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ROBUST LINEAR EXTRAPOLATIONS OF SECOND-ORDER
STATIONARY PROCESSES

By Yuzo Hosoya
Tohoku University

This paper considers the problems of linear prediction under the con-
dition that the spectral structures of second-order stationary processes are
vaguely specified. The approach adopted is closely in line with the theory
of robust estimation due to Peter Huber. The paper shows that there exists
a minimax one-step ahead predictor for the set of spectral distributions
given as {H: H = (1 — ¢)F + ¢G, Ge 2}, where F is a fixed probability
distribution function and 2, is the set of all absolutely continuous prob-
ability distribution functions. That predictor turns out to be the optimal
linear predictor for a spectral distribution which is derived by a suitable
modification applied to F. Though there generally exists no minimax pre-
dictor for the set {H: H = (1 — ¢)F + ¢G, G € 2} (2 is the set of all prob-
ability distribution functions), a linear predictor is explicitly constructed
so that its maximal prediction error is arbitrarily close to the lower bound
of the maximal prediction errors of possible linear predictors. The results
obtained in this paper would have an important application in the errors-
in-variable models.

0. Introduction. This paper considers the linear prediction of second-order
stationary processes under the condition that their spectral structure is vaguely
specified. For the usual theory of linear prediction, due mainly to Kolmogorov
and Wiener, to be effective, it is essential that the spectrum of a process con-
cerned is completely known. The present paper intends to replace that assump-
tion by a weaker one; namely, it assumes only that a certain neighborhood of
a spectrum is given and constructs an optimal (in a sense specified below) linear
predictor, based on the knowledge that the spectrum of a process belongs to
that neighborhood. For this purpose, this paper adopts an approach that is
almost in line with the theory of robust estimation due to Huber (1964), especi-
ally with his theory of minimax estimation of a location parameter for a class
of contaminated normal distributions. In other words, the main purpose of the
paper is the construction of a minimax predictor for a class of ¢-contaminated
spectral distributions.

To be more specific, assumed that the complex-valued stationary process
{x;:t=0, 1, £2, ...} has a spectral distribution H of the form H(w) =
(I — e)F(0) + ¢G(w), —7 < @ < =, for a constant e (0 < ¢ < 1) where Fisa
known probability distribution function and G denotes a variable function which
ranges over a certain class of probability distributions (F and G are supported
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by the interval (—=, z]). The assumption that F(r) = G(z) = 1 will not limit
the generality of the following arguments, since otherwise the ratio ¢/(1 — )
could be suitably modified. A typical example pertaining to this model might
be that the observed process {x,} is given as a mixture of two processes {y,} and
{z.}; the spectrum of {y,} is specified as F, whereas that of the z, is unknown.
Now the following notations are used throughout: Let <, be the class of all
probability distribution functions supported by the interval (—=, x]; let
Z,(C Z,) be the class of probability distribution functions which are absolutely
continuous with respect to the Lebesgue measure. In addition, denote by & (F)
a subset of &7 such that any member H of &(F) is of the form: H = (1 — ¢)F +
¢G for some G € ;. Similarly, & (F) = {He Z,: H= (1 —¢)F +¢G; G e Z,}.

For the purpose of determining the appropriate classes of linear predictors,
denote by ~“(H) the completion of the linear hull of the set {e™*: + < —1} with
respect to the mean-square norm in the space of the square-integrable complex-
valued functions defined on the measure space {(—m=, n], <%, H}, where <7 is
the Borel subsets of the interval (—=, ] and H is a probability distribution.
Though for a fixed H any element of . (H) may be regarded as a linear predic-
tor, in the framework of the present problem it will be more natural to restrict
the class of linear predictors to My .-,x -2 (H) or to Nzesryr L (H). For
the sake of brevity, write (. -, < (H) and Nuesym £ (H) respectively as
Z£(F) and £ (F). Call any element of Z(F) or #(F) a linear predictor (it
depends on contexts which class is to be referred to).

In order to predict x, (v is a nonnegative integer) by the data {x,: r < —1},
the usual theory of prediction searches for the linear combination y of the data
which makes the mean-square error E|x, — y|* minimal. As is well known, this
is equivalent to looking for ¢ € &(F) which minimizes V(¢, F) = {=_ e —
$(w)|* dF(w) if the spectrum of the process {x,} is given as F. Suppose, however,
that only partial information concerning the spectrum H of the process is avail-
able; formally, suppose that H varies over the range .5 (F) or over .5 (F).
Then a set of mean-square prediction errors {V(¢, H): H e % (F)} corresponds
to each predictor ¢ € ~£(F), i = 0, 1. This paper adopts the minimax principle
as the criterion of optimality, defining a minimax linear predictor as one which
minimizes the maximal prediction error maxy. . V($, H). Consequently, the
problem of robust prediction is reduced to the construction of a predictor
o* € £(F) such that

(1) maxy. . .p V(¢*, H) = min,_ ., maxy, . V(¢, H), i=0,1.

As for the scope of the paper, it exclusively considers the prediction of one-
step ahead, that is, the case where v = 0. There seems to be no straightforward
generalization of the proceeding results, though in the case of the usual theory
of linear prediction there arises no special difficulty in considering general v-steps
ahead prediction. Sections 1 and 2 are for establishing Theorems 1 and 2:
Theorem 1 asserts that for & (F) with an absolutely continuous F there exists
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a minimax predictor ¢, which is the optimal linear predictor for a spectral
density f, obtained from f, density of F, after a suitable modification, while
Theorem 2 deals with more general F. The results of Sections 1 and 2, how-
ever, do not apply to the class .5 (F). The difficulty is mainly that the robust
predictor is given only as an a.e. point-wise limit so that there is no guarantee
that ¢, € £ (F). Section 3 considers robust prediction for the class & (F).
Theorem 3 of that section shows that there is an approximate predictor to
®n in Z(F) such that its maximal prediction error is arbitrarily close to

min,, . p MaXg, o 5 V(¢, H).

1. Minimax problem. Suppose first that the probability distribution function
F is absolutely continuous with respect to the Lebesgue measure and has a den-
sity f. Let m be a positive number and let E,(f) and F,,(f) be respectively sub-
sets of the interval (—=, 7] such that m = (1 — ¢)f(w) for we E,(f) and m <
(1 — ¢)f(w) for w € F,(f). Furthermore, define P(f, m)as P(f,m) = {_ {m —

(1 — &)f(w)} do.

LeMMA 1. There exists a unique m which satisfies the equation:

2) (I = &) §ppin fl@)do +m§p pdo =1.

ProoF. Since {*_f(w) = 1, equation (2) can be rewritten as P(f, m) = e.
However P(f, m) is a monotone nondecreasing continuous function of m such
that it tends to 0 as m — 0 and increases to infinity as m — oo; consequently,
this shows that there exists a unique solution of equation (2). [J

Henceforth, the notation m(f) refers to the positive number satisfying (2) and
write E, ,(f) and F, ,(f) respectively as E,, ,, and F, ;. As the next step,
define f,, as follows: f.(0) = (1 —¢)f(w) for weF, ) fu(w) = m(f) for
we Em(f)'

It is obvious in view of the lemma above that the function f, is a probability
density whose distribution belongs to .5 ,(F). Let ¢, be the optimal linear one
step ahead predictor when the spectral density of the process is given as f,,;
namely, ¢, € ~(H,,) and it holds that ’

§2: 11 — ¢u(@)|fm(w) do = min,, sy s [1 — ¢(0)[fn(e)dw,
where H,, is the distribution function of f,,. This function ¢, turns out to be-
long to #(F) and to be a minimax predictor; that is,

THEOREM 1. Suppose the spectral distribution F has a density f. Among the class
&, of linear predictors, there exists a predictor which minimizes the maximal error
of one-step ahead prediction for the set > (F) of spectral distributions. That pre-
dictor ¢,, is given as the optimal linear predictor for the spectral density f, such
that f,(0) = (1 — ¢)f(w) for c€ F,,,; and f,(0) = m(f) forc e E,, ;. Its maximal
prediction error maxy, .. ) V($n, H) is equal to 2z exp {1/27 (=, log f,.(») dw}.

The theorem consists of two separate propositions: one is that
maxy. . ) V($m H) = ming, ., Maxy, - V($, H) (Proposition 1); the other
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is that ¢, € £ |(F) (Proposition 2). This section demonstrates only the first
proposition, leaving the proof of Proposition 2 as well as an extension of Theorem
1 to the next section.

Proposition 1 is proved by steps through Lemmas 2 to 5 in the following.
For any H € % |(F), let h be the density of H; namely, h = (1 — &)f + eg for
a certain density g. Now the next lemma is self-evident in view of the usual
theory of prediction.

LEMMA 2. ming, . 5 V(¢ H) = 27 exp {127 {* log h(w) dw}.

LemMMaA 3. {7 log h(w) dw < §=,_ 1og f,(0) do.

PRrOOF. Let k, and k, be functions defined on (—r, 7] as: k,(0) = h(w) — f,(®)
and ky(w) = 0 for we F,; k(o) = 0 and ky(w) = f,(0) — k(o) for w e E,,,,.
Then k, is nonnegative, and it holds that
3 (ko) — k@) do =0 and 5 ky(o)ky(w)do = 0.

Now,
Iizr log h((l)) d(t) - Sin log fm(w) do

_ h@) — fu(®)\ g
(4) —~SFm(f) lOg <1 + T(('))—> d.

+ V£, log <1 - f___—m(a])()m(:))h(a))) do

< si,log(l +%> <1 _ f;f;’;)dw.

On the other hand, in view of the concavity of the logarithm,
1 k(o) ky(w)
5) 1,1og(1+1_><1_ s )dw
2 m(f) m(f)
= logi [ <1 + k(@) — k(@) _ k‘(w)k“(zw) ) do .
2 m(f) m(f)
In view of the relations in (3) it follows from (4) and (5) that
{7, log h(w) do < §=_ log f,(®) do . 0
It can be concluded from Lemmas 2 and 3 that

. 1
(6)  maxy. ., min, . V(g H) = 2 exp {_2? *_log fu(w) dw} .

The next lemma is a straightforward consequence of the definition of maximum
and minimum.
LEMMA 4. maXye - min¢ez1(F) V(¢, H) < min,, oy MAXy e ooy (9, H).
Let ¢,(») be the optimal linear one-step ahead predictor corresponding to
the spectral density f,(w); that is, ¢,(®)e £(H,) =, |1 — D @) (@) dow =

min,, .y, $2: |1 — ¢(0)|”fn(®) do, where H,, is the spectral distribution induced
by the density f, (o).
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LEMMA 5. maxy, . 5 V($m H) = 27 exp{1/27 {7 _log f(0) dw}.
ProoF. Since, in view of the theory of linear predictions,
1
M = guo)f = P exp i log fuw) du)] ac.,
fm( ) 27

(see, e.g., Grenander and Rosenblatt (1957) pages 68-69; also the next section
gives a brief account of the construction of the optimal linear predictor), it
follows that, for H ¢ & (F),

1 ., . 1
(®) V() = 2mexp | §, log fu(w) do} - 5, iy @)
whereas

T o)do + ¢ {7, ) dw
) S-xfm( ) H(w) = (= fm( )f( Jdo + ¢ §* 7o )g( )

for some density g(w). From (8) and (9), it follows that ¥(¢,, H) attains its
maximum for a spectral distribution H’ such that, if the density H' is (1 — ¢)f +
eg’, ¢’ is the uniform distribution on the subset E, ;. For such H’, it is easy
to derive that {*_(1/f,(»)) dH'(®) = 1; hence,

V(6 H') = 27 exp {_ = log fu(w) dw} 0

Finally, the preceding lemmas lead to the following conclusion.
ProrosITION 1.

maXye o p) V(pm: H) = ming, . maxy. . V($, H)
=2z exp{ 7. log fu(®) da)}

2. The existence of optimal robust predictor. The purpose of this section is
to prove Proposition 2 and also to extend Theorem 1 to the case where the
the spectral distribution F has point masses. Since, in the ordinary framework
of linear predictions, the optimal predictor ¢ for a spectrum G is constructed
as the projection of the constant function 1 on the closed subspace .Z(G), it is
not necessary to prove anew that ¢ ¢ #(G). However, this is not the case for
the present situation; in other words, ¢ is not usually a projection with respect
to other spectra. Therefore, the fact that ¢, e &“(F) must be established
independently from its construction. Lemma 9 below shows that the function
(2 — 2,) which is equal to 1 at 2 = 2,and zero elsewhere belongs to %7(F) even
if F has a jump at 2 = A,: that lemma enables the extension of Theorem 1 in a
straightforward manner.

It is convenient to review, at first, the construction of ¢, mainly for the pur-
pose of introducing notation necessary for further arguments. Let a,, n = 0,
+1, £2, - .-, be the Fourier coefficients of the integrable function log f, (o).
Using these a,, define a function g(z) in the open unit disc of the complex plane
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as g(z) = a, + 2 35, a,2" (|z] < 1); moreover, let ¢; be complex coefficients
such that (27)t exp{g(z)} = X 7.,¢,2’ (¢; is the conjugate of ¢;). This expansion
makes sense for the domain (|z| < 1}, since g(z) is analytic there. Now let ¢(z)
be a function defined in the open unit disc as: ¢(z) = Y7, ¢;z’. Then itisknown
that it has the boundary value c(e=**) almost everywhere such that ¢(e-**) =
T c;e M =1im, ,_ c(re=*!), where 317 ,|c,|* < co. Furthermore, itis true that
fu(®) = (1/27)|c(e~)|* almost everywhere with respect to the Lebesgue measure.
Finally, the optimal predictor ¢,, is given by ¢,(®) = 217, c;e7*/c(e7*?). Let
£(z) = X 51¢;7%/c(z). Then since 1/c(z) is analytic in the open unit disc, &(z)
has the expansion: §(z) = Y17, 6,29, |z] < 1. Obviously, as r — 1 —, &(re-%)
converges to §(e~™) = ¢,(w) a.e. For fixed r, write £ (w) = §(re=™).

The proof of the proposition that ¢, € &(F) proceeds as follows: Lemma 6
states the fact that §, e &£ (F), 0 < r < 1. Proposition 2 shows that £, con-
verges to ¢, (), as r — 1 —, in the mean-square with respect to every spectral
distribution belonging to . (F). Lemma 7 establishes a preliminary result
which is useful for Proposition 2.

LEMMA 6. &, e L(F), 0<r< 1.

Proof. For any H e & (F), let y(k), k =0, +1, +2, - .., be the covariance
function of the spectrum H (namely, y(k) = {Z.e** dH(w)). Since |r(k)| < 7(0)
for every integer k and |b,| < M for some positive M,

(10) (2, | S5 byrie=top dH(w) < MP(O)r*[(1 — r)?.
Since %z} b,rie~ ¢ <~ (H) and right-hand side of (10) converges to 0 as n —
oo, it follows that §, € S£(H). ]

Functions defined on the interval (—=, ] are naturally extended to periodic
functions on the real line by means of the convention: f(o + 27) = f(w). This
convention will be used where necessary in the proceeding discussions without
notice. Write the shifts of a periodic function k(w) as k,(w) = k(v — 2); thus,

for example, ¢,, ;(w) = ¢,(w — 2). Furthermore, write the L-norm of k() with
respect to a density A(w) as |k||,; namely, ||, = (=, |k(®)|*h(v) do.

LeEMMA 7. For any ¢ > 0, there exists a positive 6, such that sup {||¢,, — @, ;|ls*:
|4 < dg} < .

ProoF. ¢, is essentially bounded, since

1 — gu(@) = lle(e) < 1/Q2afu(@)), ace.
For this essentially bounded ¢,,, there exists a continuous periodic function
such that ||¢,, — 7|’ < ¢/(4r + 6) (cf. e.g., Hewitt and Stromberg (1969), page
197). Because of the uniform continuity of 7, there exists a positive d, such
that |p(w) — n(w — 2)| < ¢/(4r + 6) for |2| < d,. Then, it holds that
(11) IBm — Gm il = 2{l|Pm — 2l* + [72 — 2l + 22 — P, 2ln’}
= (4 + 2)e/(47 + 6) + 22 — P illi’ -
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On the other hand,

(12)  ligm — 7" = l1m.2 — 7lb% < §25 [$m(@) — 7(@)|A(@) — (o + 2)| do
< N7, |h(w) — k(o + 3)|do,

where N is a certain positive constant. Now in view of the fact that the shift
of an integrable function is continuous with respect to the L'-norm for the
Lebesgue measure, the term in the right-hand side of the second inequality of
(12) can be made smaller than ¢/(4x + 6) for |2| < d,. Setd, = min(d,, J,); then
for |2] < 9,

|6m — Gmillh® < (47 + 2)e/(4m + 6) + 4¢/(4n + 6) = €. 0
PROPOSITION 2. ¢, € & (F).

Proor. By virtue of Lemma 6, it suffices to show that the mean-square
(% [6(®) — ¢n(w)|*h(w) do tends to 0 as r — 1— for any density 4, since ¢, is
square-integrable with respect to #. Write the Poisson kernel as P,(4); namely
P,(2) = (1 — r*)/(1 — 2rcos w + r?) (for the Poisson kernel see Hoffman (1962)).
Then by the usual theory of that kernel, it holds that

(13) ||¢m - E1'||h é Sin ||¢m - ¢m,2||hPr(2) dz.
On the other hand, for é > 0,

(14 §2[16m — Pmillh P(2) d2 < sUppigy |6 — P alls + 2K sUpss Po(2) 5

where K is the essential supremum of the function ¢,. Then by Lemma 7, the
first term in the right-hand side of the inequality (14) can be made arbitrarily
small by choosing 4§ sufficiently small, and at the same time the second term is
made arbitrarily small by choosing r sufficiently close to 1. This proves that
P — &y > 0asr—1—. ]

REMARK. Since ¢, is defined only as an a.e. limit, it is generally not valid
that ¢,, € £(F). If ¢, is continuous and ¢,(—7+) = ¢,(r), the convergence
€, — ¢, is uniform. But it is not certain whether the continuity of f, irﬂplies
that of ¢,,.

In the rest of this section, suppose that F has jumps at countable points
A, i=1,2,..., with the corresponding saltuses AF(4;); namely F(4)=
{1, flo)do + T3.<; AF(2). In this case, however, {* flo)do =1—3<1,
where § = Y2 AF(2,). Denote by G the set {2,:i= 1,2, ...}; let G’ be the
complement of G in (—=, #]. Asin Lemma 1, there exists a unique m for which

(15) (1—2¢ SFm(f)f(w)dw+mSEm(f)dw: 1 — B+ Be.

Denote n(f) the unique m and define f, as this: f,(0) = (1 — ¢)f() forw e F, 4,
and f,(w) = n(f) for ® € E, ;. Furthermore, define ¢, as follows: ¢, is equal
to the optimal linear predictor corresponding to the density f, for w € G’ and



ROBUST PREDICTION 581

is identically equal to 1 on G. Then it is straightforward to see that

(16) min',,eflm maxy. . V(g, H) = maxy. . r V(¢, H)
— 2 exp {_1_ i=. log f.(w) dw} .
2w

In order to show that ¢, e <£(F), it suffices to establish the next lemma.
LeEMMA 8. Let 9(4) be a function defined on (—rx, x] such that §(0) = 1 and
d(w) = 0 for @ = 0. Then, for each i, 6(2 — 2;) belongs to Z,(F).

ProOF. Letmbea positive integer and set §,,(1—24,) = Y72 s, €14 /(2m +
1). It is obvious that 4, thus defined belongs to ~(H) for any H e .& (F).
Moreover it holds that

(17) V22 10(2 = 4) — 9n(2 — A)I"dH(2)

= Jrmoy |sin (2 1)2(2 - li)/{(Zm + 1)sin “;ZMHZ dH(3) ,

where (—=, ] N {4,}' is the set obtained by the point 2, eliminated from (—=, =].
Since the integrand in the right-hand side of (17) converges point-wise to 0 as
m — oo, it follows from the Lebesgue bounded convergence theorem that the
mean square in (17) converges to 0. []

THEOREM 2. Suppose that the spectral distribution F has jumps on the countable set
G = {4,} and has the representation F(2) = {1, f(w) do + 31, <; AF(4;). The func-
tion ¢, which is equal to 1 on G and equal elsewhere to the optimal linear predictor
for the spectral density f, belongs to <~ (F) and is a minimax predictor. Its maximal
prediction error is given by 2z exp {1/2r {= _ f,(v) dw}.

3. Robust prediction in the presence of the class & (F). The minimax
theory developed so far does not, in general, apply to & (F). This section
aims at constructing a predictor which is robust and approximates ¢, in the
sense that its maximal prediction error for .5 (F) is sufficiently close to
ming, o ) MaxXy, - 5 V($, H). The construction will proceed as follows: At
first, the density f,, is approximated by a continuous function; Proposition
3 states that there exists a continuous density k, such that ¢,, the optimal
linear predictor for k,, satisfies the inequality maxy.. g V(¢ H) <
min,, .5 MaxXy, . o V(¢ H) + 6, forany given 6 (>0). Secondly, the density
k, is approximated by a two-times continuously differentiable Stekloff function
the optimal linear predictor for which is shown to belonging to .<“(F) (Lemma
12). Finally, Theorem 3 shows that, for any 6 > 0, there exists a linear predictor
§ € £F) such that maxy, . V(§, H) < ming, . max,, . i V(9 H) + 4.
The term “continuous function” below refers exclusively to a continuous func-
tion defined on (—=, 7] whose natural extension to a periodic function is again
continuous. The spectrum F is assumed to possess a density f; Theorem 3 below
would be easily extended so as to apply to general F by virtue of Theorem 2,
though the paper does not try it.
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The following lemmas (9 through 11) establish preliminary results for Pro-
position 3. The next one is a well-known fact.

LEMMA 9. For any & > 0, there exists a continuous density g such that
V22 [f(@) — 9(0)| do < 6.
Denote by &, the set of densities such that, for ge &, {Z, |9(®) — f(0)| do <

d. Recall the definition of m(f), f,, and P(f, m) given in the first paragraph of
Section 1; then,

Lemma 10. For any § > 0, there exists 2(>0) such that for any ge ¥, the
inequalities |1/m(g) — 1/m(f)| < o and |m(g) — m(f)| < 0 hold simultaneously.

ProoF. The lemma follows from the fact that P(f, m) is a continuous mono-
tone function of m and from the inequality:

|P(f, m(9)) — P(f, m(f))] < {2 | (@) — g(@)| do . 0
LEMMA 11. For any 6 > 0, there exists 2(>0) such that for any g € &, it holds
that 1/m(g) \=, |9m(@) — fu(®)| do < 8, where g, is defined in the same way as f,.

Proor. In view of the relation:

_1_.” W) — w a)_l_e T ) — f(w)| do |m(g)_m(f)|
o) Ve |gm(@) — fu(o)| do = @) §2. 19(@) — flo)| do + o) ,

the lemma is a straightforward consequence of Lemmas 9 and 10. []

PROPOSITION 3. Suppose that the spectral distribution F has a density f; then for
any & > O there exists a continuous density k,, such that, to denote by ¢,, the optimal
linear predictor for k,,, it holds that
(18) maxy. . V(¢m» H) < ming, ..y MaXy, o (p) V(g, H) + 4.

Proor. Choose 7 to be a positive number satisfying the inequality:

(19) (1 + p){maxy, . V(¢m» H) + 27} < maXy - p) V($ms H) + 0.

Then, in view of Lemmas 9 through 11, it is seen that there exists a continuous
density k for which the following four inequalities hold simultaneously (where
k, is defined in the same way as f,):

20) |1 m(k) = 1/m(F) < 7
@ im(l) — m()] < 7

@) iy Ve eal) = @)l do <7
(23) 5o Ve @) = k(@)|do < 9.

It evidently follows from (22) and (23) that 1/2z {*_|f.(®) — k,(0)| do < 7.
Since ¢,, is the optimal linear predictor for k,,,

(24) maxy . g 24|l — ¢l(0)* dH(w)

= 2z exp {Elﬂ_ {=. 1og kn(w) dw} {(1 — 9§, 52‘2) do + m(ek)} .
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On the other hand,
1 1.
25)  exp {3; 7. log k() dw} /exp {7{ 1% log fu(w) dw}

< 1t o T 1fa(@) — k(@) do S 1+ 7.
Furthermore, in view of (22),
(26) §2- f@)[kn(@) do — (2 f(0)[fu(@) do]
< V2, [kn(@) — fu(@)] dojm(k) < 7.
By means of (24), (25) and (26), it holds that
max, . F(F) S’iz |1 - ¢m(w)|2 dH((t))
< 27(1 + p) exp {717:— {7 log f.(w) dw}

XAl — ¢) §2; flo)/fu(®) do + ¢/m(f) + 27}
(1 + v){maxHefl(F) V(¢m’ H) + 27]}
min,, . p MaXy o m V(P H) + 0. 0

For an integrable function g, the Stekloff functions g, and g,, (2 > 0) are
defined respectively as:

IANIA

Q1) g(w) = 2171 "o 0(0 + ) di, and  gy() = 2Lh V%4 gal@ + 2) dA.

Then the next lemma is a straightforward consequence of Achieser (1956), pages
174-175.

LemMa 12. If a function g is continuous, g,, is twice continuously differentiable;
moreover, there exists 6, such that, for h < d,, sup |g(w) — g,.(®)| < e foranye > 0.

Let k,, , and k,, ;, (! > 0) be Stekloff functions derived from spectral density
k,. Denote by &, the optimal linear predictor when the spectral density is given
ask, .

LemMa 13. &, € &£(F) for any l > 0.

Proor. Since k,, ;, is twice continuously differentiable and bounded away from
0, log k,, ;; is also two-times continuously differentiable. Let a,* be the nth
Fourier coefficient of  log k,, ,,; then,

(28) slogk, y(0) = L. a,> ™,

where the sum converges uniformly and > =, |a,*| < co. As in Section 2, let
g9*(z2) = a* + 2 317 a,*z" and define c*(z) by c*(z) = Y7,¢;*2, where
25=0C,*29 = (2m)t exp{g(z)}. Thenitisevident that c*(z) thus defined is analytic
in the open unit disc and continuous on the unit circle. The optimal linear
predictor §, for k,, ,, is defined as: §,(w) = Y 5., ¢,*e~/c*(e~**), where c*(e'*) =
Dreci¥ee. Let 4,(w) = X 7., ¢, *(re7*)i[c*(re=*) for any fixed r (0 < r < 1).
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Then, since ¢, is a continuous function of w, §,(») is the boundary value of
4,(®) r — 1 — and the convergence is uniform. (See Hoffman (1962), page 33.)
Now it is evident that {=_|&(w) — 2,(w)|?*dH(w) converges to 0 as r — 1 — for
any H e & (F). Since 1,(0) e £ (H) and {~_|§(w)?dH(w) < oo, the proof is
complete. []

THEOREM 3. For any 6 > 0, there exists I, (>0) such that

maxy, p V(1 H) < maxy, g V(Pms H) + 6 for all positive | < .

ProofF. In view of the relations
(29) |1 — gp(@) = 27 exp {ZL 7. log k(o) dw} /k,,,(w) . ae.,
T

1= &) = 2 exp |- i, log ky u(0) do} [y (o)

it follows from Lemma 12 that for sufficiently small / |1 — &> < |1 — ¢, > +
d/2,a.e.;sup |l — &> < ess.sup |l — ¢, |* + 6/2. Then it holds that

maxy. - V(€ H) = (1 —¢) {2 |1 — §(0)f(0) do + esup |l — £ (@)
<=9 §Z |1 = gu(0)[f(0) do

+ eess.sup |l — ¢, (0) + %

0
L= maxXy, o p V(¢ H) + 3

Since, by Proposition 3, maxy, . 5 V(¢m H) < maxy. . iz V($n, H) + 6/2 for
sufficiently small /, the proof is complete. [] ’
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