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SIGN CHANGES OF THE DIFFERENCE OF CONVEX FUNCTIONS
AND THEIR APPLICATION TO LARGE DEVIATION RATES'

By JAMES LYNCH
The Pennsylvania State University

The relationship of the large deviation rate, {*(a), of the mean of indepen-
dent and identically distributed random variables to their cumulant generating
function, Y(A), is well known. This paper studies how the behavior of the sign
changes of y,*(a) — y,*(a) is related to that of y;(A) — y,(A) for cumulant
generating functions ¥, and y, with rates {,* and y,*, respectively. Use is made
of the fact that the rate y* is nothing more than the conjugate convex function
of Y. Results concerning the relationship of the behavior of the difference of
convex functions to that of the difference of their conjugates are first proven
and then applied to determine the relationship of the behavior of the sign
changes of {;* — {,* to that of {; — ,. Results are also given relating this
behavior to that of F, — F, and f; — f,, where F; and fi(i = 1 and 2) are the
distribution function and the density function, respectively, corresponding to ;.

1. Introduction. Let X, X,, - - - be independent identically distributed (i.i.d.)
random variables with distribution F. Let ¢(A) = fexp(Ax)dF(x) and ¢(A) =
loge(A), i.e., ¢ and ¢ are, respectively, the moment generating function (m.g.f.) and
the cumulant generating function (c.g.f) of F. Let X, = (X, + X, + - - - +X,)/n.
Then it follows from Chernoff’s theorem (see Chernoff (1952) and Bahadur (1971))
that

(1.1) n~"ogPx(X, > a) —» —y*(a),
where
(1.2) Y*(a) = sup{Aa — Y(A): A > 0}.

From (1.2), it is clear that the large deviation rate, J*, is directly related to the
c.g.f. ¢. For two different distributions F, and F, with c.g.f’s ¢, and ,, respec-
tively, and rates y,* and i,*, respectively, what is not clear, though, is how the
behavior of y,* — y,* is related to that of y;-y,. In this paper, we consider this
problem. More specifically, we study how the behavior of the sign changes of
Y, * — y,* is related to that of {; — ¢,. To do this, we shall use the fact that * is
nothing more than the conjugate convex function of ¢. In Section 3, certain basic
properties of conjugate convex functions are discussed and results concerning the
sign changes of their differences are proven. In Section 4, these results are used to
determine the relationship of the behavior of the sign changes of ¥, * — ,* to that
of ¢, — 5. Results are also given relating this behavior to that of F, — F, and
fi — f», where f; is the density of F,(i =1 and 2). The proofs of the results in
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DIFFERENCE OF CONVEX FUNCTIONS 97

Section 4 rely quite heavily on the theory of total positivity. This, along with other
basic concepts, is the topic of Section 2.

2. Sign changes and total positivity. Let f(¢) be a function defined on an interval
L

DEeFINITION 2.1. The number of sign changes of f(¢) on I is
SI(f) = supS[f(tl), ctt ’f(tm)]’

where the supremum is extended over all sets ¢, <1, < - - - <¢t, ( €EI), mis
arbitrary but finite, and S(x,,- - -, x,,) is the number of sign changes of the
sequence X, Xy, * * * , X,,, zero terms being discarded. When S,(f) < oo, FS;(f)
will denote the final sign of f on I as the argument of f traverses I from left to right,
zero terms being discarded. When the interval I is clearly understood, the sub-
scripts will be suppressed.

DEerINITION 2.2. A function f is said to have a + to — (— fo +) sign change at
x if there exists an € > 0 such that for each § € (0, ¢),

f(x)>(<)0 for x —8<x'<x
f(x)<(>)0 for x<x'<x-—28

and there are x, and x, with x — § < x; <x <x, < x + 8 such that f(x,) <0<

J(x1) (f(x;) <0 <f(xy)
A powerful tool for the study of sign changes is the theory of total positivity.

_ Below, we review some basic definitions and results from this theory which will be
used in Section 4.

DEFINITION 2.3. Let X and Y be subsets of the real line. A function K(x, y) on
X X Y is said to be (strictly) totally positive of order n (TP,) (STP,)) if

K(xp,y) -+ K(x,,)

@.1) > (>)0

K(xr,yl) tre K(x,,y,)
for all x, <x,<:--<x, in X,y <y, <---<y,inY, r=12,---,n,
where the term on the left of (2.1) denotes the determinant of the corresponding
matrix.

A function which is (strictly) totally positive of all finite orders is said to be
(strictly) totally positive (TP) ((STP)).

ExaMmpLE 2.1. The function K,(x,y) = e” is STP in x,y € (— o, ) (see
Karlin (1968), page 15). Thus, Ky(r, £) = ¢"is STP in ¢ € (0, ) and r € (— o0, ©0).

An important property of TP functions is their variation diminishing property
which is stated in the next theorem. For a more general statement, a proof, and
further discussion, see Karlin (1968), pages 21 and 233.
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VARIATION DIMINISHING (VD) THEOREM. Let K(x, y) be a TP, Borel measurable
Junction on X X Y such that [ K(x,y)dy is finite for each x € X. Let f be a
bounded Borel measurable function on Y and let g(x) = [ K(x,y)f(y)dy. Then
S(g) < S(f) provided S(f) < r — 1. Moreover, if

S(g)=S(f)<r-1,
then f and g exhibit the same sequence of signs when their respective arguments
traverse the domain of definition from left to right.

3. Differences of convex functions and of their conjugates. Let y(x) be an
extended real value function defined on an interval 7,. Let I = {x € I: Y(x) <
oo0}. The function ¢ is said to be (strictly) convex on I, if I is an interval, ¢ is
(strictly) convex on I, and y(x) = oo for x € I, — I.

We now define the conjugate convex function of a convex .

DEerFINITION. The function
Y*(y) = sup{xy — ¥(x): x € I}

is called the conjugate convex function or, simI;ly, the conjugate of .
It is clear from the definition of y* that

¥*(y) = sup{xy — ¥(x): x € I'}.
In the remainder of this section, the extended real valued convex functions
(denoted by ¥’s) will have domain I, = [0, o0) and satisfy:

@) ¥(0) = 0;
and for b = sup{x: x € I},

(11) limbetI/(X) = ‘P(b)9

and

(iii) the derivative ¢’ of ¢ exists and is continuous on [0, b) with ¢/(0) = 0 and
lim,,,¢'(x) = ¢/(b), where we define y'(b) = o0 if b Z I.

Here, and throughout the remainder of this paper, the derivative ¢’ of a convex
function ¢ at the endpoints 0 and b (b € I) will be defined by the appropriate
one-sided derivative. Also, if b < oo, let Y/(x) = oo for x >b. Note that the
derivative need not be finite at b even if b € I.

ReMARk. From (i) and (iii) ¢ is nonnegative, increasing, and continuous on
[0, b). Also, since ¥ is right continuous at 0 and satisfies (ii), ¥ is said to be closed in
the literature of convex functions. Closed convex functions and their conjugates
have important properties which shall be exploited in the proofs of Theorems 3.1
and 3.2. See Roberts and Varberg (1973), Section 15; in particular, Theorems C
and D. (Hereafter, we shall refer to these two theorems without reference to their
source.)

Now let ¥, and y, be two extended real valued nonnegative strictly convex
functions on [0, o). For i = 1 and 2, let

I = {x €[0, o0): Y(x) < oo} and b, = sup{x € L,}.
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Since y;(x) and y,(x) may both be oo at a point x, we adopt the convention that
o0 — oo = 0 for the purpose of sign changes.

The following two theorems indicate the relationship of S;(y; — y,) and S;(¢,*
— Y,*) for certain types of intervals J and I'.

THEOREM 3.1. Let ), and , be two extended real valued strictly convex functions
on [0, co) which satisfy (i), (ii) and (iii). If there exists a positive x* € I} N I, such
that ' (x*) = y* = {,(x*) < o0 and

(iv) ¥, — 4, is not identically zero on any open subinterval of [0, x*],
then

(3.1) Sto, x1(¥1 — ¥2) = Spo,,(¥1* — %)
Furthermore, when Sjo ,+/(¥; — ¥,) < oo, the values of y,* — ¢,* and ¢, — ¢,

exhibit the same sequence of signs (excluding zeroes) when their respective argu-
ments traverse the domain of definition from left to right.

ProoF. If S(y; — ¢,) =0, then either §,(x) > yY,(x) for all x € [0, x*] or
¥y(x) < Yy(x) for all x € [0, x*]. Without loss of generality, assume that y,(x) <
Yy(x) for all x € [0, x*]. Then, for all x € [0, x*] and y > O,

X — (%) > 1y = Yu(x).
Thus ¥, *(») > ¢,*(y) for y €[0, y*] since the function f(x) = xp — Y(x) (i =
1,2) on [0, ) achieves its maximum on [0, x*] for each y €[0,y*]. Hence
SW,* — ¢,*) = 0 and ¥,;* — yY,* has the same sign as ¢, — ¢;.

Now we shall consider the case when S(y; — ) > n, where n is a positive
integer.

Since ¥, — y, is not identically zero on any subinterval of [0, x*], we can choose
n points {x)".; with 0= xy<x, < --+ <x, <X,y =x* at which a sign
change occurs and we can choose these points so that the sign change at x; is
opposite that at x;,, for i=1, 2,---,n— 1. Without loss of generality we
assume that the sign change at x; is from + to —.

Since ¥,(0) — ¥5(0) = 0 = ¥(x)) — ¥5(x,) and ¢, — ¢, has a + to — sign
change at x,, it follows from the continuity of §; — ¢, that y; — ¢, has a positive
maximum on [0, x,] at a w € (0, x,). So ¥;(w) > ¥,(w) and ¢,"(w) = ¢,(w) since
the maximum occurs on the interior of [0, x,]. Let ¢; = ¢,'(w). Then by Theorem
D’

(32) Yi*(er) — d*(e) = cw — ¢y(w) — (ew = $2(w))
Y(w) — ¢i(w) <0.

Furthermore, since ; — y, has a + to — sign change at x, and §,(x;) — (X))
= 0, it follows that i, — ¢, has a negative minimum on [x,, x,] ata z € (x;, x,]. If
z € (x}, Xp), then Y,(2) < ¢,(z) and ,'(z) = ¢,'(2) since the minimum occurs on
the interior of [x,, x,]. If z = x,, then x, is not a point of sign change since
¥1(2) — ¥o(2) < 0. Thus x, = x* and so ¥,'(z) = ¢,'(z) by hypothesis. Let ¢, =
¥,'(2). Then for either of the above cases, i.., z € (X}, X;) OF Z = X,, an identity
similar to (3.2) will show that y,*(c,) — ¥,*(c;) > 0.
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If n > 2, we may repeat the above argument to show that thereisa z € (x;_,, x;]
(i=3,---,n+ 1)such that §,'(z) = ¢; = ¥,'(2) and ¢,(2) > (<)Y,(2) if i is odd
(even). So,

¥i*(¢) — d*(¢) < (>)0  if i isodd (even).

From the monotonocity of ¢,",0 < ¢, < - - - <¢,,,. Thus, it follows that S(y,* —
Y,*) > n, and so,
(3~3) S(Hbl - 11/2) < S(‘Pl* - ‘Pz*)'

Now, since ¢, and v, satisfy (ii), it follows from Theorem D that y;* is a convex
function which is strictly convex on [0, y*] with ,*(y*) = x*, satisfies (i), (ii) and
(iii), and ,** = ¢; for i = 1 and 2. Furthermore, it also follows that * — ,*
satisfies (iv) on [0, y*]. Hence, from the above proof

(34) S* — ¥,*) < S — ¥,).

So, from (3.3) and (3.4), (3.1) holds.

It is clear from the above proof that when Sy (¥ — ¥o) < 00, Y* — Yp*
exhibits the same sequence of signs as y, — ;. This completes the proof of
Theorem 3.1.

For Theorem 3.2 we shall need the following notation. Let b = min{b,, b,} and
let W = sup{x < b: §,/(x) = §,(x) < o0}. Note that by (iii) W is well defined
(though it may equal oo) since ¥,'(0) = 0 = ¢,’(0) and that ¢,'(W) = ,'(W). Let
Y* = W/(W) = 4, (W) and let S = Spg, )% — o).

THEOREM 3.2. Let y, and y, be two extended real valued strictly convex functions
‘ on [0, o) which satisfy (i), (ii), (iii) and

(V") Y, — , is not identically zero on any open subinterval of [0, b). Then, if
2 < S < oo and W is less than or equal to the value at which the (S — 1)st sign
change occurs, then Sj \(W,* — ¥,*) is either equal to S — 2 or S; and, Y,* — Y,*
and , — , exhibit the same first S — 1 signs (excluding zeroes) when their respec-
tive arguments traverse [0, oo) from left to right. In all other cases, Sy o) (¥1* — ¥,*)
=S, and if S < o0, Y,* — Y,* and Y, — Y, exhibit the same sequence of signs
(excluding zeroes) when their respective arguments traverse [0, o) from left to right.

Proor. If b = 0, the conclusion is immediate. So assume that b > 0.
We consider various cases.

Case 1. S = 0. Proof is the same as the one given for this case in the proof of
Theorem 3.1. :

CASE 2. S = o0. Since S = o0, for each positive integer n, there is an x, >0
such that Sy, , (%1 — ¥») > n and y,(x,) < oo for i = 1 and 2. Hence, there exists
an x’ € (0, x,] such that ¥,'(x") = y" = ¢,'(x") < o0 and Sy () — ¢) > n — 1.
Thus it follows from Theorem 3.1 that Sy ,(¥1* — ¥,*) > n — 1. So S(Y* — ¢,*)
> n — 1, and, since n is arbitrary, S(¥;* — Y,*) = .
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Case 3. S = n, where n is a positive integer. Let x; (j = 1,2, - -, n) be the
point at which the jth sign change occurs and let x, = 0. Without loss of generality,
we assume that the sign change at x, is + to —, from which it follows that
b, = b < b;. We consider various subcases. (In the remainder of this proof, all
intervals (c, d), (c, d], etc., will denote the one point set {c¢} when ¢ = d. Also, ¢
may equal o0.)

CasE 3a. ¢, (W) = oo. (Note that W may equal c0.) Then W =b, =b,=b
> 0 and there exist positive real numbers W,,1 W as m — oo such that ,"(W,)) =
Ym* = ¥/ (W,) < . From Theorem 3.1, S,, = Sjo u,1(¥1 — ¥2) = S, «(%1* —
¥*) = §,,* Also, as m — 0, S,, = Sjo w1 — %)) and §,.* > Sjg \(¥1* — ¥,%)
since y,,*1 0. So,

(3:5) Sto, ) (¥1* — ¥2*) = S, m(¥1 — ¥)-
Now, y,(x) = 00 = ,(x) for x > W since ¢,'(x) = o0 = ,'(x) for x > W; so,
(3:6) Sow, oo)(‘l’l —¢) =0.

Furthermore, since ¥,(x) = o0 = y,(x) for x > W, it follows from Definition 2.2
that ¢, — ¢, cannot have a sign change at W. Combining this with (3.5) and (3.6)
we get that S({,* — ¥,*) = S.

Case 3b. ¢, (W) < . It is clear that W € (x,_,, b] if S =n > 2, while
W €0, b] if n=1. The proof concerning the behavior of S(y,* — ,*) will
depend on the position of W in these intervals. We consider the various cases
below.

Case A. W = b. Then either x, = W < o or x, < W < oo0. If x, = W, then
x, = b. So it follows that W = b = b, < b, since a + to — sign change occurs at
x,. Thus ¢,’(x) = oo if x > W and there exists an x’ > W such that ¢,'(x) < oo for
x < x'. Thus, since ¢, (W) = y* = ¢,'(W), it follows from Theorem D that

(3.7) W) =W <¥(y) for y >y*.
Also, from Theorem 3.1, Sy yi(¥; — ¥2) = S — 1 = Sy ,(* — ¥,*) with
FS, ,+(¥* — ¥,*) = — . Combining this with (3.7), we see that ,* — ¢,* has

exactly one more sign change. So, Sjg, \(¥1* — ¥,*) = S.
If x, < W < oo, then Sy, y(¥; — ¥») = S and so,

(3.8) Soy(¥1* —¥,*) =S - and FSpo,ym(d1* — %*) = +,

by Theorem 3.1. Since y,(x) = o for x > W, §,/(x) =-00 for x > W. Thus, by
Theorem D,

(3.9) W) =W <y¥(y) for y >y%

since ¢, (W) = y* = ¢, (W). Thus, from (3.8) and (3.9), y,* — ¢,* can have no
further sign changes on [y*, ), and so, S({,* — {,*) = S.

Finally, if W = oo, then there exist positive real numbers W,,1c0 as m — oo such
that ¥,'(W,,) = y,.* = ¥,'(W,,) < . By Theorem 3.1,

(3'10) S[o,y')(‘l’l* - 4’2*) = limmS[O,y,,,'](‘l’l* - ‘Pz*) = S.
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Furthermore, since y;(i = 1, 2) is strictly convex on [0, W), it follows from Theo-
rem D that, for y <y*,

YO =4 > W=0 as y-y*
So,
(3.11) Y*(y) =0  for y >y*.
Also, ¥,*(») — ¢;*(»*) as yTy* by Theorem D. This with (3.11) shows that
Y,* — Y,* cannot have another sign change. So, S(,* — ¢,*) = § from (3.10).

Case B. W € (x,, b). Because of Case A we may assume that x, <b. Since
W S (xn, b), S[O,y‘](‘l/l* - \P2*) = S and FS[O,,V*](‘III* - lpz*) = 4. NOW eithel'

(3.12) Y/ (x) <¢,/(x) forall x € (W,b)
or
(3.13) U/ (x) >¢,/(x)  forall x € (W, b).

If (3.12) holds, then by Theorem D and (iii),
ur(y) > 9¥(y)  on [y* ).
Hence y,* — y,* can have no further sign changes.
If (3.13) holds, then, for each y € (y*, ¢,'(b)), there exists an x € (W, b) such
that y = ¢,'(x). Thus,
(14 %) — %) = %) — (o — da(x)
=¢,*(») = (@ = %i(x) + (%) — ¢1(x))
>0 foreach y € (y* ¥,(b)),
since x > x, and Y,*(¥) > (xp — ¥,(x)). Thus, if y,'(b) = o0, it follows from (3.14)
that
(3.15) ¥*() > (y)  for y >y*
Now let y,'(b) < co. We first show that b # oo. Suppose b = co. Then,
(3.16) ¥'(b) = $,/(b) < oo,
since otherwise it would follow from (iii) and (3.13) that y,(x) > y,(x) for all
sufficiently large x which contradicts FS(y, — y,) = — . But (3.16) implies that

W = b which contradicts W &€ (x,, b). So b # co.
Finally, if b < oo, then from Theorem D,

(3.17) W) =b<y*(y)  for y >U/(d),

where we ignore (3.17) if y,’(b) = 0. Thus, if we show that y,*(») > ¢,*(y) for all
» € (Y'(b), ¥,'(b)) whenever y,'(b) < ¢,'(b), then this together with (3.14), (3.17)
and Theorem C will show that (3.15) holds.

Let ¢,"(b) > ¢,'(b) and let y € (y,'(b), ¥,'(b)). Note that since §,'(b) < o0 and
b < o0, Yo(b) = [5Y,/(x)dx < 0. So yy(b) < oo since otherwise FS(y, — ) = +
which is a contradiction.
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Thus, for x = ¢, ~!(y),
(G18) % *(») — $*(¥) = yx — i(x) — (¥b — ¥y(b))
= $,(b) — $1(5) + (b)) — ¢(x) + y(x — b)
= Yy(b) — (b)) + [§(¥/(2) — )z,

by Theorems C and D. Since FS({, — ¥,) = — , Y,(b) > ¢,(b) and since ¢,'(x) =
¥, ¥'(2) 2y for z > x. Thus the last term in (3.18) is nonnegative from which it

follows that (3.15) holds.
In view of (3.15), it follows that ¢, * — ¥,* can have no further sign changes on
[¥*, ). So, S(¥,* — ¢,*) = S for all the cases considered in Case B.

Case C. W = x,. Again, because of Case A, we may assume that x, <b. It
follows from Theorem 3.1 that

(319)  Spym* —d*)=85-1 and  FSp y»(¥1* — ¢*) = —.

Since W = x, <b and a + to — sign change occurs at x, it follows that (3.12)
must hold. Thus,

(320 () > %* () for y € (y* ¥,(b))
and, in fact,
(321) W) 2 h¥(y)  for y 2y*

Since W = x,,
U*(*) = 0% = da(x,) — i(x,) =0,
it follows from (3.20) and (3.21) that
V() 2 4*(y)  for y 2%,
with the inequality strict for y € (y*, ¥5'(b)). Combining this with (3.19), we see
that Sy, * — ¢,*) = S.

Case D. W € (x,-), x,). From Theorem 3.1, Sjo ,«(¥1* — ¢,*) = S — 1 and
FSpo, ,+(41* — ¥,*) = — . If b > x,, then (3.12) must hold. Thus, from Theorem D

and (iii),

(3.22) Ur() > 9¥(y)  for y >y*
Also, for y’ = y,'(x,),
(3.23) 0 () = xy" — da(x,)

= X" — ()

<Y (),

where the strict inequality (rather than a weak inequality) follows since ¢, * is
strictly convex and ¢,'(x,) < ¥,'(x,). Thus, S@,* — ¥,*) = S by (3.22) and (3.23).

If b = x, < o0, then b < b, and Y,(x) < 00 = Yy(x) for x € (x,, b)). Thus, from
properties of convex functions and their conjugates (see Section 15 of Roberts and
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Varberg (1973)),

(3.24) 0¥ () <b <y*¥(y)  for y >yy/(b).
Also, since either (3.12) or (3.13) holds, either

(3.25) Ur(0) > (y)  for y € (y* 4y/(b))
or

(3.26) V() <e*(y)  for y € (y* y/(d)),

by Theorem D. Furthermore, since b, = b = x, < oo, z[zz*(y) < oo for y > 0.
Thus,

(3.27) Ur() — »*0) = 5Y(2) — $L,¥(2))dz,

whenever ¢, *(y) < oo by Theorem C. Combining this with (3.24), (3.25) and (3.26),
we see that Y, * — y,* can have had at most one more sign change on [y*, ), and
since FSjo ,«(¢,* — ¢¥,*) = —, it must have one more sign change on [y*, o0)
because of (3.24), (3.27) and the monotonicity of ¢,*". Thus S({,* — ¢,*) =

Case E. n=1and W=0. Since W=0 and ¢; — ¢, has a + to — sign
change, it follows from the definition of W that
(3.28) ¥/ (x) >¢(x)  for x € (0, b).

Since y; — y, has a + to — sign change it is easy to see that the following must
hold because of (3.28). First, b < o0 and x, = b; second, ¢,'(b) > ¥,'(b) (from
definition of W and (iii)); third, ¢,'(x) = oo for x > b; and fourth, there is an
¢ > 0 such that ¢,’(x) < oo for x € [b, b + ¢). From these four facts, (3.28) and
‘ Theorem D, it readily follows that

() <$*(y) for y € (0’ ¥a(b) ]
(3-29) WH(y) <b=9*(y) for y €(4,/(b),¥/(B)]
W) >b=*(y) for y >/ (b)
Thus S{;* — ¢,*) = 1 from (3.29) and Theorem C.
Case F. n >2and W € (x,_,, x,_,]. From Theorem 3.1, Sy ,«(¥,* — $,*) =
S — 2 and FS ,«(1* — ¢,*) = + . Since W € (x,_5, x,_;] and ¢; — Y, hasa —

to + sign change at x,_;, (3.13) must hold. Thus, since ¥, — {, has a + to — sign
change at x,, it follows from (3.13) that x, = b, = b < b,,»’ = ¢,'(b) < o0, and

(3.30) Ur() <*(y) for y €(y%y)
and
(331) W) =b<y*(y)  for y >y,

by Theorem D. Thus, via an argument similar to the one following (3.27), it follows
from (3.30) and (3.31) that ,* — y,* has either no more sign changes or exactly
two more sign changes on [y*, o). Thus S(¥,* — ¥,*) is either equal to S — 2 or
S.
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This exhausts all the possible cases and proves the part of Theorem 3.2 concern-
ing the number of sign changes of y,* — y,*. Because of Theorem 3.1, it is clear
from the above proof that the sequence of signs of ¥, * — ¢,* behaves as stated in
Theorem 3.2. This completes the proof of Theorem 3.2.

4. Behavior of the differences of large deviation rates. Let X, X,, - - - be i.i.d.
random variables with distribution F;(F,) such that [xdF,(x)(fxdF,yx)) = 0. To
avoid trivialities, it is assumed that F, and F, are not degenerate and F,; # F,. If
the densities of F; and F, both exist with respect to some o-finite measure u, they
will be denoted by f; and f,, respectively.

For i = 1 and 2, we define the following quantities. Let

$i(A) = fexp(Ax)dF(x)  and ¢(A) = log (),
i.e., ¢; is the m.g.f. of F; and v, is the c.g.f. of F,. Then it follows from (1.1) that, for
i=1and2,

limn~'logP(X, > a) = —y*(a) for a >0,

where
¥*(a) = sup{Aa — ¢;(A): A > 0}
and
limn~'logP(X, <a) = —y;*(a) for a <0,
where

¥*(a) = sup{Aa — ¥;(\): A < 0}.
. In this section, we shall study how the behavior of the sign changes of y,* — J,*
is related to that of y; — , (or equivalently, ¢, — ¢,), F, — F,, and f; — f,. To do
this, we shall first need the following theorem which enumerates some well known

properties of y; and y,.
For i = 1 and 2, let b, = sup{A: ¢;(A) < o0} and let b = min{b,, b,}.

THEOREM 4.1. If b > O, then for i = 1 and 2,

(@) ¥ is strictly convex and strictly increasing on [0, b)) with {;,(0) = 0,

(®) ¥i(A) = Yi(b) as A1b;,

(c) ¥, exists and is continuous on [0, b,) with ¥;(0) = 0 and ¢;/(A)Y,/(b,) as A1,
and

(d) ¢, — ¢, is not identically zero on any subinterval of [0, b).

From Theorem 4.1, we have the following theorem as an immediate consequence
of Theorem 3.2.

T"HEOREM‘ 4.2. For Yy, ¥y, $,*, and ,* as defined above, the relationship of the
sign changes of Y,;* — Y,* to that of Y, — v, is as indicated in Theorem 3.2.

LemMa 4.3. For I = (— o0, o),
(4-1) SI(‘I’l* - ‘1’2*) < SI(FI - Fz) < Sl(fl ‘fz)-
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Proor. If f; and f, exist, then, since F\(x) — Fy(x) = [* [fi(¥) — £L()]du(y),
S(F, — F,) < S(f, — f,)- This proves the right side of (4.1).

To prove the left side, note that, for the purpose of sign changes, we need only
consider when either ¢;(A) or ¢,(A) is finite. When this is the case,

42) $1(A) — 6, (A) = A[= exp(Ax)[ Fy(x) — Fy(x)]ax.
For each K > 0, let
8x(\) = [X, exp(Ax)[ Fy(x) — Fy(x)]dx.
Since exp(Ax) is TP (see Example 2.1), it follows from the VD Theorem that
S(gx) < S(F,— F,).
Since gx(A) = ¢;(A) — ¢,(A) as K — oo whenever ¢,(A) or ¢,(A) is finite, it follows

that S, — ¢¥,) = S(¢; — ¢,) < S(F, — F,). Thus the left side of (4.1) will follow
from Theorem 4.2 by observing that y,* — y,* has a sign change at 0 if and only if

Y, — ¢, does.
As is exemplified in Example 4.6 below, the bounds in (4.1) may not be very

good, and as such may not be very useful in determining the behavior of
SW* — ¥,*). However, if F, — F, or f; — f, have very few sign changes, then
SY,* — ¥,*) may be totally determined by the behavior of F, — F, or of f; — f,.
These results are given in the following lemma and its corollary.

LEMMA 44. Let
(4.3) l < S(_oo, OO)(FI - Fz) < 2 and FS(—OO, OO)(FI - Fz) = —.
) Then,

(44) ¥*(a) > ¥*(@)  for a>0.
Proor. If we show that
(4.5) YA >y¢,(A)  for A >0,
then (4.4) will immediately follow.
If for A > 0, y,(\) = oo, then ,(A) = oo since FS(F, — F,) = — . Hence, if

¥,(A) = oo for all A > 0, (4.5) trivially holds. Thus, assume that there exists a § > 0
such that

(4.6) Y(A) < o0 for 0 <A<,

For 6 > 0 and i = 1 and 2, let F,, denote the convolution of F; with a normal
distribution having mean 0 and variance o2. It follows from the VD Theorem (via
an argument similar to that following (4.2)) that

S(F\, = F,,) < S(F, — F));

and since lim,_, (F;,(x) — Fy(x)) = Fy(x) — Fy(x) if x is a continuity point of
F, — F, and since S(F, — F,) < oo, it follows that

4.7) S(Fy, — F,) = S(F, — Fz)

for all sufficiently small o, say 0 < 0 < g,
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Fix ¢ € (0, 0y) and let Y, and Y, denote two random variables with distributions
F,, and F,,, respectively. For i = 1 and 2, let
Y(K)=7Y, if ¥,>K
=K if Y<K
It follows from (4.6) that, for each K > — oo, the c.gf.’s of Y(K) and Y,(X), ¥«
and ¥, ,, respectively, are finite in an open interval about 0.

Since E(Y,(—x)) =0 = E(Y,(—)) and F,, has support (—oo, o) fori =1
and 2, it follows that there exist two sequences {K(n)} {M(n)} with K(n) < M(n)
— — 00 as n — oo such that
(4.8) E(Y(M(n)) — Yy(K(n))) > 0.

Since the left side of (4.8) is the derivative of Y; am — ¥, k) at 0 and Yy p,(0) —
V2, kn(0) = 0, it follows from (4.8) that ¥y r — ¥, k() has a — to + sign change
at 0. Let G,(G,) denote the distribution of Y,(M(n))(Y,(K(n))) for a fixed n. It will
follow from (4.3), (4.7), and the construction of G, and G, that
S(Gl - Gz) = 2
for n sufficiently large and the sequence of signs of G, — G, is —, +, —.
Replacing F, — F, with G, — G, in (4.2), it thus follows from the VD Theorem
that S(Y1, meny — Y2, kmy) < 25 and if S(Yy, amy — Y2, k(ny) = 2, the sequence of signs
Of ‘pl, M(n) - \P2, K(n) iS +, — +. Thus, Since ‘Pl, M(n) - \1/2, K(n) haS a— to + Sigrl
change at 0,
Y1, M) > ¥ k) for A > 0.
Letting n — — o0, it follows that
[ exp(Ax)dF,,(x) > [ exp(Ax)dF,,(x) for A >0,
from which (4.5) follows by letting 6 — 0.

CoOROLLARY 4.5. If

S(—oo, oo)(fl _f2) =2
and the last sign change is from — to +, then (4.4) holds.

PROOF. It is easy to see that S _, ,,,(F; — F,) = 1 and the sign change is from
+ to —. Result then follows from Lemma 4.4.

EXAMPLE 4.6. Let F; and F, be two symmetric distributions, i.e., F(—x) = 1
— F(x)fori=1and2. Fork=1,2,---,andi =1 and 2, let

(4.9) Wit = [ 2o X dF(x) = 2k (x> 'F(x) dx,
where Fi(x) =1 — F(x). Fork=1,2,- - - ,n,let
(4.10) ) Bi, 1 = My, 2 < 0

and for k > n,
e, 1 S My 2
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Then it follows that

o;(A) < ¢,(A)  forevery A
Hence, from Theorem 4.2,
. SW* —¢,*) =0 and y,*(a) > ¢,*(a)
for all a. However, since x* is a strictly totally positive function for x > 0 and
k=12, -,if follows from (4.9), (4.10) and the VD Theorem that S(F;, — F),)
> n. (Here, we are appealing to a more general version of the VD Theorem than
the one which appears in Section 2. See Karlin (1968), page 21, (3.5).)

REMARK 4.7. In this paper, the only statistic considered was X,,. However, in
many instances (see, e.g., Sievers (1969) and Bahadur (1971)), a statistic 7, will
satisfy,

- nlog P(T, >a)—» —y¢;*(a) for i=1 and 2,

where y,*(a) = sup{Aa — ¢;(A\): A > 0} and n~! log E,(exp(AT,)) — ¥;(A). If ¥, and
Y, satisfy (i), (ii), (iii) and (iv’), it is clear that the conclusions of Theorem 4.2 would
hold for this case.
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