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AN ALGORITHM FOR LINEAR PREDICTION OF A BANACH
SPACE VALUED STATIONARY STOCHASTIC PROCESS

By SHAsHI PHOHA
The MITRE Corporation and Bucknell University

Wiener and Masani describe a procedure for relating nonlinear pre-
diction of a univariate random process to linear prediction of an infinite-
variate process which may not be a Hilbert-space-valued process but may
be Banach-space-valued instead. An algorithm for computation of the
linear predictor and the generating function of a Banach-space-valued
stationary stochastic process is obtained under an extension of the bounded-
ness condition of Wiener and Masani on the spectral density of the process.

1. Introduction and notation. If 2"and Z/are two Banach spaces, Z&(Z, )
denotes the Banach space of all bounded linear operators from # to %/, and
Z* denotes the Banach space of all conjugate linear functionals on 27 A
bisequence {§,: —oo < n < oo} of elements of ZZ(2°, %) where 27 is a
Banach space and .>7"is a Hilbert space, is called a <Z(Z°, 22 )-valued weakly
stationary stochastic process if the operator &,*&, in Z(2°, 227*) depends only
on n — m. And then the operator sequence R(n) = £,*¢, defined for —oco <
n < oo is called the covariance bisequence of the process. Assume that .27is
separable. With this stationary stochastic process are associated the following
subspaces ([6], page 922):

M

o 9

the closed subspace of .5~ spanned by
{(x): —o0 < k K 0, xe L},
M, , the closed subspace of %~ spanned by
{(x): —c0o <k En,xeZ},
and
M_, = ﬂ—w<,.<w M, .

The process {§,: —oo < n < oo} is said to be

(i) singularif M_, = M, for —oco < n < oo;
(ii) nondeterministic if M_, # M, for some finite n;
(iii) regular if M__ = {0}.

For & < B(Z, 2") let 6(&”) denote the smallest (strongly) closed subspace
of Z (27, 2) containing the set {SB: S€ .5, Be #(Z, 27 )} and o() denote
the smallest closed subspace of .7 containing the set {Sx: Se¢ .7, xe 2"}. We
shall use the same notation also for subsets . of (.2, ¢~ ). In this notation
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then
() = B(Z, 0(F)) ([6], page 922).

For the stationary stochastic <5(.2%, 27")-valued process {£,: —c0 < n < oo}
define
M=l k< n),
A e = Nu A
Ay = 66,1 —o0 < k < o0} .

In the above notation then, .7, = (2, M,), —o0 < n < co. Furthermore
let &, B, for —oco < n < oo denote corresponding subspaces for a <Z(.%", %")-
valued stationary process {7,: —o0 < n < oo}.

Now for each &, € Z(2, 727), there exists an operator (§, | _#;) in ZZ(2°, M,)
such that &, — (§,]|#;) is orthogonal to _#; ([4], Theorem 3.2.5, page 10).
(€.| ) is called the projection of &, on _#;, and is denoted by &,. Similarly
define 7, as (1,| %)), —oo < n < . The operator G = (§, — &)*(&, — &) is
called the predictor error operator of the process. The process is said to be of
full rank if G is boundedly invertible.

Time domain and spectral analysis for such processes, as given below, were
obtained by A. G. Miammee [6]. However an extension of the algorithm of
Weiner and Masani ([7], 6, pages 123-127) under the boundedness condition ([5],
page 1), was obtained only for Hilbert-space-valued random variables using
Fourier analysis of infinite matrix valued functions. In dearth of an obvious
identity operator in the family of Z%(25 -2 *)-valued functions, a suitable
boundedness condition on the spectral density of the process must be obtained
to work out the corresponding algorithm for prediction.

Time domain analysis. For a 2£(2°, 2¢")-valued regular stationary stochastic
process {§,: —oo < n < oo} there exist mutually orthogonal isometries S, and
A, e (2, 2¢7) such that

sn = ZI?:O Su—k Ak ’
convergence being in the strong operator topology ([6] Theorem 3.5, page 924).

Spectral analysis. For the ZZ(.7°, 2 )-valued weakly stationary stochastic
process {§,: —oo < n < oo}, the shift operator 7/ defined on M,, as follows

UWE,x = E,.%, XeH, —oco < n< oo

has a spectral resolution 7 = 1/2x {}* e~"?E(df), where E is a projection valued
measure over ([0, 27), &%), <& being the algebra of Borel sets ([2], pages 359-
360). Now define for ‘Be 2%, F(B) = §,*E(B),. This F is called the spectral
distribution function of {§,: —o0 < n < o}. Assume now that there exists a
nonnegative 2%(-7°, 2 *)-valued function f(#) defined on [0, 27) such that

(i) f(0) is strongly measurable;
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(ii) f(0) is Bochner integrable; and
(iii) for each Borel measurable B C [0, 2x), F(B) = {, f(0) df.

This f(#), also denoted by f,, will then be called the spectral density of the
process {§,: —oco < n < oo}. Let L(.%") denote the Hilbert space of all . -
valued scalarly measurable functions on the unit circle which have square
summable norm. The L,(_%") inner product of two functions g, and g, is

1 ) )
7 5 (9.(€”), gx(e'’)) db .

Then a Z(Z°, 5¢")-valued function A(e*’) defined on the unit circle is said to
be conjugate analytic if

Viez, Al x)e {g e L(5%): ~21_ | e-g(e)df = O for n > o} .
T

The spectral density f(6) is said to be factorable if there exists a conjugate
analytic &Z(2°, 9¢")-valued function A(e'’) defined on the unit circle such that
f(e?) = A*(e?)A(e'’), in the sense that (f(e’)x)(y) = (A(e"?)x, A(e'’)y) for all
x,ye .

Regarding factorization of the spectral density of a Z&(27, 2¢")-valued re-
gular stochastic process, the following has been established in [6], Theorem
4.5, page 930.

1.1 THEOREM. The spectral distribution F of a regular full rank <8(2°, ")~
valued stationary stochastic process is absolutely continuous and

L (FE () = [ D)

where

D(e”)(x) = Xg-oe ™ Ax), Aye F (2, )
and
) G = A*A4,.

®, as defined in this theorem, is called the generating function of the process
{§.: —o0 < n < oo}

2. The boundedness condition on the spectral density. Let the spectral
density f,, of the Z2(-2°, 2%")-valued stationary stochastic process {£,: —oo <
n < oo} satisfy

0 < m(0)A*A < f < M(0)A*A a.e. ¢¢e[0,27)
for some A: 27— 97" with ||A4|| = 1 and M(0), 1/m(0), M(6)/m(6), summable.

2.1 LeMMA. Under boundedness condition 2 on the spectral density and N, =
fola, — A* A with ay = (m(9) + M(0))/2, ||N,|| » = (M(6) — m(8))/(M(6) + m(6)) < 1.
Proor. For each x e #

m(0)(Ax, Ax) < (f(x), x) < M(0)(Ax, Ax)
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ie.,
(M . 1> (A*Ax, x) < M — (A*Ax, x) < (w—)— - 1) (A*Ax, x),
a, a, ]
i.e.,
m(O0) = M)\ g < (Ny(x), x) = MO = mO) 4o
m(6) + M(6) M(0) + m(0)

Using the parallelogram law, we have for each x, y e 27

(No()s )] = HNG(x + 2)s % + ) — (No(x = 2), x = )]
- |M(6) — M(6) (4*Ax, y) + (A*4y, )|
= I'M(6) + m(6) 2

Since ||4]| = 1, |INoll5 = (M(0) — m(6))/(M(0) + m(0)) < 1.

2.2 LEMMA. Let the spectral density f, satisfy the boundedness condition 2,
and the image A" be dense in Z¢". If A is one-to-one onto AZZ then
(i) A4* is one-to-one;
(ii) A*-' = (A~Y)*; and
(ii) |(A*7IN, A7X(K), )] = (M(6) — m(9))[(M(9) + m(@)|k[ |lll| a.e. 6 for
k,le AZ"
PRrRoOF. (i) Since A2 is dense in %", A* is defined on 9% to 27 * as follows:
V ke 7, A*(k) = x* where x*(y) = (k, Ay) YV ye 2. A* is easily seen to be
one-to-one.
(ii) In fact
(A ) ={x*eZ*:3ke % with x*(47Y) = (k, 1) Ve Ax}
={x*eZ*: ke Z with x*(y) = (k, Ay) Vyex}
, = range of A* = Z(A4*7Y).
Also for each x* in Z(A*~Y), A*Y(x*) = k = (A7)*(x*) = k.
(iii) Now from the proof of Lemma 2.1
M(6) — m(9) \(Ax, Ay) + (4y, Ax)
2

e 1 = gt )

Thus for k, le A=t~
|(A* 7N, AY(k), I)]
= |(N, A%k, A~1)]
< M(6) — m(0) .(AA—lk, AAN) + (AAk, AA7Y)
= M(0) + m(6) 2

| AN, A=), < M(0) — m(0)
M(6) + m(6)

\ a.e. 0.

' a.e. 0.

Hence the result.
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3. Relationship with the case of Hilbert-space-valued random variables.

MAIN THEOREM 1. If the spectral density f, satisfies the boundedness condition 2
and A: '¢"— 7 is one-to-one and A7"dense in 57 then there is a unique stationary
stochastic process {7, : —oo < n < oo} which is B( 9, ¢ )-valued and is such that

(1) R (n) = A*'R(n)A' on A7
(i) f(0) = 2/(M(0) + m(6))[1, + A*"'N, A7 = A*"'f,(6)A~* on A7 where
1, denotes the identity operator on 27" and f.(0) is f, in our previous notation.

Proor. By Lemma 2.2 A*-'f(0)A~* = 2/(M(6) + m(0))[1,, + A*"'N,A7'] is
a bounded operator defined on 4.7". Let g, denote its unique continuous ex-
tension to %", g, is then a nonnegative <& %", ¢ )-valued continuous function
defined on the unit circle. Further g, is strongly measurable since f(6)is assumed
to be so. Also by 2.2 (iii) ||g,|| € L,[0, 27). Hence g, is Bochner integrable.
Thus for any n, §, A~ defined on 47" is such that V k ¢ 4.7

1 2r * -1 -1
2 AT R = 5§87 (A7, A7(k), k) b

1
77 30" (9s(k), k) db
T
= 191 zyg0,00, [ 1KI* < 00

Hence £, A~' admits a unique continuous extension to .5, say ,. {7,: —o0 <
n < oo} is then a ZZ( %", 7 )-valued stationary stochastic process. In fact
{#.: —oo < n < oo} is stationary as shown by the following reasoning.

For k, l e 22" we must show that (9,k, ,!) depends only on n — m. Since
AZZ is dense in 57 there exist sequences {x,}, {y,} in 22" such that

A(x,) —k in 2  and A(y,)—1 in 2.

Then, since 7, and »,, are bounded

(vnk’ Nm l) = limp—'w (vﬂ(Axp)’ 777»(A.yp))
=lim, . (§.x,,60),)

— lim, . _21_ ji= gn-mo( £, x |y )df
T

which depends on m and n only through n — m.
Furthermore

. 1 . .
(ks npl) = lim 5 \or emtnmmi( f, A (Ax,), A7Y(Ay,)) do

(uks pl) = lim, . % {37 e-Hn=m( A%-1f, A=Y Ax,), Ay,)d8

"15 §o emtrmmilim,,_, (A%, A7N(Ax,), Ay,)}do

= o S e (g (k). (1) O
T
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the last two steps being true since g, is a bounded operator. Thus on A(Z")
R’?ln, = (77"" 7)0) = (EnA-la éoA—l) = /ﬁ(_lla,.:nfi'1
[(0) = A*7f (0)A7

and due to continuity of all functions involved, RM and f%(()) are the unique
continuous extensions of 4*~'R. A~*and A*~'f, (6)A~* respectively to 77"

3.1 Factorization of the spectral density.

CoROLLARY. If ®,: %" — 7 is the generating function for the (7 2¢")-
valued stationary stochastic process {y,: —co < n < oo} and if f, satisfies the
boundedness condition 2, and A 77— ¢ is one-to-one and A dense in ¢ then
®,A: 27— 5 is such that f, = (@, A)*(D, A4).

Proor. By Main Theorem I, g, is the unique continuous extension of
A*=1f, A7, So that

fo= A*g,A4
= A QDA = (D, AXD, A).

3.2 The prediction error matrix and the predictor for a Banach-space-valued
process. For the ZZ(. 92, 2")-valued stationary stochastic process {5,: —oo <
n < oo} a schematic algorithm to obtain the prediction error matrix G, and
the linear predictor 7, of , for v > 0 based on the past {5,: n < 0}, is given
in [5]. We shall now find the same for the (=2, “¢")-valued process
{0 —c0 < n < o}

MAIN THEOREM II. The two stationary stochastic processes {§,: —oo < n < oo}
and {y,: —oco < n < oo} are further related as follows:

(i) For each integer v > 0,

2

éu:f]vA‘

(i) G, = A*G, A. Note that G, = A*A, where Q(e”)(x) = Yi7_, e * Ay(x)
is the generating function of the process {1, . —oco < n < oo}.

(iii) &, = lim,_, X}, E,,£_, where E, is the kth Fourier coefficient of
[e—ivﬁ(l)(eiﬂ)0+®—l].

Proor. (i) Note that &, = 7,4 for each k. Also A2 is dense in 27 and 7,
is bounded. Therefore for each &

o x:xeZL)y=o{pl:le %} .
Now for each x e %

DA(X) = (.| 2N AX) = (1. A4x| B) = (£, 47 4x| B) = (§,x| M)
= (G A)x) = &)
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(ii) Now for each x, ye 27

(A*G, A(X))(y) = (1 — 7:)(Ax), (1 — 7)(4y))  (by definition of G,)
= (nAx — 7, 4Ax, 9, Ay — 7, Ay)
= (§,A47(Ax) = §y(x), £, 47(Ay) — &)
=(Ex—&x, 6y —&y)
= (G())¥) -
(iii) For each integer v > 0
(%) = limy,_, (3 %= E,rp—_i)(X) ([4], Theorem 7.4.11, page 108).

Therefore
§Ux) = 7, A(x) = 9(4x)
= lim, o, (Z5-0 £.7-1)(AX)
= lim, ., (XN i-0 E,k§_A71)(AX)
= lim, ., 2750 E, §_, A7(Ax)
= 1lim,_, 150 E,.6_i(x).

4. Note. For results in this chapter the boundedness assumption 2 was made
on the spectral density of the process and it was further assumed that the map
A: 27— 2 be one-to-one with the image of -#” dense in %" The restriction
of A-Z"being dense in 77 is easily deleted by replacing .2 by the Hilbert space
¥ generated by A2 in defining the process {,: —oco < n < oo}. Generali-
zation when A is not one-to-one calls for a closer look and may be handled as

follows: let K(P) denote the kernel of any operator P. Then due to boundedness
assumption 2

(4.1) K(A) = K(f,) a.e. 6

where f, denotes the quadratic form of f,. Let the quotient space, denoted by
£, be such that

Vxe, [|%||=inf,cxnm [lx — d] = d(x, K(4))

where X is the equivalence class x + K(A) of elements of x. Now (%, || ||) is a
Banach space ([1], page 140). The linear map A4, defined on it as follows

Ay(X) = Ax for xecZ
is continuous in the norm of .. This is shown as follows:

1 4ell = supzjas | A(X)|| = SUP,ga, kan=a [|4X]] -
Also for each x € &2 with d(x, K(A)) = 1, x = x 4+ & — & whatever d ¢ K(A). So

[4x|| = infyegen {I1A(x + 0)]| + [140]]} < infiexo {lIx + 0]} £ 1

since A6 = O for d € K(4)and ||4|| = 1. Hence 4, is continuous. Furthermore
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A, is such that ’

(Ag*Ay(%), 7) = (Ax, Ay) = (A*Ax, y) for x,yest.
Thus
m(0)Ay*A, < fy < M(0)A4,*4, ae. 0

and 4,: £ — 97" is one-to-one, and without loss of generality AQ(,%}) is dense
in 22

To make sense of the definition of £,A4,7! on the image of .#7 under Ay, we
must have &, uniquely defined on . It is here that we would need the as-
sumption of linearity of £,. Let, for x and y in 2%, Ax = Ay. Then

1€a(x) — EaIIP = l1€a(x — yII*
= (§a(x = ¥), &a(x — 1))

= (§(x = ), Eo(x — )
1

= 5= W fx — ) do

=0 (dueto (4.1)).

So if x = ymod K(A) then &,(x) = §,(y). Hence Vxe 2 we may define
£.(%) = &.(x). And the preceding procedures now apply to §,47' to ulti-
mately yield the prediction error matrix and the predictor for the process
{€n: —o0 < n < oo}
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