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LAWS OF LARGE NUMBERS FOR TIGHT RANDOM
ELEMENTS IN NORMED LINEAR SPACES

By R. L. TAYLOR AND DUAN WEI
University of South Carolina

A strong law of large numbers is proved for tight, independent random
elements (in a separable normed linear space) which have uniformly
bounded pth moments (p > 1). In addition, a weak law of large numbers
is obtained for tight random elements with uniformly bounded pth moments
(p > 1) where covergence in probability for the separable normed linear
space holds if and only if convergence in probability for the weak linear

topology holds.

1. Introduction. The consideration of stochastic processes as function-valued
random variables motivated the study of random elements (random variables
with values in normed linear space) by Doob (1947), Mourier (1953), Prohorov
(1956), Beck (1963), Billingsley (1968) and others. The laws of large numbers
for random elements have been obtained, and a summary of many of those
results was presented by Padgett and Taylor (1973). These cancellation results
arise from two sources (Beck (1976)). The first can be founded in the probabi-
listic structure of the sequence of random elements (independence, identical
distributions, and boundedness of the moments). The second is the geometric
properties of the spaces, usually called the cancellation conditions (such as B-
convexity (Beck (1963)), super-reflexity, G,-conditions (Woyczynski (1973)),
and type p (Hoffmann-Jgrgensen and Pisier (1976))). Only a few theorems do
not require any cancellation condition on the space. For example, the pioneer-
ing theorem by Mourier (1953) states that the strong law of large numbers holds
for independent, identically distributed random elements whose first moments
exist.

In Section 2 some preliminaries are briefly listed. In Section 3 the strong
law of large numbers is obtained for independent random elements (in a separ-
able normed linear space) which are tight and have p-moments (p > 1) which
are uniformly bounded. Since identically distributed random elements are tight
but not conversely, this result relaxes the condition of identical distributions
without requiring any cancellation condition on the space.

In Section 4 the weak law of large numbers is obtained for tight random ele-
ments in a separable normed linear space. These results generalize the results
of Taylor (1972), Taylor and Padgett (1976). In particular, for tight random
elements in separable normed linear spaces, the weak law of large numbers

Received December 10, 1976; revised August 1, 1977.

AMS 1970 subject classifications. Primary 60B05, 60F15; Secondary 60G99.

Key words and phrases. Law of large numbers, random elements, tightness, convergence in
probability, convergence with probability one, compactness.

150

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[&
The Annals of Probability. RIKORN

oY

Yo 2

WWW_jstor.org



LLN’S FOR TIGHT RANDOM ELEMENTS 151

is shown to hold if and only if the weak law of large numbers holds for { f(V,,)}
for each continuous linear functional f. (Again, p-moment conditions are
assumed.)

2. Preliminaries. Let X denote a real separable normed linear space with
norm and let B(X) denote the Borel sigma-field generated by open subsets
of X. Let (Q, 4, P)be a probability space and let ¥ be a function from Q into
X. If V-Y(B)e A4 for every Borel set B e B(X), then V is said to be a random
element in X (or an X-valued random variable). The expected value of V is
defined to be the Pettis integral of V, denoted by EV. For p > 0, E|[V|F =
(o ||V|]? dP is called the pth moment of V. A random element is said to be sym-
metric if there exists a measure preserving function ¢ on Q such that P[V o ¢ =
—V] = 1. Note that if V is symmetric, then EV = 0. The definitions of inde-
pendence and identical distributions for random elements are similar to the
(real-valued) random variable case.

A sequence {V,} of random elements is tight (Billingsley (1968)) if for each
¢ > 0, there exists a compact subset K, of X such that

(2.1) PlV,eK]>1—c¢ forall n.

Since the continuous image of compact set is compact, f(V,) is tight if {V,} is
tight and f is continuous (hence Borel-measurable) function from X into a
normed linear space. '

3. Strong laws of large numbers. The strong law of large numbers for tight,
independent random elements in a separable normed linear space will be proved
in two parts. First, the result will be obtained for random elements which
take their values in a compact subset. In Theorem 2 the strong law of large
numbers is then obtained by truncating the random elements to a compact sub-
set and by applying Theorem 1.

Without loss of generality it can be assumed that EV, = 0 since {V,} being
tight with uniformly bounded pth (p > 1) moments implies that {V,, — EV,} is
tight. Finally, the strong law of large numbers (SLLN) is said to hold if

Hn—i S (Ve — EV)||—0 with probability one.

THEOREM 1. Let K be a compact subset of a normed linear space X. Let {V,}
be independent random elements taking values in K with EV, = 0 for all n. Then
the SLLN holds for {V,}.

ProoF. It can be assumed that X is a Banach space and that K is also convex
(Rudin (1973), page 72). In the dual space X* there is a countable set S which
separates points of K. Let rg be the weakest topology on K making the elements
of S continuous. Then for {x,} < K x, — 0 in 74 if and only if |jx,|| - 0. For
each fe S,

(3.1) n7t 3k f(Vi) = 0
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with probability one since {f{V,)} is a sequence of independent, uniformly
bounded random variables. Since S is countable,

(3.2) In=* X Vil > 0

with probability one. []

THEOREM 2. Let X be a separable normed linear space and let {V,} be tight,
independent random elements in X such that E|V |P < M for all n where p > 1.
Then, the SLLN holds for {V,}.

ProoF. First, assume (w.l.0.g.) that EV, = 0 for all n. Given e > 0, let
(3.3) 0 = (M-(e/4yryvr-v

Let K be a compact (also assume that it is again convex and symmetric) such
that

(3.4) P[V,eK]>1—3.

Define

(3.5) Y, =Vuly exy and Z,=V,—-Y,.
Then {Y, — EY,} takes their values in 2K, and hence

(3.6) It Sioa (Y, — EY,)| 0

with probability one by Theorem 1. By Holder’s inequality, for each n
E|\Z.|| = E|Vllliyex
(37) < BV Jpye(oe=r)

< (Morh)vr < efd .
Also, for each n

(3.8) E|\Z,)| — E|ZF < 2°M .
By Chung’s (1947) SLLN for random variables,
(3.9) nt L= (14 — El|Z)]) — 0

with probability one. Since a sequence of ¢, — 0, d, — 0, and corresponding
compact sets K, could be chosen, a countable number of null sets can be ex-
cluded in (3.6) and (3.9). Thus, for almost all w € Q, there is an n(w) such that
for n = ny(w),

(3.10) nY Dre (Y, — EY))|| < ¢/4
and
(3.11) n 2= (] — EllZiD] < ¢/4 .

Since from (3.7)

n Lk EZY| = n7t i, El|Zi] = /4
then (3.11) implies that
(3.12) lIn=* Zkar Zill = n7* 2 12| < ¢/2



LLN’S FOR TIGHT RANDOM ELEMENTS 153

Next, EY, = —EZ, and (3.10) provides that

(3.13) (R AP Y
Finally, from (3.5), (3.12) and (3.13),
[In=" 2k Vill <. 0

4. Weak laws of large numbers. Weak laws of large numbers (WLLN’s) are
proved in this section. Theorem 3 is a WLLN for random elements which take
their values in a compact subset. Theorem 4 is a WLLN for tight random ele-
ments which have pth (p > 1) bounded moments.

THEOREM 3. Let K be a compact subset of a normed linear space X. Let {V,}
be random elements taking their values in K with EV,, = O for all n. Then for each
feXx*

=t Ye f(V)] — 0 in probability

if and only if '
In=t 2 V|| — 0 in probability.

The proof of Theorem 3 is similar to the proof of Theorem 1. To obtain
convergence in probability in (3.2) from (3.1) in the proof of Theorem 1, recall
that a sequence converges in probability if and only if every subsequence has
a further subsequence which converges with probability one.

THEOREM 4. Let X be a separable normed linear space and let {V,} be tight
random elements in X such that E|V,|P < M for all n (p > 1). For each f ¢ X*,

=t e (V)| — 0 in probability

if and only if
[[n= e, V| — 0 in probability.

ProorF. Given e > 0, let
(4.1) 0 = (Mfop)r

Let K be a convex, symmetric, compact set such that P[V,eK] > 1 — o for
all n. Again (w.l.o.g.), assume that EV, = 0 for each n. Define

(4.2) Y,=Vdy ey and Z,=V,—7Y,.
Thus, for each n
4.3) Pl S Vil > €] :
< Plln=* X3 Yill > ¢/2] + Plln™" Xt Zidl > ¢/2] -
Similar to (3.7) E||Z,|| < ¢*/6 for each n. Hence,
(4.4) Pln=* Ziaa Z))| > ¢f2] < (2[e)n™! ZEL EllZ| = /3
From Theorem 3 and (4.4) there exists N(¢) such that
(4.5)  Pln7 i Yill > €21 = Pllnt Xiaa (Vi — EY))| > /6] < ¢/2
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since {Y,, — EY,} take their values in 2K and EY, = —EZ,. Thus, the proof is
complete by (4.3), (4.4) and (4.5). [

Let {b;} c X denote a Schauder basis and let {f;} denote the coordinate func-
tionals. Fort =1, 2, ..., define

U(x) = Xi-1 fi(x)b,

to be the finite-dimensional, partial sum operators. Then Lemma 5 characterizes
compact subsets, and the converse is sufficient for relative compactness when
SUP, . |I¥] < oo.

LEMMA 5. Let K be a compact set in a Banach space which has a Schauder basis,
then for y > 0, there exists a positive integer N such that ||x — U,(x)|| < » for all
xeKandn = N.

Proof. Let g,(x) = sup,.,|x — Uy(x)|. Then

194(*) = 9u(Y)] = SUPsza X — Un(X)I| — [ly — Ul
= SUPa [I(x — ) — Un(x =yl = (m + D)llx — )|

where m is the basis constant. Hence g, is uniformly continuous for each n.
Moreover, {g,} decreases monotonically (pointwise) to zero, and hence converges
uniformly to zero by Dine’s theorem (Royden (1972), page 162). [

Since the coordinate functionals separate points, the following WLLN can be
obtained from Theorems 3 and 4.

COROLLARY. Let X be a Banach space which has a Schauder basis and let {V } be
tight random elements in X such that EV, = 0 and E||V P £ M for alln (p > 1).
For each coordinate fuctional f;,

[n=t Zr_, f(V)| — 0 in probability
if and only if
Int 32, Vij| =0 in probability.

It is interesting to compare the weak law of large numbers of Theorem 2
with the results in Taylor (1972). The condition of identical distributions is
eliminated by assuming tightness while a pth (p > 1) moment condition is
needed instead of the first moment. Also, Theorem 2, its corollary, and other
obvious corollaries, provide weak laws of large numbers for tight weakly un-
correlated (or coordinate uncorrelated) random elements. Finally, using the
characterizations of Billingsley (1968) for tightness on the space C[0, 1], these
results can be applied to stochastic processes which have continuous sample
paths.

Acknowledgment. The authors are grateful to Anatole Beck for suggesting
the following example which shows that uniformly bounded first moments are
not sufficient for the strong law of large numbers to hold for tight, independent
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random variables. Let {V,} be independent random variables such that

V,=n with probability 4nlog(n + 2)
= —n with probability }nlog(n + 2)
=0 otherwise.

Note that EV, = 0, E|V,| = 1/log (n + 2) (which actually converges to 0), and
P[|V,] =z n] = 1/nlog (n 4 2). Thus, the random variables {V,} are tight, and
the Borel lemmas imply that |V,| > n infinitely often with probability one.
Hence, the strong law of large numbers does not hold.

The authors are also indebted to the referee for suggesting a much shorter
proof for Theorem 2. The original proof consisted of the four parts (1) uni-
formly boundedness and use of a Schauder basis, (2) deletion of the uniformly
boundedness condition, (3) deletion of the symmetry condition, and (4) proof
for arbitrary normed linear spaces.
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