AN ALGORITHM FOR LINEAR PREDICTION OF A BANACH SPACE VALUED STATIONARY STOCHASTIC PROCESS

By Shashi Phoha

The MITRE Corporation and Bucknell University

Wiener and Masani describe a procedure for relating nonlinear prediction of a univariate random process to linear prediction of an infinite-variate process which may not be a Hilbert-space-valued process but may be Banach-space-valued instead. An algorithm for computation of the linear predictor and the generating function of a Banach-space-valued stationary stochastic process is obtained under an extension of the boundedness condition of Wiener and Masani on the spectral density of the process.

1. Introduction and notation. If \mathscr{X} and \mathscr{Y} are two Banach spaces, $\mathscr{B}(\mathscr{X},\mathscr{Y})$ denotes the Banach space of all bounded linear operators from \mathscr{X} to \mathscr{Y} , and \mathscr{X}^* denotes the Banach space of all conjugate linear functionals on \mathscr{X} . A bisequence $\{\xi_{\eta}: -\infty < n < \infty\}$ of elements of $\mathscr{B}(\mathscr{X},\mathscr{K})$ where \mathscr{X} is a Banach space and \mathscr{K} is a Hilbert space, is called a $\mathscr{B}(\mathscr{X},\mathscr{K})$ -valued weakly stationary stochastic process if the operator $\xi_m * \xi_n$ in $\mathscr{B}(\mathscr{X},\mathscr{X}^*)$ depends only on n-m. And then the operator sequence $R(n)=\xi_0 * \xi_n$ defined for $-\infty < n < \infty$ is called the covariance bisequence of the process. Assume that \mathscr{X} is separable. With this stationary stochastic process are associated the following subspaces ([6], page 922):

 M_{∞} , the closed subspace of ${\mathscr K}$ spanned by

$$\{\xi_k(x): -\infty < k < \infty, x \in \mathcal{X}\},$$

 M_n , the closed subspace of \mathcal{K} spanned by

$$\{\xi_k(x): -\infty < k \leq n, x \in \mathcal{X}\},\$$

and

$$M_{-\infty} = \bigcap_{-\infty < n < \infty} M_n.$$

The process $\{\xi_n: -\infty < n < \infty\}$ is said to be

- (i) singular if $M_{-\infty} = M_n$ for $-\infty < n < \infty$;
- (ii) nondeterministic if $M_{-\infty} \neq M_n$ for some finite n;
- (iii) regular if $M_{-\infty} = \{0\}$.

For $\mathcal{S} \subset \mathcal{B}(\mathcal{X}, \mathcal{K})$ let $\bar{\sigma}(\mathcal{S})$ denote the smallest (strongly) closed subspace of $\mathcal{B}(\mathcal{X}, \mathcal{K})$ containing the set $\{SB: S \in \mathcal{S}, B \in \mathcal{B}(\mathcal{X}, \mathcal{K})\}$ and $\sigma(\mathcal{S})$ denote the smallest closed subspace of \mathcal{K} containing the set $\{Sx: S \in \mathcal{S}, x \in \mathcal{X}\}$. We shall use the same notation also for subsets \mathcal{S} of $\mathcal{B}(\mathcal{K}, \mathcal{K})$. In this notation

Received March 25, 1977; revised October 20, 1977.

AMS 1970 subject classifications. Primary 60G25; Secondary 60G20.

Key words and phrases. Spectral density, boundedness condition, factorization, algorithm for the predictor, prediction error matrix.

then

$$\bar{\sigma}(\mathcal{S}) = \mathcal{B}(\mathcal{X}, \sigma(\mathcal{S}))$$
 ([6], page 922).

For the stationary stochastic $\mathscr{B}(\mathscr{X},\mathscr{K})$ -valued process $\{\xi_n: -\infty < n < \infty\}$ define

$$\mathcal{M}_n = \bar{\sigma}\{\hat{\xi}_k \colon k \leq n\},$$

$$\mathcal{M}_{-\infty} = \bigcap_n \mathcal{M}_n,$$

$$\mathcal{M}_{\infty} = \bar{\sigma}\{\hat{\xi}_k \colon -\infty < k < \infty\}.$$

In the above notation then, $\mathcal{M}_n = \mathcal{B}(\mathcal{X}, M_n)$, $-\infty \leq n \leq \infty$. Furthermore let \mathcal{B}_n , B_n for $-\infty \leq n \leq \infty$ denote corresponding subspaces for a $\mathcal{B}(\mathcal{K}, \mathcal{K})$ -valued stationary process $\{\eta_n : -\infty < n < \infty\}$.

Now for each $\hat{\xi}_n \in \mathcal{B}(\mathcal{X}, \mathcal{K})$, there exists an operator $(\xi_n | \mathcal{M}_0)$ in $\mathcal{B}(\mathcal{X}, \mathcal{M}_0)$ such that $\xi_n - (\xi_n | \mathcal{M}_0)$ is orthogonal to \mathcal{M}_0 ([4], Theorem 3.2.5, page 10). $(\xi_n | \mathcal{M}_0)$ is called the projection of ξ_n on \mathcal{M}_0 , and is denoted by $\hat{\xi}_n$. Similarly define $\hat{\eta}_n$ as $(\eta_n | \mathcal{B}_0)$, $-\infty < n < \infty$. The operator $G = (\xi_0 - \hat{\xi}_0)^* (\xi_0 - \hat{\xi}_0)$ is called the predictor error operator of the process. The process is said to be of full rank if G is boundedly invertible.

Time domain and spectral analysis for such processes, as given below, were obtained by A. G. Miammee [6]. However an extension of the algorithm of Weiner and Masani ([7], 6, pages 123–127) under the boundedness condition ([5], page 1), was obtained only for Hilbert-space-valued random variables using Fourier analysis of infinite matrix valued functions. In dearth of an obvious identity operator in the family of $\mathcal{B}(\mathcal{X}, \mathcal{X}^*)$ -valued functions, a suitable boundedness condition on the spectral density of the process must be obtained to work out the corresponding algorithm for prediction.

Time domain analysis. For a $\mathcal{B}(\mathcal{X}, \mathcal{K})$ -valued regular stationary stochastic process $\{\xi_n: -\infty < n < \infty\}$ there exist mutually orthogonal isometries S_k and $A_k \in \mathcal{B}(\mathcal{X}, \mathcal{K})$ such that

$$\hat{\xi}_n = \sum_{k=0}^{\infty} S_{n-k} A_k ,$$

convergence being in the strong operator topology ([6] Theorem 3.5, page 924).

Spectral analysis. For the $\mathscr{B}(\mathscr{X},\mathscr{K})$ -valued weakly stationary stochastic process $\{\xi_n: -\infty < n < \infty\}$, the shift operator \mathscr{U} defined on M_∞ as follows

$$\mathcal{U}\xi_n x = \xi_{n+1} x$$
, $x \in \mathcal{X}, -\infty < n < \infty$

has a spectral resolution $\mathcal{U}=1/2\pi$ $\int_0^{2\pi}e^{-i\theta}E(d\theta)$, where E is a projection valued measure over ([0, 2π), \mathcal{B}), \mathcal{B} being the algebra of Borel sets ([2], pages 359–360). Now define for $B\in\mathcal{B}$, $F(B)=\xi_0^*E(B)\xi_0$. This F is called the spectral distribution function of $\{\xi_n: -\infty < n < \infty\}$. Assume now that there exists a nonnegative $\mathcal{B}(\mathcal{X}, \mathcal{X}^*)$ -valued function $f(\theta)$ defined on [0, 2π) such that

(i) $f(\theta)$ is strongly measurable;

- (ii) $f(\theta)$ is Bochner integrable; and
- (iii) for each Borel measurable $B \subset [0, 2\pi)$, $F(B) = \int_{B} f(\theta) d\theta$.

This $f(\theta)$, also denoted by f_{θ} , will then be called the spectral density of the process $\{\xi_n: -\infty < n < \infty\}$. Let $L_2(\mathcal{K})$ denote the Hilbert space of all \mathcal{K} valued scalarly measurable functions on the unit circle which have square summable norm. The $L_2(\mathcal{K})$ inner product of two functions g_1 and g_2 is

$$\frac{1}{2\pi}\int_0^{2\pi}\left(g_1(e^{i\theta}),\,g_2(e^{i\theta})\right)d\theta$$
.

Then a $\mathcal{B}(\mathcal{X}, \mathcal{K})$ -valued function $A(e^{i\theta})$ defined on the unit circle is said to be conjugate analytic if

$$\forall \ x \in \mathscr{X}, \qquad A(e^{i\theta})(x) \in \left\{g \in L_2(\mathscr{K}) : \frac{1}{2\pi} \ \S \ e^{-in\theta}g(e^{i\theta}) \ d\theta = 0 \ \text{ for } \ n > 0 \right\}.$$

The spectral density $f(\theta)$ is said to be factorable if there exists a conjugate analytic $\mathscr{B}(\mathscr{X},\mathscr{K})$ -valued function $A(e^{i\theta})$ defined on the unit circle such that $f(e^{i\theta}) = A^*(e^{i\theta})A(e^{i\theta})$, in the sense that $(f(e^{i\theta})x)(y) = (A(e^{i\theta})x, A(e^{i\theta})y)$ for all $x, y \in \mathcal{X}$.

Regarding factorization of the spectral density of a $\mathcal{B}(\mathcal{X}, \mathcal{K})$ -valued regular stochastic process, the following has been established in [6], Theorem 4.5, page 930.

1.1 THEOREM. The spectral distribution F of a regular full rank $\mathcal{B}(\mathcal{X},\mathcal{K})$ valued stationary stochastic process is absolutely continuous and

$$\frac{d}{d\theta} (F(e^{i\theta})x)(x) = \|\Phi(e^{i\theta})x\|^2$$

where

$$\Phi(e^{i\theta})(x) = \sum_{k=0}^{\infty} e^{-ik\theta} A_k(x), \qquad A_k \in \mathcal{B}(\mathcal{X}, \mathcal{K})$$

and

Φ, as defined in this theorem, is called the generating function of the process $\{\xi_n: -\infty < n < \infty\}.$

 $G = A_0 * A_0$.

2. The boundedness condition on the spectral density. Let the spectral density f_{θ} , of the $\mathscr{B}(\mathscr{X},\mathscr{K})$ -valued stationary stochastic process $\{\xi_n: -\infty < 0\}$ $n < \infty$ satisfy

$$0 < m(\theta)A^*A \le f_{\theta} \le M(\theta)A^*A$$
 a.e. $\theta \in [0, 2\pi)$

for some $A: \mathcal{X} \to \mathcal{K}$ with ||A|| = 1 and $M(\theta)$, $1/m(\theta)$, $M(\theta)/m(\theta)$, summable.

Lemma. Under boundedness condition 2 on the spectral density and $N_{ heta}=$ $f_{\theta}/a_{\theta} - A^*A \text{ with } a_{\theta} = (m(\theta) + M(\theta))/2, \|N_{\theta}\|_{B} \le (M(\theta) - m(\theta))/(M(\theta) + m(\theta)) < 1.$

PROOF. For each $x \in \mathcal{X}$

$$m(\theta)(Ax, Ax) \leq (f(x), x) \leq M(\theta)(Ax, Ax)$$
,

i.e.,

$$\left(\frac{m(\theta)}{a_{\theta}}-1\right)(A^*Ax,x) \leq \frac{(f_{\theta}(x),x)}{a_{\theta}}-(A^*Ax,x) \leq \left(\frac{M(\theta)}{a_{\theta}}-1\right)(A^*Ax,x),$$

i.e.,

$$\frac{m(\theta)-M(\theta)}{m(\theta)+M(\theta)}\|Ax\|^2 \leq (N_{\theta}(x), x) \leq \frac{M(\theta)-m(\theta)}{M(\theta)+m(\theta)}\|Ax\|^2.$$

Using the parallelogram law, we have for each $x, y \in \mathcal{X}$

$$|(N_{\theta}(x), y)| = \frac{1}{4} \{ (N_{\theta}(x+y), x+y) - (N_{\theta}(x-y), x-y) \} |$$

$$\leq \left| \frac{M(\theta) - M(\theta)}{M(\theta) + m(\theta)} \frac{(A^*Ax, y) + (A^*Ay, x)}{2} \right|.$$

Since ||A|| = 1, $||N_{\theta}||_{B} \le (M(\theta) - m(\theta))/(M(\theta) + m(\theta)) < 1$.

- 2.2 Lemma. Let the spectral density f_{θ} satisfy the boundedness condition 2, and the image $A\mathscr{L}$ be dense in \mathscr{L} . If A is one-to-one onto $A\mathscr{L}$ then
 - (i) A* is one-to-one;
 - (ii) $A^{*-1} = (A^{-1})^*$; and
- (iii) $|(A^{*-1}N_{\theta}A^{-1}(k), l)| \le (M(\theta) m(\theta))/(M(\theta) + m(\theta))||k|| ||l||$ a.e. θ for $k, l \in A\mathscr{X}$.

PROOF. (i) Since $A\mathscr{X}$ is dense in \mathscr{K} , A^* is defined on \mathscr{K} to \mathscr{X}^* as follows: $\forall k \in \mathscr{K}$, $A^*(k) = x^*$ where $x^*(y) = (k, Ay) \forall y \in \mathscr{X}$. A^* is easily seen to be one-to-one.

(ii) In fact

$$\mathcal{D}((A^{-1})^*) = \{x^* \in \mathcal{X}^* : \exists k \in \mathcal{K} \text{ with } x^*(A^{-1}l) = (k, l) \forall l \in Ax\}$$
$$= \{x^* \in \mathcal{X}^* : \exists k \in \mathcal{K} \text{ with } x^*(y) = (k, Ay) \forall y \in x\}$$
$$= \text{range of } A^* = \mathcal{D}(A^{*-1}).$$

Also for each x^* in $\mathcal{D}(A^{*-1})$, $A^{*-1}(x^*) = k \Leftrightarrow (A^{-1})^*(x^*) = k$.

(iii) Now from the proof of Lemma 2.1

$$|(N_{\theta}(x), y)| \leq \frac{M(\theta) - m(\theta)}{M(\theta) + m(\theta)} \left| \frac{(Ax, Ay) + (Ay, Ax)}{2} \right| \quad \text{a.e.} \quad \theta \ .$$

Thus for $k, l \in A$

$$\begin{split} |(A^{*-1}N_{\theta}A^{-1}(k), l)| &= |(N_{\theta}A^{-1}k, A^{-1}l)| \\ &\leq \frac{M(\theta) - m(\theta)}{M(\theta) + m(\theta)} \left| \frac{(AA^{-1}k, AA^{-1}l) + (AA^{-1}k, AA^{-1}l)}{2} \right| \quad \text{a.e.} \quad \theta. \end{split}$$

$$\therefore \|A^{*-1}N_{\theta}A^{-1}\|_{B} \leq \frac{M(\theta) - m(\theta)}{M(\theta) + m(\theta)}.$$

Hence the result.

3. Relationship with the case of Hilbert-space-valued random variables.

MAIN THEOREM 1. If the spectral density f_{θ} satisfies the boundedness condition 2 and $A: \mathcal{H} \to \mathcal{K}$ is one-to-one and $A\mathcal{H}$ dense in \mathcal{K} then there is a unique stationary stochastic process $\{\eta_n: -\infty < n < \infty\}$ which is $\mathcal{B}(\mathcal{K}, \mathcal{K})$ -valued and is such that

- (i) $R_{\eta}(n) = A^{*-1}R_{\xi}(n)A^{-1}$ on $A\mathscr{X}$.
- (ii) $f_{\eta}(\theta) = 2/(M(\theta) + m(\theta))[I_{\mathcal{X}} + A^{*-1}N_{\theta}A^{-1}] = A^{*-1}f_{\xi}(\theta)A^{-1}$ on A\$\mathcal{X}\$ where $I_{\mathcal{X}}$ denotes the identity operator on \$\mathcal{X}\$ and $f_{\xi}(\theta)$ is f_{θ} in our previous notation.

PROOF. By Lemma 2.2 $A^{*-1}f_{\xi}(\theta)A^{-1}=2/(M(\theta)+m(\theta))[I_{\mathscr{K}}+A^{*-1}N_{\theta}A^{-1}]$ is a bounded operator defined on $A\mathscr{K}$. Let g_{θ} denote its unique continuous extension to \mathscr{K} . g_{θ} is then a nonnegative $\mathscr{B}(\mathscr{K},\mathscr{K})$ -valued continuous function defined on the unit circle. Further g_{θ} is strongly measurable since $f(\theta)$ is assumed to be so. Also by 2.2 (iii) $||g_{\theta}|| \in L_1[0,2\pi)$. Hence g_{θ} is Bochner integrable. Thus for any $n, \xi_n A^{-1}$ defined on $A\mathscr{K}$ is such that $\forall k \in A\mathscr{K}$

$$\begin{split} \|\hat{\xi}_n A^{-1}(k)\|^2 &= \frac{1}{2\pi} \int_0^{2\pi} (A^{*-1} f_\theta A^{-1}(k), k) d\theta \\ &= \frac{1}{2\pi} \int_0^{2\pi} (g_\theta(k), k) d\theta \\ &\leq \|g\|_{L_1[0, 2\pi)} \|k\|^2 < \infty . \end{split}$$

Hence $\xi_n A^{-1}$ admits a unique continuous extension to \mathcal{K} , say η_n . $\{\eta_n : -\infty < n < \infty\}$ is then a $\mathcal{B}(\mathcal{K}, \mathcal{K})$ -valued stationary stochastic process. In fact $\{\eta_n : -\infty < n < \infty\}$ is stationary as shown by the following reasoning.

For $k, l \in \mathcal{K}$ we must show that $(\eta_n k, \eta_m l)$ depends only on n - m. Since $A\mathcal{X}$ is dense in \mathcal{K} , there exist sequences $\{x_p\}$, $\{y_q\}$ in \mathcal{X} such that

$$A(x_p) \to k$$
 in \mathscr{K} and $A(y_q) \to l$ in \mathscr{K} .

Then, since η_n and η_m are bounded

$$(\eta_n k, \eta_m l) = \lim_{p \to \infty} (\eta_n (Ax_p), \eta_m (Ay_p))$$

$$= \lim_{p \to \infty} (\xi_n x_p, \xi_m y_p)$$

$$= \lim_{p \to \infty} \frac{1}{2\pi} \int_0^{2\pi} \bar{e}^{i(n-m)\theta} (f_\theta x_p, y_p) d\theta$$

which depends on m and n only through n - m.

Furthermore

$$\begin{split} (\eta_n k, \, \eta_m l) &= \lim_{p \to \infty} \frac{1}{2\pi} \, \int_0^{2\pi} \, e^{-i(n-m)\theta} (f_\theta A^{-1}(Ax_p), \, A^{-1}(Ay_p)) \, d\theta \\ (\eta_n k, \, \eta_m l) &= \lim_{p \to \infty} \frac{1}{2\pi} \, \int_0^{2\pi} \, e^{-i(n-m)\theta} (A^{*-1}f_\theta A^{-1}(Ax_p), \, Ay_p) \, d\theta \\ &= \frac{1}{2\pi} \, \int_0^{2\pi} \, e^{-i(n-m)} \{\lim_{p \to \infty} \, (A^{*-1}f_\theta A^{-1}(Ax_p), \, Ay_p)\} \, d\theta \\ &= \frac{1}{2\pi} \, \int_0^{2\pi} \, e^{-i(n-m)\theta} (g_\theta(k), (l)) \, d\theta \, , \end{split}$$

the last two steps being true since g_{θ} is a bounded operator. Thus on $A(\mathcal{X})$

$$\begin{split} R_{\eta_n} &= (\eta_n, \, \eta_0) = (\xi_n \, A^{-1}, \, \xi_0 \, A^{-1}) = A^{*-1} R_{\xi_n} \, A^{-1} \\ f_{\eta_n}(\theta) &= A^{*-1} f_{\xi_n}(\theta) A^{-1} \; , \end{split}$$

and due to continuity of all functions involved, R_{η_n} and $f_{\eta_n}(\theta)$ are the unique continuous extensions of $A^{*-1}R_{\xi_n}A^{-1}$ and $A^{*-1}f_{\xi_n}(\theta)A^{-1}$ respectively to \mathcal{K} .

3.1 Factorization of the spectral density.

COROLLARY. If $\Phi_{\theta}: \mathcal{K} \to \mathcal{K}$ is the generating function for the $\mathcal{B}(\mathcal{K}, \mathcal{K})$ -valued stationary stochastic process $\{\eta_n: -\infty < n < \infty\}$ and if f_{θ} satisfies the boundedness condition 2, and $A: \mathcal{H} \to \mathcal{K}$ is one-to-one and $A\mathcal{H}$ dense in \mathcal{K} then $\Phi_{\theta}A: \mathcal{H} \to \mathcal{K}$ is such that $f_{\theta} = (\Phi_{\theta}A)^*(\Phi_{\theta}A)$.

PROOF. By Main Theorem I, g_{θ} is the unique continuous extension of $A^{*-1}f_{\theta}A^{-1}$. So that

$$f_{\theta} = A^* g_{\theta} A$$

= $A^* \Phi_{\theta}^* \Phi_{\theta} A = (\Phi_{\theta} A)^* (\Phi_{\theta} A).$

3.2 The prediction error matrix and the predictor for a Banach-space-valued process. For the $\mathcal{B}(\mathcal{K},\mathcal{K})$ -valued stationary stochastic process $\{\eta_n: -\infty < n < \infty\}$ a schematic algorithm to obtain the prediction error matrix G_{η} and the linear predictor $\hat{\eta}_{\nu}$ of η_{ν} for $\nu > 0$ based on the past $\{\eta_n: n \leq 0\}$, is given in [5]. We shall now find the same for the $\mathcal{B}(\mathcal{K},\mathcal{K})$ -valued process $\{\xi_n: -\infty < n < \infty\}$.

MAIN THEOREM II. The two stationary stochastic processes $\{\xi_n: -\infty < n < \infty\}$ and $\{\eta_n: -\infty < n < \infty\}$ are further related as follows:

(i) For each integer $\nu > 0$,

$$\hat{\xi}_{\nu} = \hat{\eta}_{\nu} A$$
.

- (ii) $G_{\xi} = A^*G_{\eta}A$. Note that $G_{\eta} = A_0^*A_0$ where $\Phi(e^{i\theta})(x) = \sum_{k=0}^{\infty} e^{-ik\theta}A_k(x)$ is the generating function of the process $\{\eta_n: -\infty < n < \infty\}$.
- (iii) $\hat{\xi}_{\nu} = \lim_{n \to \infty} \sum_{k=0}^{n} E_{\nu k} \hat{\xi}_{-k}$ where $E_{\nu k}$ is the kth Fourier coefficient of $[e^{-i\nu\theta}\Phi(e^{i\theta})_{0+}\Phi^{-1}]$.

PROOF. (i) Note that $\xi_k = \eta_k A$ for each k. Also $A\mathscr{X}$ is dense in \mathscr{K} and η_k is bounded. Therefore for each k

$$\sigma\{\xi_k x \colon x \in \mathscr{X}\} = \sigma\{\eta_k l \colon l \in \mathscr{K}\}.$$

Now for each $x \in \mathcal{X}$

$$\hat{\eta}_{\nu} A(x) = (\eta_{\nu} | \mathcal{B}_{0})(Ax) = (\eta_{\nu} Ax | B_{0}) = (\xi_{\nu} A^{-1} Ax | B_{0}) = (\xi_{\nu} x | M_{0})$$

$$= (\xi_{\nu} | \mathcal{M}_{0})(x) = \hat{\xi}_{\nu}(x).$$

(ii) Now for each $x, y \in \mathcal{X}$

$$(A*G_{\eta} A(x))(y) = ((\eta_{1} - \hat{\eta}_{1})(Ax), (\eta_{1} - \hat{\eta}_{1})(Ay))$$
 (by definition of G_{η})

$$= (\eta_{1}Ax - \hat{\eta}_{1}Ax, \eta_{1}Ay - \hat{\eta}_{1}Ay)$$

$$= (\xi_{1}A^{-1}(Ax) - \hat{\xi}_{1}(x), \xi_{1}A^{-1}(Ay) - \hat{\xi}_{1}(y))$$

$$= (\xi_{1}x - \hat{\xi}_{1}x, \xi_{1}y - \hat{\xi}_{1}y)$$

$$= (G_{\xi}(x))(y).$$

(iii) For each integer $\nu > 0$

$$\hat{\eta}_{\nu}(x) = \lim_{n \to \infty} \left(\sum_{k=0}^{n} E_{\nu k} \eta_{-k} \right) (x)$$
 ([4], Theorem 7.4.11, page 108).

Therefore

$$\hat{\xi}_{\nu}(x) = \hat{\eta}_{\nu} A(x) = \hat{\eta}_{\nu} (Ax)
= \lim_{n \to \infty} \left(\sum_{k=0}^{n} E_{\nu k} \eta_{-k} \right) (Ax)
= \lim_{n \to \infty} \left(\sum_{k=0}^{n} E_{\nu k} \hat{\xi}_{-k} A^{-1} \right) (Ax)
= \lim_{n \to \infty} \sum_{k=0}^{n} E_{\nu k} \hat{\xi}_{-k} A^{-1} (Ax)
= \lim_{n \to \infty} \sum_{k=0}^{n} E_{\nu k} \hat{\xi}_{-k} (x) .$$

4. Note. For results in this chapter the boundedness assumption 2 was made on the spectral density of the process and it was further assumed that the map $A: \mathcal{X} \to \mathcal{K}$ be one-to-one with the image of \mathcal{K} dense in \mathcal{K} . The restriction of $A\mathcal{K}$ being dense in \mathcal{K} is easily deleted by replacing \mathcal{K} by the Hilbert space \mathcal{K} generated by $A\mathcal{K}$ in defining the process $\{\eta_n: -\infty < n < \infty\}$. Generalization when A is not one-to-one calls for a closer look and may be handled as follows: let K(P) denote the kernel of any operator P. Then due to boundedness assumption 2

(4.1)
$$K(A) = K(\hat{f}_{\theta}) \quad \text{a.e.} \quad \theta$$

where \hat{f}_{θ} denotes the quadratic form of f_{θ} . Let the quotient space, denoted by $\widetilde{\mathscr{X}}$, be such that

$$\forall x \in \mathscr{X}, \quad ||\tilde{x}|| = \inf_{\delta \in K(A)} ||x - \delta|| = d(x, K(A))$$

where \tilde{x} is the equivalence class x + K(A) of elements of x. Now $(\tilde{x}, || ||)$ is a Banach space ([1], page 140). The linear map A_Q defined on it as follows

$$A_o(\tilde{x}) = Ax$$
 for $x \in \mathcal{X}$

is continuous in the norm of $\widetilde{\mathscr{X}}$. This is shown as follows:

$$||A_Q|| = \sup_{||\tilde{x}||=1} ||A(\tilde{x})|| = \sup_{x:d(x,K(A))=1} ||Ax||.$$

Also for each $x \in \mathcal{X}$ with d(x, K(A)) = 1, $x = x + \delta - \delta$ whatever $\delta \in K(A)$. So

$$||Ax|| \le \inf_{\delta \in K(A)} \{||A(x+\delta)|| + ||A\delta||\} \le \inf_{\delta \in K(A)} \{||x+\delta||\} \le 1$$

since $A\delta = 0$ for $\delta \in K(A)$ and ||A|| = 1. Hence A_Q is continuous. Furthermore

 A_o is such that

$$(A_o * A_o(\tilde{x}), \tilde{y}) = (Ax, Ay) = (A*Ax, y)$$
 for $x, y \in \mathscr{X}$.

Thus

$$m(\theta)A_Q^*A_Q \le f_\theta \le M(\theta)A_Q^*A_Q$$
 a.e. θ

and $A_q: \widetilde{\mathscr{X}} \to \mathscr{K}$ is one-to-one, and without loss of generality $A_q(\widetilde{\mathscr{X}})$ is dense in \mathscr{K} .

To make sense of the definition of $\xi_n A_Q^{-1}$ on the image of $\widetilde{\mathscr{X}}$ under A_Q , we must have ξ_n uniquely defined on $\widetilde{\mathscr{X}}$. It is here that we would need the assumption of linearity of ξ_n . Let, for x and y in \mathscr{X} , Ax = Ay. Then

$$\begin{split} \|\xi_{n}(x) - \xi_{n}(y)\|^{2} &= \|\xi_{n}(x - y)\|^{2} \\ &= (\xi_{n}(x - y), \, \xi_{n}(x - y)) \\ &= (\xi_{0}(x - y), \, \xi_{0}(x - y)) \\ &= \frac{1}{2\pi} \, \int_{0}^{2\pi} \hat{f}_{\theta}(x - y) \, d\theta \\ &= 0 \quad \text{(due to (4.1))} \, . \end{split}$$

So if $x = y \mod K(A)$ then $\xi_n(x) = \xi_n(y)$. Hence $\forall x \in \mathcal{X}$ we may define $\xi_n(\bar{x}) = \xi_n(x)$. And the preceding procedures now apply to $\xi_n A^{-1}$ to ultimately yield the prediction error matrix and the predictor for the process $\{\xi_n : -\infty < n < \infty\}$.

REFERENCES

- [1] KATO, T. (1960). Perturbation Theory for Linear Operators. Springer-Verlag, New York.
- [2] MASANI, P. (1966). Recent Trends in Multivariate Prediction Theory, Multivariate Analysis. Academic Press, New York, 351-382.
- [3] MASANI, P. and WIENER, N. (1959). Nonlinear prediction. In *Probability and Statistics, The Harold Cramér Volume* (Ulf Grenander, ed.) 190-212. Stockholm.
- [4] MIAMMEE, A. G. (1973). Banach space valued stationary stochastic processes and factorization of nonnegative operator valued functions on a Banach space. Ph. D. Thesis, Michigan State Univ.
- [5] MIAMMEE, A. G. (1974). An algorithm for determining the generating function and the linear predictor of an infinite dimensional stationary stochastic process. Sankhya A36 000-014.
- [6] MIAMMEE, A. G. (1976). On $\mathscr{R}(\mathscr{X}, \mathscr{K})$ -valued stationary stochastic processes. *Indiana Univ. Math. J.* 25 921-932.
- [7] WIENER, N. and MASANI, P. (1958). The prediction theory of multivariate stochastic processes, II. Acta Math. 99 93-137.

MANAGEMENT SCIENCES GROUP D-55 THE MITRE CORPORATION P.O. Box 208 BEDFORD, MASSACHUSETTS 01730