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A characterization of type p and cotype p separable Banach spaces is
given in terms of integrability properties of Lévy measures. The following
consequences are derived: (i) a separable Banach space is isomorphic to
Hilbert space if and only if the set of Lévy measures on it coincides with
the set of Borel measures which integrate the function min (1, ||x|[?); and
(ii) the classical Lévy-Khintchine representation of characteristic functions
of infinitely divisible distributions holds in separable Banach spaces of
cotype 2, in particular, in the separable L, spaces for p e[1, 2].

1. Introduction. The classical Lévy-Khintchine formula states that ¢ is the
characteristic function (ch.f.) of an infinitely divisible law in R" if and only if

(1.1) ?(y) = exp{i{y, x) — @i(y) + § K(x, y) dp(x)}
where

K(x,y) = = — 1 — iy, /(1 + |Ix[}) »

p is a Lévy measure, i.e., a positive measure such that {0} =0 and
§ min (1, ||x|?) du(x) < oo, and ¢, is the ch.f. of a centered Gaussian probability
measure. By Theorem VI.4.10 in Parthasarathy (1967) this remains valid in
separable Hilbert space. If in a Banach space { min (1, ||x|!) du(x) < oo, then
§ K(x, y) du(x) still makes sense but (1.1) may not represent the ch.f. of a prob-
ability measure (Araujo (1975a)). It is therefore necessary to introduce the
notation of a Lévy measure in the Banach space context in a different way.

Given a finite Borel measure ¢ on a separable Banach space B, define the
Poisson probability measure with associated measure z, Pois y, as

Pois p = e~ 3= , p*/n!

where |¢| = u(B) and p* is the n-fold convolution of p.
In view of the results of Tortrat ((1967), (1969)) on representation of infinitely
divisible laws, the following definition seems to be adequate.

1.1. DEFINITION. A o-finite Borel measure ¢ on a separable Banach space B is
a Lévy measure if {0} = 0 and there exist finite measures z, T ¢ (setwise) and
x, € Bsuch that {s, * Pois p,} converges weakly to a probability measurev. We
write v = sPois p (shifted Poisson probability measure with Lévy measure u).

Received January 21, 1977; revised August 12, 1977.

1 Research partially supported by National Science Foundation Grant MPS 74-18967.

AMS 1970 subject classifications. Primary 60B0S; Secondary 60E0S.

Key words and phrases. Lévy measures, type and cotype 2 spaces, the Lévy-Khintchine re-
presentation.

637

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to

The Annals of Probability. ®

www.jstor.org



638 ALOISIO ARAUJO AND EVARIST GINE M.

REMARK. If g isa symmetric Lévy measure then x, may be taken to be x,, = 0.
In this case the limit of {Pois y,} is denoted by Pois .

By Parthasarathy ((1967), VI.4.7 and VI.4.8) a o-finite measure p on a
Hilbert space such that #{0} = 0 is a Lévy measure in the sense of this definition
if and only if § min (1, ||x|[¥) du(x) < oo. Araujo ((1975a), (1977)) proved that
{ min (1, ||x||) du(x) < oo is sufficient for 4 to be a Lévy measure in any Banach
space and that { min (1, ||x||g(/|x||)) du(x) < oo with g: R —» R, g(x) > 0 for all
u and lim,_, g(#) = 0, is not; moreover, § min (1, ||x|]*) du(x) < oo is not neces-
sary for p to be a Lévy measure either (Araujo (1975a)).

In this note we continue to study integrability properties of Lévy measures in
separable Banach spaces. In fact we characterize type and cotype p spaces by
means of integrability properties of the Lévy measures on them. In particular
we obtain that a Banach space is isomorphic to a Hilbert space if and only if the
Lévy measures are precisely the measures integrating the function min (1, ||x|f).
As another byproduct we obtain the classical Lévy—Khintchine representation
of the characteristic function of an infinitely divisible distribution in cotype 2
Banach spaces, and a sufficient condition for infinite divisibility of probability
measures on type 2 spaces.

For definitions and properties of type p and cotype p Banach spaces we refer
to Hoffmann-Jgrgensen and Pisier (1976), Maurey and Pisier (1976), Pisier (1975)
and references there. Here we recall a few facts. A Banach space is of type
p-Rademacher, p e [1, 2] (cotype p-Rademacher, p e (0, 0)) if E[| X2, ¢, x| <
K, Y2, |Ix)? (=) for every sequence {x,} C B, with {¢;} a Rademacher sequence,
i.e., a sequence of independent identically distributed random variables such
that P{e, = 1} = Pfe, = —1} = }. If {X,}i, are independent centered random
variables taking values in a type p-Rademacher (cotype p-Rademacher space)
then E||Y 7, X|F < K, X7, E|| X} (=). B is type p-Rademacher (cotype p-
Rademacher) if and only if } 5, |lx/P < oo implies (is implied by) the conver-
gence in probability (or a.e., orin L : all are the same in this case) of 5, ¢, x,.
If the sequence {¢;} is replaced by a sequence of symmetric, nondegenerate stable
of order p independent, equidistributed random variables in the definition of
type and cotype p-Rademacher, one obtains the type and cotype p-stable spaces,
p€(0,2]. For p =2 both notions of type coincide and the same is true for
cotype. More is true: let us say that B is of cotype 2 — & if whenever & are
independent copies of ¢ and x, e B then E||}7_, & x| = K X7, ||x//* then it
can be easily deduced from Maurey and Pisier (1976), Corollary 1.3, that if
E|§]? < oo for all p > 0, & symmetric and B is of cotype 2 — &, then B is of
cotype 2-Rademacher. We will use this remark in case & has the symmetrized
Poisson distribution with parameter 1. The spaces L,(2, p), (Q, p) any measure
space, are cotype 2 spaces if p e [1, 2) and type 2 if p €[2, c0). A Banach space
is type 2 and cotype 2 if and only if it is isomorphic to a Hilbert space (Kwapien
(1972)).
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We end up this condition with a necessary and sufficient condition for y to
be a Lévy measure which is seemingly weaker than the definition.

1.2. PROPOSITION. [In order that a o-finite measure p on a separable Banach space
B be a Lévy measure it is sufficient (and necessary) that, for every continuous linear
map © on B with finite dimensional range, p o n=' be a Lévy measure on Euclidean
space and that there exist a probability measure v such that v o 7' is a shift of
¢ Pois (¢ o 77'). Then v = sPois p.

ProoF. Let y satisfy the hypothesis and let s, 1 g, p, finite. Define , 2, by
2(A) = p(—A), pr(A) = p,(— A) for every Borel set A. Then g, + 2,1 ¢t + £,
these are symmetric measures, and by the hypothesis, if v = sPois # then
w-lim,_, Pois (¢, + f1,) o f~' = (vx9) o f~! for every feB. If {X,, Y2,
are independent B-valued random variables with distributions (X)) =
(Y)) =Poisp, and LX) = A(Y,) = Pois (#; — p1;_), i =2, ---, then
AT (Xi — Yy)) = Pois (¢, + ). So, Theorem 4.1 of It6-Nisio (1968)
implies that the series 3352, (X; — Y,) converges a.s. and thus, by Fubini’s theo-
rem, that there exists a sequence {x;} € B such that the sequence of random vari-
ables {x, + >} 7, X,} converges a.s. Therefore, the sequence {(Pois x,) * 6, }7_,
is weakly convergent. If 2 is its limit, an easy argument using the definition of
Lévy measure proves the existence of u: B’ — R linear such that

Ao fTh= (o [ xdyy,
for every f € B'. Moreover, u is weak-star sequentially continuous: if f,(x) — f(x)
for all x € B then { e"/»® di(x) — { e/ d](x) and likewise for v by bounded
convergence, and therefore e**/» —, eit»() for all ¢ in a neighborhood of zero,
i.e., u(f,) — u(f). Hence u defines a vector in Band w-lim,_,, (Pois p,) * 9, =
A=vx0,;ie., pisa Lévy measure. ]

In connection with integrability questions it is convenient to remark that the
arguments in the proof of the first part of Parthasarathy (1967) IV.4.4 prove
also that every Lévy measure p on B gives finite mass to the complement of
every neighborhood of zero. Therefore only integrability of Lévy measures
near the origin will be of interest here. This fact will be used without further
mention.

All the Banach spaces in this paper are assumed to be separable.

2. Integrability of Lévy measures. Among the main tools for the next theo-
rem we have the Lévy’s and the converse Kolmogorov’s inequalities for Banach
space valued random variables. We refer to Kahane (1968), page 12, for the
first and to de Acosta and Samur (1978) for the second. Both inequalities to-
gether give the following.

2.1. PROPOSITION. If {X,}i_, are n independent Banach valued random variables
with | X|| < cas.and EX; =0,i=1, ..., n, then for every p = 1 and a > 0,
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2.1 P+ -+ X >a)
2 271 = ((@+ o + a(1 = 277)/E|IX; + -+ + X,JP].
2.2. THEOREM. A Banach space B is of cotype 2 if and only if every Lévy measure
u on B satisfies
(2.2) § min (1, [lF) dp(x) < oo .

Proof. (a) Assume B is of cotype 2-Rademacher. The arguments at the
beginning of the proof of Parthasarathy (1967), Theorem VI.4.6, reduce the
proof of condition (2.2) for Lévy measures to showing that

(2.3) sup, § [[x* dpzy(x) < oo
under the assumptions: y, symmetric, finite, supported by the unit ball {||x|| < 1},
t(B) = w{llx|| < 1} = k,, integer with k, — co as n— oo, and {Pois y,} uni-
formly tight.
Define v, = p,/k, and p, = v,*s, n = 1, . ... Then the fact that B is of cotype
2-Rademacher gives
§ [P doa(x) Z Kok § [[x[[* dva(x) = K, § [|XIP dpsa(x) -

So, in order to prove (2.3) we need only show that

2.3y sup, { [ dou(x) < oo .
Now, inequality (2.1) yields, for p,{||x|| = a} < ,
24 § Il doa(x) < [(@ + 1) + @/2]/[1 — 4p.{lx]| = a}] -

So, (2.3)’ holds if {p,}7_, is uniformly tight. But the tightness of {p,} = {v,*s}
follows from the tightness of {Pois y,} = {Pois k,v,} by a direct probabilistic
argument (Le Cam (1970), Proposition 3).

(b) Assume now that every Lévy measure on B satisfies (2.2). Let {£,, £/},
be independent Pois d, real random variables and {x,}>, C Bbe such that 3 2, ¢, x,
convergesa.s. Then } 7, (§; — &,)x; converges too. In particular the measures
P = 231 (0, + 0_,)increaseto n = 3137, (9,, + 9_,,) and the sequence of prob-
ability measures Pois p, = Z(3 75, (§; — §/)x;), n =1, - - ., converges weakly
to a Borel probability measure on B, i.e., ¢ is a Lévy measure (Theorem 2.3).
Since the sequence {x;} is bounded, (2.2) implies 2 352, ||x,|* = § ||x|[* dp(x) < oo.
Finally, the inequality E||X;7., &, x| = K, 237, ||x,|]* follows the closed graph
theorem (in complete analogy with the comment before (1.4) in Hoffmann-
Jgrgensen and Pisier (1976)). Hence, B is of cotype 2 — & where ¢ is a sym-
metric random variable with E|§|? < oo for every p > 0 and therefore it is of
cotype 2-Rademacher by Maurey and Pisier (1976). []

REMARK. The last proof can be carried out for some p + 2. Formally the
conclusions are: (a) if B is of cotype p-Rademacher then every Lévy measure
on B integrates the function min (1, ||x|[?), p = 1, and (b) if every Lévy measure
on B integrates min (1, ||x||), then B is of cotype p-stable, p < 2. But the first
assertion has a meaning only for p = 2 and the second for p = 2 (every Banach
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space is of cotype p-stable for p < 2 and the only cotype p-Rademacher space
for p < 2is {0}). These results for [, spaces, p = 2 (which are of cotype p) are
contained in Yurinskii (1974).

For type p spaces the situation is as follows:

2.3. THEOREM. A Banach space B is of type p-Rademacher, p € [1, 2], if and only
if every measure on B which integrates the function min (1, ||x||?) and gives zero mass
to {0} is a Lévy measure.

ProOF. Assume B is of the type p-Rademacher. Let p be a measure on B
satisfying (2.2), 2 = ¢ + &, {X;}, independent B-valued random variables with
distributions Z7(X;) = Pois (4| ,»,,) and Z(X,) = Pois (2|3 icizisisii—n))s E =25+ - - -
Then, B being of type p, we have

§ |lx||» dPois p(x) = e~ 32 |of™ § ||XI” d(o/|o])*(x)/n!

= K,e7 Zislol™n § [IxIl” d(o/|p])(x)/n!

= K, | ||x||” do(x)
for every finite measure p. So,

E|| X5 XilP = K, Svecinsy» X dA(x) > 0 as 15— 00
and therefore, 3 5., X, converges in probability. In particular,
w-lim,_., Pois (A j121/m) = (X521 X;) -

Hence, {(Pois (#|z1z21/)) * 9.,} is weakly convergent for some choice of {x,} by
Fubini’s theorem (note that };7_, X, converges a.s. by the previously mentioned
Ité and Nisio’s result). So, x is a Lévy measure.

Assume now that every measure satisfying (2.2) is Lévy. Then, if 3, ||x,||? < co
the measure 317, (9,, + 9_,) is a Lévy measure. Hence 33, (§; — £/')x;, where
the &;, £ are independent Pois 6, random variables, converges a.s. (Itd and
Nisio (1968)). Then, the already mentioned result of Jain and Marcus (1975)

yields the a.s. convergence of } 3, ¢,x,. By Kahane (1968), page 17, this last
series converges in L, and therefore B is of type p-Rademacher. []

Since every Banach space is of type 1-Rademacher, this theorem proves that
a sufficient condition for y on a general Banach space B to be a Lévy measure
is that § min (1, ||x||) dp(x) < oo. This result is proved in Araujo (1975a) and
in Yurinskii (1974).

In view of Kwapien (1972), Proposition 3.1, the last two theorems yield

2.4. CoROLLARY. A Banach space B is isomorphic to Hilbert space if and only if
the set of Lévy measures on B coincides with the set of measures which integrate the
function min (1, ||x||*).

3. The Lévy-Khintchine representation. The following theorem about the
structure of infinitely divisible distributions on Banach spaces is an easy con-

sequence of Tortrat (1967) Corollary I.4.4 and (1969) Theorem II and Corollary
I1.3, and the previous Proposition 1.2.
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3.1. THEOREM. Let p be an infinitely divisible probability measure on a (separable)
Banach space B. Then, there exists a unique decomposition of p into

3.1 0 = 9 sPois p % d,
where 1) is centered Gaussian, p is a Lévy measure with p{0} = 0 and x ¢ B.

If a Lévy measure  satisfies the integrability condition (2.2) with p = 2 then
the characteristic function of sPois 2 can be written explicitly:

3.2. PROPOSITION. If pisa Lévy measure on B such that { min (1, ||x|P) dp(x) < oo,
then the ch.f. ¢ of sPois p is

(3-2)  #(y) = exp{iy(x) + § (¥ — 1 — iy()/(1 + X)) du(x)}, yeB'.

Proor. If §min (1, |x|})dy(x) < oo, the proof of the second part of
Theorem VI.4.7 in Parthasarathy (1967) implies that if x,7px and ¢, =
—§ x/(1 + [|x|F) d(x), then {(Pois s,) + J, } converges weakly. Since the ch.f.
of Pois p is exp(p — p(0)), the proposition follows by the Lebesgue dominated
convergence theorem applied to §, ../, (67 — 1 — iy(x)/(1 + ||x|[*) du(x). O

3.3. THEOREM. On a cotype 2 Banach space B a distribution p with ch.f. ¢ is in-
finitely divisible if and only if there exist a covariance ® of a Gaussian Borel prob-
ability measure on B, a Lévy measure . and a vector x, ¢ B such that for every fc B,

(3-3) () = exp{iy(x)) — $R(y, y) + § (¢ — 1 — iy(x)/(1 + ||x|[) dpe(x)} -

ProoF. If p is infinitely divisible then (3.3) is a direct consequence of the
Theorems 3.1, 3.2 and 2.2. If (3.3) holds then p = (p,)", the ch.f. of p, being

$a(y) = exp{iy(x))/n — 3D (y, y)/n + § (e — 1 — iy(x)/(1 + |Ix|[') dp(x)/n} :

the covariance @/n is obviously that of a Gaussian Borel measure on B; so, in
order to prove that ¢, is the ch.f. of a Borel measure on B we need only see
that p/n is a Lévy measure; if p, 1 g, g, finite measures, then p,/n 1 p#/n and
{Pois (p2,/n)} is relatively shift compact as it is a subset of factors of {Pois s}
(Parthasarathy (1967) Theorem II1.5.1), and therefore, x/n is a Lévy measure. []

It is possible to prove a Lévy-Khintchine representation for general Banach
spaces which has a different kernel (see, e.g., Araujo (1975b) or Dettweiler
(1976)). The function y(x)/(1 + ||x||*) appearing in (3.3) is replaced in their
representation by a function exactly of the form y(x) in a neighborhood of zero
or in an appropriate compact convex symmetric set; then (3.3) follows directly
from their representations and Theorem 2.1. One might conjecture that the
representation (3.3) is valid in general Banach spaces, but Araujo (1975b) has
a counterexample.

The next result is just a reformulation of Theorems 3.1 and 2.3.

3.4. THEOREM. If B is a type 2 space, every function of the form (3.3), where now
¢ is just a measure which integrates the function min (1, ||x|[*), is the ch.f. of an
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infinitely divisible probability measure; and conversely, if this is true then Bisa type
2 space.

Acknowledgments. ‘We are grateful to A. de Acosta and L. Le Cam for several
stimulating conversations, and to A. de Acosta for allowing the use of an un-
published manuscript. G. Pisier pointed out to us the equivalence of different
notions of cotype 2.

Note added in proof. E. Dettweiler, V. I. Mandrekar and V. Paulauskas have
obtained independently some of the results contained in this note. Theorem 3.3
has also been obtained by de Acosta and Samur (1978).
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