures with aftereffects, and the analysis is carried out exclu-
sively via probability generating functionals. Lee (1967) has given a characteri-
zation of nonnegative i.d. stochastic processes in terms of their finite dimensional
distributions, although his representation is expressed here equivalently in terms
of probability generating functionals. The result is stated for random measures.

THEOREM 2.8 (Lee (1967), page 150). A random measure isi.d. iff its probability
generating functional takes the form

(2.3) log G[¢] = a o log & + §  [e*1o6¢ — 1]P(dp),

where a is a measure on (T, 7" ) and Pisa unique measure on (_#, "), such that
G[7.] > 0.

By convention, P is called the KLM (Kerstan-Lee-Matthes) measure of the
process. A random measure for which @ = 0 in (2.3) is said to be centered. Note
that any i.d. random measure can be centered, and that P determines X up to
the additive deterministic component given by a. Since the present article is
concerned with the stochastic structure of X, and hence with P, it is hereafter
assumed that all random measures under consideration are centered.
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Denote by p,, ,, the element of _# which gives mass v; > 0 to the point
t;eT for distinct ¢,, - - -, #,. That is,

Popov, = 2 vjatj >
where d,(4) = 1 if t € A, 0 otherwise.

DEFINITION 2.9. A random measure X is said to be completely random iff for
each collection 4,, - - -, 4, of disjoint sets in .7, X(4,), - - -, X(4,,) are inde-
pendent, m > 2.

Theorem 2.10 shows that a random measure is c.r. precisely when its KLM
measure is concentrated on the set of measures with a single atom.

THEOREM 2.10. A random measure is c.r. iff its probability generating functional
takes the form (2.3) with P concentrated on D, = {p = p, ,: te T, v > 0}.

PrOOF. Suppose P is concentrated on D,. Since P is a measure, the function
Q(A, B) = P[p, ,: te A,ve B],

defined for 4e€ .7~ and Be ZZ,, defines a measure Q(4 X B) = Q(A, B) on
(T X R,, 7 x Z,). It follows that

(2:4)  §_ [er e — 1]P(du) = T1, §p, [exp(—4,;v) — 1]0(4;, dv)

which implies that X(4,), - - -, X(4,,) are independent.
Conversely, if X is c.r., then it is i.d. (Kingman (1967), page 64). Thus for
each 4 e .7, there exists a measure Q,*(.) = Q*(4, -) on (R, .Z2,) such that

—log Ee="* = {, [1 — e *]Q*(4, dv).

(For details, see Lee (1967), page 149). Since X(4,), - - -, X(4,,) are independent
for 4, ---, 4, disjoint,

—logG[y,] = X™, Sz, [l — e *"]Q*(4;, dv) .
Define the measure P*[y, ,: t € A, v € B] = Q*(A4, B) on D,. Equality (2.4) must
then hold for G[y,] with Q and P replaced by Q* and P*, respectively. By the
uniqueness of P, however, P = P*, so that P must be concentrated on D,. []

It follows that any c.r. measure has probability generating functional of the
form

(2.5) 10g G[£] = $rr, [£°(1) — 11Q(dv, di),

where Q is defined as in the proof of Theorem 2.10. In the case of T = R (real
space), (2.5) is the Lévy representation of a stochastic process with independent
increments.

The class of stochastic point processes is an important subclass of random
measures, and the examples given below are provided as a foundation upon
which is constructed the probability generating functional of a class of random
measures with aftereffects. Formally, define .#"C _to be the set of all non-
negative, integer-valued measures N, and define the o-ring -7 = /' n 4"
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A stochastic point process X is then defined to be any random measure having
all realizations in 77 such that X(A4) < oo a.s. for all compact A€ 7.

The following result is immediate from expression (2.5) and the definition
of .47

CoOROLLARY 2.11. The probability generating functional of a c.r. stochastic point
process takes the form

(2.6) log G[¢] = Xy {2 [€5() — 1]Qu(dr)
where each Q, is a measure on (T, 7) which is finite on compact sets.

If N, is a Poisson process having intensity measure Q,, then the process given
by (2.6) is the superposition

X= Yi, kN, .

That is, X i$ the limit of finite superpositions of (independent) Poisson processes,
the kth of which has atoms all of mass k.

The Gauss-Poisson (GP) process, first introduced by Newman (1970), has
probability generating functional

(2.7)  log G[§] = {7 [£(r) — 1]H,(dr) + § §22 [£(r) — 1][§(s) — 1]Hy(dr X ds)
= (7 [6(t) — 1IA(dr) + & §7a [E(1)E(s) — 1]Ay(dr X ds),

where A,(dt) = H,(dt) — Hy(dt x T) and A, = H,. Milne and Westcott (1972)
state that a GP process is c.r. iff H, is concentrated on the diagonal set {(z, 5):
t = s} of T%. In this case, (2.7) has the form given by (2.6) with Q, = A,,
Q,=A,, and Q, = 0 for all k > 2.

Denote by D, the set {t,.v,: 1 = k < n} of all nontrivial measures having n
or fewer atoms. Take 2, and & to be the classes of random measures with
KLM measure concentrated on D, and D = |y D,, respectively. Theorem 2.9
shows that | is the class of c.r. measures, and it can be seen from (2.7) that
the GP process is an element of ;. Ammann and Thall (1977) have given
conditions on {Q,} under which (2.8) is the probability generating functional of
a regular i.d. stochastic point process:

(2.8) log G[¢] = Ty 1 §re [15 1600 — 1104(dt,)

where dt, = dt, X ... X dt,. The class of regular i.d. stochastic point processes
(i.e., those for which P[X(R) = co] = 0) is the class of Poisson cluster processes.
(See, for example, Kerstan, Matthes, and Mecke (1974).) The class &, will
hereafter be referred to as the class of n-dependent random measures, for reasons
which shall be motivated by Theorem 3.10.

Notice that (2.5) generalizes a Poisson process to a c.r. measure by allowing
atoms of all (positive) magnitudes, while (2.8) generalizes a Poisson process by
allowing aftereffects in the form of clusters. It is shown in Section 3 that
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each element of &, has a probability generating functional which embodies
both of these generalizations.

3. Random measures with aftereffects. Let {Q,} be a sequence of Borel signed
measures defined, respectively, on (T* X R, *, 7% x Z2.*). Consider the func-
tional

(3.1)  logG.[¢] = zrﬂk—‘!sgzxrkn L8t — 1]Qu(dt,; dv,) |

defined on V. Theorem 3.2 gives necessary and sufficient conditions on the Q,’s
for this functional to be the probability generating functional of an i.d. random
measure. A preliminary lemma is required.

LemMMA 3.1. log G [€] > —oo forall § eV, iff
1 )
ZI?:IF SR", :“=1 [e_w’ - I]Qk(Ak; dvk) > —oo

for all u > 0 and compact Ae .7,

PrOOF. Necessity follows by taking £ = 1 — (1 — e*)I,. For sufficiency,
take compact A€ 7~ and & € ¥, such that 1 — £ vanishes outside of 4. If u =
—log (inf,. , §(7)), then 4 < oo and &°(t) — 1 = e=** — 1 for all v > 0, which
implies the desired result. []

It is assumed w.l.0.g. in what follows that each Q, is symmetric, in the sense
that Q,(4,, ---, 4,; B, ---, B,) = Q,,(Ail, sy Ay Bil’ caey, Bi,,) for each permu-
tation (i}, - - -, i) of (1, - - -, k), and also that Q, places no mass on the set (t,:
t; = t, for some i # j} X R,*.

THEOREM 3.2. G, is the probability generating functional of an i.d. random meas-
ure iff

. —1
i o= ze ST I - e av) < oo
for all u > 0 and compact A ¢ ., and

.. _ 1)k
(ii) 0= Ak(B’ C) =der Zim=t ((Wt)k—)' Q.(Bx Trk Cx R,™%)
forall Be 7% Ce# and k = 1

Proof. The expression given in (i) is —log Ee~* ¥4, which is finite since
X(A4) < oo, a priori.
The easily verified equality

f(a—1)= 20 (=)™ Yigicocipsk (117 a:; — 1]
and the symmetry of the Q,’s imply that

(3.2)  logG.[¢] = i L, Vet xrk D (m)(— DF 1 €74(2) — 11Qu(dt; ave)

= i — SR wrm [T, &v(t) — 11A,(dt,; dv,) .
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Since X is i.d., it has a unique KLM measure P satisfying
(3.3) log G.[§] = §_, [e*¢* — 1]P(dp) .

Furthermore, since e#*'°s¢ = [} &*i(r,) iff # = g, ., it follows that P must be
concentrated on D = Uy D, = Uy J,, where J, = D,\D,_, (D, = @). For
each k > 1, define the measure

(3.4) A (A B,) = k! Plpel,: t,e A, v, eB,]

on (T* X Rk, 7% x .Z.*), assumed w.l.0.g. to be symmetric in the same sense
as Q,. Expression (3.3) may thus be written in the form of (3.2), with A * in
place of A, for each k = 1. It follows from the uniqueness of the representa-
tion that A, = A,*, for each k, whence condition (ii) follows.

To show sufficiency, note that condition (i) and Lemma 3.1 together imply
that log G_[§] > —oo forall £ e V,. If {¢,} and ¢ satisfy the conditions of Lem-
ma 2.5, then the argument given in the proof of Lemma 3.1 and the dominated
convergence theorem imply G_[¢,] — G [¢]. For compact 4,, ---, 4, € .7,

1
(3.5) log G.[7,] = X, o =1 Dagtrap=r (o) 27 [eXp(—= X1 uw;) — 1]
X Ak(Alal X tt >< Ama,m X Ak—'r; dvf >< R+k—r) 9

where 4 = T\(UT" 4), (7)) = /(! -~ a,!),and w, = v, _ ., + -+ + v, It
follows from (ii) that (3.5) is the m.g.f. of an m-dimensional random vector
with nonnegative components. By Theorem 2.6, G, is the probability generating
functional of a random measure. Under condition (ii), the equality (3.4), with
A, rather than A,*, defines a measure P satisfying (3.3). By the uniqueness of

the Lee representation, the process is i.d. []

The following corollary gives sufficient conditions for G, to be a probability
generating functional. Although stronger than the necessary and sufficient con-
dition of Theorem 3.2, they are simpler and more easily verified.

CoroLLARY 3.3. If {Q,} is a sequence of measures, defined respectively on
(T* X Rk, 7% X .Z2*), satisfying

(i) Vo, [1 —e7]0(4, dv) <
for all u > 0 and compact Ae >, and
(i1) Ou(Ay; B) = O, 4(A, X T; B, X R,)

forall A e 7, and B, ¢ 2. *, k = 1, then G, is the probability generating functional
of an i.d. random measure.

Proor. Condition (ii) implies that

_1)e—m
B ((k%m)TQk(Am X T By X RAT) 2 0
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for all A, e 7™, B, € 2, Conditions (i) and (ii) together imply that

j 1 . :
k- X §rt ITF (67 — 1)Qu (A% dvk);

1
= Z;;";lﬁ Sry (1 — e7)Q (4% dv X R,*7Y)

< (e — 1) §a, (1 — e*)Q,(4, dv)
< oo. i
It is shown in the proof of Theorem 3.2 that the KLM measure of an i.d.
random measure with probability generating functional G,, is concentrated on
D, with A, the measure defined by the relativization of P to J,. The random
measure X with this probability generating functional may be expressed as the
limit of superpositions of measures of the form 4., chosen according to p.
This interpretation is formalized by the following construction.
Let X be a random measure with probability generating functional G, and
let {T,} be a sequence of compact sets in .7~ such that T, 1 T. Define, for
arbitrary ¢ > 0 and fixed m > 1,

1
L,.=Xr., o AL(T,F; [e, o0)) .

Condition (i) of Theorem 3.2 implies

o 1 k—1. k-1
L, = Zk=1mAk(Tm X T % [e, 00) X R )
= Qy(T'm; [& o))
< oo,
For each m and ¢, take N,, , to be a Poisson random variable with mean L, ,
and let {2} be a sequence of independent random measures chosen independently

of N, . with probabilities
(3'6) Pm,s[#j = lutk,vk: tkeA9 vkeB] = %ﬁ)—

for AcC T,k Bc[e, o) and k = 1. Define

Xm,e - Z?;”:)’E /‘lj
where y, = 0 a.s. Theorem 3.4 shows that the random measure having proba-
bility generating functional G,, is the limit of Poisson sums of the above form.

THeoREM 3.4. If Xisa random measure with probability generating functional G,
then X,, ., — X(w) as m — oo and ¢ || 0.

13

Proof. For fixed m and ¢,
Eert1o8¢ = L7, 51 Steork Yok, ITE-0 £%(1)A (8 5 dv,)
— def Mm,e[s] .
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It follows that
G, [§] = E{exp[X,, o log £]}

= E{(M,, [§])" ™}
=35, (Mm%)_k_ L . exp[—L, ]

= exp| gy St St (I £74(0) — DAL dv,) |

Since G,,, — G, Theorem 2.7 implies that X, , — X(w). [J

The probability law of any random measure having probability generating
functional G, may thus be viewed as the limit of Poisson convolutions of laws
given by (3.6). This idea was first introduced by Kerstan and Matthes (1964)
for stationary i.d. stochastic point processes.

For arbitrary 4 € .7 and d > 0, define Z(4, d) to be the number of atoms
of X in 4 with mass > 0, and define Z, , analogously for X, .. It follows that
Z,,.— Z(w), where Z is a random measure on (T X R,, 7 x Z2,) with prob-
ability generating functional given by the following theorem.

THEOREM 3.5. If X has probability generating functional G.,, then Z has proba-
bility generating functional

(1) 105 GlE] = Titu g St TTE (6000 v) — 1104t dv,)
Proof. Let z,(4, d) be defined analogously for y;, so that for arbitrary fixed
mand 0 < e <4, Z, (4,0) = $;%2,(A,6). Forp, =p,
§ log &(t, v)z,(dt, dv) = Y k_ log &(t;, v,) .
As in Theorem 3.4,
E, . exp[§z, xr l0g &(1, v)z,(dt, dv)]
= L5, Do St S, Tl 60 0)AL(A 3 dY,)

whence Z,, . has log probability generating functional
1
2k T § e oork ST’,‘;, T80 [6(7 v) — I]Ak(dtk; dvk) .

Since Z,,, — Z(w), as m — oo, ¢ | 0, Z must have probability generating func-

tional (3.7). [0

CoOROLLARY 3.6. If X has probability generating functional G.,, then: (i) for fixed
0 > 0 the stochastic point process Z(.,0) has probability generating functional G,
given by

log G,[¢] = zki Sk TTE-0 [6(1) — 11Qu(dt; [3, 00)F) ;
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and (ii) for fixed A€ 7, the stochastic point process Z(A, +) has probability gener-
ating functional G, given by

1
log G,[¢] = X, Al Sk TTEC1 [E(v:) — 1]Q,(A%; dv,) .
Proor. To show (i), apply Theorem 3.5 with log &(t, v) = I, ..,(v) log &(¢),
while (ii) follows by letting log &(z, v) = I,() log &(v). [
Z(+, 0) and Z(4, -) thus each have probability generating functionals of the
form (2.8), i.e., are i.d. stochastic point processes.

With the above structure established, an integral representation for X in terms
of Z is now given.

THEOREM 3.7. If'Y is a random measure with probability generating functional

G, then the integral
I(+) = (g, vZ(+, dv) a.s.

has probability generating functional G,.

Proor. From the form (3.7) of the probability generating functional of Z it
follows that

(3.8) G.[&] = E exp[§s, «r log &(1)Z(dr, dv)] .
By Fubini’s theorem, (3.8) equals

E exp[§, log &(t) §R+ vZ(dt, dv)],
which implies the desired result. [J

Theorem 3.7 generalizes the Lévy-Itd representation for processes with inde-
pendent increments to random measures with probability generating functionals
of the form G,. This theorem shows that such random measures are purely
atomic, so that if each Q,(dt; .) is concentrated on k-tuples of nonnegative
integers it follows that X is a stochastic point process. Notice that while Z(4, 0)
is at most countably infinite, Z(A4, d) is a.s. finite for all compact A4, i.e., it is a
stochastic point process. The following theorem gives a weak finiteness con-
dition on Z(4, 0).

THEOREM 3.8. For X having probability generating functional G, P[Z(A, 0) <
o] > 0 for all compact A iff

: :
(3‘9) Z;;l (_ l)k—l k_' Qk(Ak; R.,.k) < oo
Proor. By Corollary 3.6(i), Z(+, 0) has probability generating functional
1 £~
log G[¢] = iy 7 Irv T [£(%) — 11Qu(dt; R,

Hence P[Z(A, 0) < oo] > 0 iff
(3.10) —oo < log Eexp(—uZ(A4, 0))

= Zz;l% Ly (B)e™ — DAL(A™ X (T\A)™; R,¥),
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and (3.10) holds iff
(3.11) 2,:;,% E_L()ALA™ X (T\A)~™; R+ < oo .

From the definition of A,, (3.11) may be written as (3.9). []

The family of stochastic processes defined on a topological vector space T
(usually taken to be R) having probability generating functional (3.1) can be
shown to contain the class of Poisson cluster stochastic point processes by intro-
ducing a more general class of Poisson cluster processes. Suppose that cluster
centers occur in T according to a nonstationary Poisson process N(.) having
intensity function /(+). A cluster of atoms is associated with and distributed
about each center, and it is assumed w.l.0.g. that an atom occurs at the cluster
center. Furthermore, clusters are assumed to be i.i.d. and independent of N(-).
A cluster ¢, centered at s contains k atoms w.p. II,(s). Given s, the respective
magnitudes v,, - - -, v, and locations s, s + u,, -+ -, s + #,_; have a joint distri-
bution W, (du,_; dv,|s) on T*"! x R,

The cluster ¢, then has probability generating functional

(3.12) G¢s[$] = 2 I(s) Sre—1upr TTE-0 67(s + Ui )Wi(du,_j; dv|s)
where T° = @ and 4, = 0, and the process has probability generating functional
(3.13) log G[¢] = §.[G, [§] — 1]/(ds) .

See Daley and Vere-Jones ((1974), (5.2.4)). Since each Il (s) and W(-|s) is a
probability distribution, (3.12) and (3.13) imply

log G[§] = Ziy Srkwrr [T1H1 67 + uiny) — 1IW(du,_y; @v, | $)IL(s)I(ds) -
This functional is of the form G, witht,,, = s+ 4, 0 < i<k — 1,k > 1, and
A (dty; dv,) = k! W (du,_; dv, | s)I1,(s)I(ds) .

It follows that Z(., d) and Z(A, ) are each Poisson cluster point processes, sO
that the class &~ may be considered as the natural generalization of the class
of Poisson cluster stochastic point processes.

The random measures considered here thus far have all been elements of &,
i.e., those with KLM measures concentrated on D. In practice, however, one
may be interested in random measures with limited aftereffects, in the sense that
events occurring far apart in time (7 = R) should be ‘“almost” independent.
Rather than deal with mixing properties or ergodicity, however, dependency
across time is described in terms of the finite dimensional distributions of the
process.

Denote by G, the probability generating functional G_, for which Q, = 0 for
all k > n.

THEOREM 3.9. An i.d. random measure X has probability generating functional
of the form G, iff Xe &,.
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Proor. The result is immediate from Theorem 3.1. [J

In this case, X is the limit of Poisson sums of clusters having no more than n
atoms.

Theorem 3.10 gives yet a further characterization of the elements of &,
expressed this time in terms of their finite dimensional distributions. Although
it is obtained through somewhat more laborious calculations, the authors found
it somewhat more intriguing than Theorem 3.9.

Define, for arbitrary disjoint bounded 4,, ---, 4, €.7, u,, ---,u, € R, and
m = 1, the A-function of X by

(3.14) h(u,; A,) = —log Eexp[— 3L, 4, X(4,)]
= —log G[7,] .
(See Lee (1967)). Next, define for p < m the sum
(3.15) Pu(p) = 2i15i,<<ipsm h(ug, -, Uiy Ay -0y Aip) .

THEOREM 3.10. For fixed n > 1, X € &, iff there exists a probability generating
functional of the form G, such that the h-functions of X satisfy

(i) h(u,; A,) = —log Gy(7,) , I<m<n,
(if) h(U,; An) = 25 (=1 2("2257)9u(P) » m>n
Proor. Foreachr,1 <r<n,anda, = (a, ---,a,)such that1 < a, < m,

1 < j<r, define

(3‘16) xr(ar) = — % SR:_ le=1 [exp(—uaivi) - l]Qr(Aal X oo X Aar; dvr) .

If X e &,, then X has probability generating functional of the form G, and

h(u,,; A,) = 204 2?1:1 tee Tzn,.=1 x.(a,)
(3'17) = Z:‘:x Dlk=t ZlSu1<--~<aksm Zb1+-~+bk=r;(bi>0) (brk)

b b
X xr(al( v, ak‘ k’) ,

where a* denotes the subscript a repeated b times in the argument of x,. It
can be seen from (3.16) and (3.17) that for m > n

(3:18)  6(p) = T2 (31) Disorcerrcasom Liei Dtyeosbjmrichion (1)
X x,(al”’v, cee, aj(bj)) .

The equality _ ' . .

;:0(—1)'(3'):(_1)1(];1)5 ]> 120’
and (3.18) together imply

p=1 (1) ("2)6m(p) = Dier Zhar (=1 P(220)0m(p)
= Z}':=1 Z?:k Zl§u1<~-<ak5m Zb1+"'+bk=r;(bi>0) (brk)
X xr(al(bl)’ MR} ak(bk))

(3.19) = h(u,; A,), m>n.
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Conversely, if there exists a probability generating functional of the form G,

such that (i) and (ii) hold, then from (3.18)
h(um; Am) = ’_log Gn[’?m] ’ m

Thus the probability generating functional of X must agree with G, of all 7,
hence for all £ ¢ V,, and so G, is the probability generating functional of X.
Theorem 3.9 implies that X ¢ &,,. []

v

1.

Since the A-function is the negative logarithm of the m.g.f. of X(A,,), all finite
dimensional distributions of X € &, are determined by the finite dimensional
distributions of dimension < n. Of particular interest here is the case in which
X isa stochastic point process in <. In this case X is a Poisson cluster process
having < n points in each cluster (see Ammann and Thall (1977)) iff all finite
dimensional distributions are determined by the finite dimensional distributions
of dimensions < n in the manner specified by Theorem 3.10.
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