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MULTIVARIATE SHOCK MODELS FOR DISTRIBUTIONS WITH
INCREASING HAZARD RATE AVERAGE!

By ALBERT W. MARSHALL AND MOSHE SHAKED
University of British Columbia and Indiana University

Suppose that n devices are subjected to shocks occurring randomly in time
as events in a Poisson process. Upon occurrence of the ith shock the devices
suffer nonnegative random damages with joint distribution F;. Damages from
successive shocks are independent and accumulate additively. Failure of the jth
device occurs at the time 7; when its accumulated damage first exceeds its
breaking threshold x;. If 7 is the life function of a coherent system, then the
system life length 7(T}, - - -, 7,,) has a distribution with increasing hazard rate
average providing that F), F,, - - - satisfy a multivariate stochastic ordering
condition that depends upon . If F; = F, = - - - and H is the joint survival
function of T}, - - - , T,, then [H(at)]'/* is decreasing in a for all t > 0. H also
satisfies a multivariate “new better than used” property. Moreover T, - - -, T,,
are associated when F;, = F, = - - - . Examples of specific distributions are
given which arise from the shock model, including a new bivariate gamma
distribution which reduces to the bivariate exponential distribution of Marshall
and Olkin as a special case.

1. Introduction. Shock models have been used by a number of authors to derive
representations for life distributions. This paper is concerned with properties
derived from a shock model for multivariate life distributions. Some univariate
results of Esary, Marshall and Proschan (1973) are generalized, and some multi-
variate results without univariate analogs are obtained. The model studied here is
the following cumulative damage shock model:

n devices are subjected to shocks occurring randomly in time as
events in a Poisson process. Upon occurrence of the ith shock, the
devices suffer nonnegative random damages with joint distribution
F,. Damages from successive shocks are independent and ac-
cumulate additively. Failure of a device occurs when its ac-
cumulated damage first exceeds its breaking threshold.

This model was previously formulated and studied by A-Hameed and Proschan
(1973). Most results depend upon the damages from successive shocks being
stochastically increasing. The appropriate notion of multivariate stochastic order-
ing depends upon the result to be proved, as indicated particularly in Section 3.

A related model has been discussed by Esary and Marshall (1974), who assume
that the damage distributions F; are all equal to a distribution F which concentrates
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344 ALBERT W. MARSHALL AND MOSHE SHAKED

on the diagonal z; = - - - = z,. This means that upon occurrence of a shock, the
same damage is inflicted upon all n devices. This is an interesting multivariate
model if the breaking thresholds are random. Further results for random thresholds
are obtained by A-Hameed and Proschan (1973), but in this paper only nonrandom

thresholds are considered.
It is easy to imagine practical situations in which there are actually several

sources of shocks each independently governed by a Poisson process and each with
its own sequence of damage distributions F,. Some sources of damage may affect
only a subset of devices. Although such circumstances may be recognized in
practice, they do not lead to more general mathematical models: the several
Poisson processes can be superimposed to yield a new Poisson process and the
several sequences of damage distributions can be replaced by a sequence of
appropriate mixtures.

It is possible, in the multivariate shock model, that the n devices have indepen-
dent life lengths. To see this, suppose that there are n independent Poisson
processes and the ith process governs (identically distributed) damages which affect
only the ith device. As pointed out above, this is equivalent to the model with only
one Poisson process in which F; is independent of i and F; has all its mass on the
coordinate axes.

Throughout this paper, the joint life distribution derived from the cumulative
damage shock model is denoted by H, and the corresponding random variables are
denoted by T}, - - -, T,. “Increasing” is used to mean “nondecreasing” and
“decreasing” is used to mean “nonincreasing.” For any vector z = (z,, - * * , z,),
z > 0 means z; > 0 for all i and u < v means v —u > 0. The terminology of
reliability theory, which is sometimes used, is explained in detail by Barlow and

. Proschan (1975).

In the univariate case the survival function H = 1 — H, generated by the shock

model has the form

(1.1 H() = ;;°=Oe-“%’!lk F¥(x),

where the convolution FIX'= F, * - - -  F, is usually written F® when the
damage distributions F, are independent of i, and where x is the breaking
threshold. The following theorem gives conditions under which H has an increasing
hazard rate average (IHRA), i.e., H(z) = 1 for all z <0 and —¢~' log H(?) is
increasing in ¢ > 0:

THEOREM 1.1. (Esary, Marshall and Proschan (1973)). If the damages are
nonnegative (z < 0 implies F(z) = 0) and stochastically increasing (F(z) is decreas-
ing ig i for all z), then H is THRA. .

The proof of Theorem 1.1 has two parts:

Lemma (1.2). If H(H) = SZ_le M\ /k!|P, and P}/* is decreasing in k =
1,2,:- -, then H is IHRA.
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LemMMma 13. IfF(z)=0forallz <0,i=1,2,- - - and if F(z) is decreasing in
i=12--- forall z, then [F¥(x)]'/* is decreasing ink = 1,2, - - . 4

The multivariate versions of Theorem 1.1 given in Sections 3 and 4 also depend
upon Lemma 1.2. However, they require generalizations of Lemma 1.3.

Multivariate analogs of Theorem 1.1 involve multivariate analogs of the IHRA
property. Several such analogs have been discussed by Esary and Marshall (1979),
which are described in terms of the hazard function R = — log H or in terms of the
random variables T, - - - , T,, as follows:

CONDITION A. R(at)/a is increasing in a > 0 whenever t > 0.

ConpitioN B. For all coherent life functions 7, 7(T, - - - , T,) has an IHRA
distribution.

Coherent life functions are discussed by Esary and Marshall (1970).

ConpiTiON C. For some independent IHRA random variables X, - - - , X},
and some coherent life functions 7,---, 1, of order k, T, = 7(X, - - -, X),
i=12--:,n '

ConpITION D. For some independent IHRA random variables X, - - - , X},
and nonempty subsets B; of {1,2,- - ,k}, T, =min;epX,, i = 1,2, -+, n.

ConpITION E. For all nonempty subsets B of {1,2,---,n}, min,p7; is
THRA.

ConpITiON F. min,q; 7; is IHRA whenever a > 0.
Esary and Marshall (1979) show that the following and only the following implica-

‘ tions hold for these conditions:

= ~
D==>C E
\) /7
B

For the joint distribution H derived from the cumulative damage shock model,
A-Hameed and Proschan (1973) show that Condition E holds whenever Fj(z) is
decreasing in i for all z. This result is generalized in Section 3, where the stronger
Condition B is obtained under appropriate stochastic ordering conditions. Section
4 contains a proof that if F; = F is independent of i, then H satisfies Condition A.
Condition A is also obtained under the assumption that F(z) is nonincreasing in i
for all z and n = 2. In Section 5 it is shown that H does not necessarily satisfy
Condition D. In Section 6 it is shown that H is a distribution of associated random
variables and in Section 7 some “new better than used” properties of H are
discussed. Section 8 contains some examples.
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2. Some notation and basic properties of H. Let X;; denote the damage inflicted
by the ith shock on the jth device (component), i =1,2,---,j=1,2,-
Then .S}(") =3k_ X, ; 1s the damage accumulated by the jth component as a result
of the first k shocks; let

Flew--okal(z v v 2) = p{sj(k,) <z,j=12---, n}.

The random vectors X; = (X;;,- - -, X;,), i = 1,2, - - are always independent.
In case they are also identically distributed, the notation F*v "% is used in place
of Ftkv'">%l If k and 1 are similarly ordered vectors (i.e., (k, — kg)(I, — Ig) > 0,
a,B=1,2,---,n), then

F&+D) = p® 4 p®

where * denotes convolution. However this relation does not hold in general.
Denote the breaking threshold of the jth device by x, j =1,2,- - -, n, and
assume x; > O for all j. If x; = 0, this means that the jth component fails upon the
occurrence of any positive damage.
In the bivariate case, the cumulative damage shock model described in Section 1
leads to the survival function

— Ar)E A )
H(t,t,) = f=ogﬂoe—xtl%e—x(tz—n)u._l_]_ Fllek+l(x  x),

2.1 0<t <y,
o ww QR My - )]
= 2k=021=0e At2-—————k2! e Ay tz)_[ ll! 2 ] F[k+l, k](x]) X2)9

>t >0

In the n-vanate case, with 0= £, <, <t,<---<t,t >0 and 6, = (4 —

j—])/ n>J , *, N,

(22) Aty 1) = 22002 )

where, with /, = 0 and /, = k,

— k
P.(x) = 2" 0212_11 . 2’,:_'=1,,_2( IL—1I,---, 1 — [n_l)

.H;f= lejg‘_g—lF[ll" Y In](x).

Let N; be the number of shocks required to cause failure to the jth device,

j=-1,2,- -+, n. With a corrected misprint, the moments
' _
ET{=’—;E(N1+’ 1), r=0,1,---,
A r

of T, were obtained by A-Hameed and Proschan (1973) in terms of the moments of
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N,. A bivariate generalization of this is
1 P(N(l) + r)r(Nz + S)T(N(z) +r+ S)
23 ETT; = —E
( ) 172 }\ + P(N(l))r(Nz + r)r(N(z) + S)
where N,y < N, are obtained by ordering N, and N,.
From (2.3) it follows that
COV(TI, T2) = A_z[COV(Nl, N2) + EN([)].

In Section 6 it is shown that T, and T, are associated, a fact that implies that
Cov(N,, N,) > — EN;). Moreover, since associated random variables are indepen-
dent if and only if they are uncorrelated it follows that a necessary and sufficient
condition for 7 and T, to be independent is that Cov(N,, N;) = — EN,.

, 0<r<s,

3. H and condition B. Theorem 1.1 has been generalized to a multivariate

setting by A-Hameed and Proschan (1973): They show that if 7}, ..., 7, have a
joint survival function of the form (2.2) and if

(3.1 F(x) isdecreasingin i forall x>0

then the series system life length, min(7}, - - -, 7,) has an THRA distribution.

Here, this result is generalized to an arbitrary coherent system. To do this, the
condition (3.1) must be replaced by an appropriate stochastic ordering condition
that depends upon the coherent system.

If ¢ is a coherent structure function with minimal path sets P, P,, - - -, P,, then
the corresponding life function 7 [see Esary and Marshall (1970)] has the repre-
sentation
- (32) T(ty, - v 5 8,) = max, ¢, Min;epl;.

D

It is not difficult to show that the life function 7° corresponding to the dual

structure function @ has the similar representation

(3.3) 2@t -, t) = min, ;¢ , MaX;cp b
Lemma 3.1. If Ty, - - -, T, are random variables with joint survival function (2.2)
and 7 is the life function of a coherent system of order n, then with 0/0 = 1,
o —anADF s S
P{r(Ty,- -, T,) >t} = Zg.e ™M F5-P|r” Ry <1t

Proor. Conditional on there having been exactly k& shocks by time ¢,
(k)
T, >te—< 1.
i

Consequently,
. S
min;ep T; > t(:bmax,-e,z—)’c—— <1,
i

and so

max, ¢, Min;ep I; > t & min, ;, MaX;ep— — <L
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Because of (3.2) and (3.3) this can be rewritten in the form

k k
(T, -+, T,) >t(=)'rD(£,~ e, S )) < L
X1 Xn
The result follows by unconditioning on the number k of shocks by time ¢. []
The proof of Theorem 1.1 makes use of Lemma 1.2. A-Hameed and Proschan
(1973) generalize the lemma to obtain their result. Here a still more general version
is required.
Let 4 and C be subsets of R” which satisfy

(34 ued,zeC=u-z€4 (le,u€ 4,u—v E LC=vE A),

(3.5) wvelC=u+vel.
For purposes of this paper it is sufficient to take € = [0, c0)"; then for example,
(3.4) and (3.5) are satisfied whenx € Cand 4 ={z:z, < x,i=1,2,- -+, n}.

LEMMA 3.2. If A and C satisfy (3.4) and (3.5), and if

(3.6) PX,eC} =1, i=12---,
3.7 P{X; € A — u} is decreasingini = 1,2, - - forallu€ A N C,
then

[P{S® € A}]*  isdecreasingin k=1,2,--- .

Proor. From (3.4), vé& A,u € A =u — v & C. Thus (3.6) implies

(3.8) P{X;,€A—-v}=0 forall v&A.
" From (3.5) and (3.6), P{S® € €} =1 for all k so that similarly,
(3.9 P{S®eAd4—-v}=0 forall veA.
To see that
(3.10) A-vcA forall ved ()@,
observe thatz € 4 —v=>z =u — v for some u € 4. Since alsove C,u—v=1z
€ A4 by 3.4).

The proof now proceeds by induction:

3.8
P(S® € A) = [P(X, € A — v} dF,(¥) = [10eP (X, € 4 = v) dF,()
3.7 3.10) -
=[P(sV e 4}~
Next suppose that

(3.11) [P{s*D e B}]/* P >[P(s®e B}]"
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for all sets B satisfying (3.4). Note that B = 4 — v satisfies (3.4) when v € C. Then
[P{S® € 4}]“"" = P{S® € A}[[eP({S* D € 4 — v} dF,(v)]*

3.9
D P(s® € A)[[ 40P {S* D € 4 —v) dEW)]*

@3.11) _
> P{S® € A} [4ne(P{S® € 4 —v)* V¥ aFr,w) ]

=[fanc(P{S® € 4})/*(P(s® € 4 —v})* V* aF,()]"

(3.10) "
> [fancP{S® €4 — v} dF,(v)]

D ep(s® € 4 - v} ar]*

=[/eP{X, € 4 — v} dF¥(v)]*
3.7 B
> [JeP{Xis1 €A — v} dFI(v)]
=[P{S**V € 4}]". 0

THEOREM 3.3. Let T|,- - -, T, be random variables with joint survival function
(2.2), let T be the life function of a coherent system of order n and with 0/0 = 1, let

A,={z:fD(—z-l—,-'-,ﬁ)<l}.
X1 Xn

If P(X; €0, )"} = 1 for all i and
(3.12) P{X; € A, — u} is decreasing in i for allu € 4, N[0, )",
then 7(T), - - - , T,) has an THRA distribution.

PrOOF. Because 77 is an increasing function, it is easy to see that with 4 = 4,
and € = [0, »0)", conditions (3.4) and (3.5) are satisfied. Consequently it follows
from Lemma 3.2 that [P{S® € 4,}]"/¥ is decreasingin k = 1,2, - -, ie,

(k) (k)
[P{TD(—S_]—,...’ Sn )< 1}
X1 Xn

is decreasing in k = 1, 2, - - - . This fact, together with Lemma 3.1 and Lemma 1.2
completes the proof. []
In the univariate case, condition (3.12) reduces to

1/k

P{X,<x—u} isdecreasingin i forall x—u >0,

which is ordinary stochastic ordering. It is not hard to see using an indicator
function for f that (3.12) is satisfied when

(3.13) Ef(X;) < Ef(X.1), i=12---,
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for all increasing real functions f. This is often taken as a definition of stochastic
ordering in the multivariate case [see, e.g., Lehmann (1955)].

COROLLARY 3.4. If (3.13) is satisfied, then (T, - - - , T,) has an THRA distribu-
tion for all coherent life functions t. That is, (3.13) implies that Ty, - - - , T, satisfy
Condition B.

Notice that if 7 is a series system, then 4, = {z : max,(z;/x;) 1} and (3.12)
becomes the condition that P{X; < z} is decreasing in i = l 2 - for all
z € [0, o0)”. This is the stochastic ordering condition that A-Hameed and Proschan

(1973) also imposed for a series system.

4. H and condition A. The purpose of this section is to show that if F, =
= - . -, then the survival function H given by (2.2) satisfies the condition
[I?(at)]l/a is decreasingin o« >0  forall t > 0;

that is, H satisfies Condition A of Section 1. For n = 2, the result holds under the
more general condition that F,(x) is decreasing in i =1,2,--- for all x > 0.
Whether or not this generalization holds for arbitrary » is unknown.

These multivariate versions of Theorem 1.1 are distinct from the one given in
Section 3, but again the proofs make use of Lemma 1.2 and an induction argument.

THEOREM 4.1. If F, = F, = - - - = F and H is given by (2.2) then
[17 (at)]l/ *  isdecreasingin o  forall t> 0.

The proof of this result is notationally complex, but all essential ideas are
illustrated by the case n = 3.

PROOF FOR n = 3. It is sufficient to prove the result for 0 <¢, <, < t3: if
t, = 0, the result reduces to one concerning a lower dimension, and the result for
other orderings follows by symmetry considerations. With the notation

b=1t/t, O=(L—-1)/t; b6,=(5-1)/t
it follows from (2.2) that

_ Aat
Haty aty ) = 370220 5

where

_ . ]
Pu) = 2- "(1, L=l k- 1)01“91’ h93=BF (= O(x).

By virtue of Lemma 1.2, it is thus sufficient to prove that [P.(x)]"/* is decreasing in
k=1,2,--- . For purposes of an inductive argument, it is useful to rewrite
P, . (%) in terms of P,(u). The identity

k+1 _ k
lI’IZ—ll’k+l—IZ - ll—l,lz_ll,k+l_l2

k k
+(@Q—A—Lk+l—5)+mp5—%k—5)
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easily yields
Pk+l(x) le=0212_1 (l L - ;‘l, _ )01,012—1,0k 12[0 FO+1 12+|,k+1)(x)
+ 0,FUn b+ Lk+D(x) 4 g FCh 12,k+1)(x)]_
Consequently
(4.1) Pk+l(x) =0 fu,—Ofuz—O uy= OPk(x — u) dF(u)
+0,002 o) - —0P (%), Xy — U, X3 — us) dF(00, uy, u3)
+03fﬁ§-opk(x1, Xy, X3 — u3) dF(00, 00, ;).

Since P,(x) = 0,F(x) + 0,F(0, x,, x;) + 03F(c0, 00, x;) is increasing in each x;,
it follows that

Py(x) < 0,3 W =0fi=0 u;-OPl(X) dF(u) + 0,/ —0fi:=0ﬁl(x) dF(co, u,, u;)

— = 2
+03/33-0P1(X) dF (00, 00, u3) = [P1(x)] .
Now assume that
4.2) [I?k_l(u)]l/(k_l) > [Ec(u)]l/k forall u> 0.
Then

= k+1
[Pk(x)] ¥
@1 — e =
= Pk(x){01fu:=ofu§=ofu§=opk—x(x — u) dF(u)
+02fﬁ§=of§§=oﬁk—1(xp Xy = Uy, X3 — U3) AF(0, Uy, ;)
_ k
+ 0302 =0Pic—1(x1; X3 X3 — Us) dF(00, 00, u3)}

S (00 mofiafz o Be)] [ Belx — w)]* " aFtu)

+ 0505050 Pe®) | [ Pl %, — x5 — u3) %7 dF(c0, uy, u5)
03520 B0 [ Bulxi %5 = )] 7 - (o0, o0, u5) )"
> {01151~/ m0Pilx — u) dF(u)
+02fﬁ§=ofi§=ol?k(xp Xy = Uy, X3 — U3) dF(0, uy, u;)
+03fi:=0}?k(xl’ Xy X3 — ) dF(00, 0o, us)}k
Q] i

The following theorem shows that for n = 2, the condition of Theorem 4.1 that
Fy = F,=--- can be replaced by the weaker condition that F, > F, >
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As noted at the end of Section 3, the weaker condition is exactly condition (3.12)
for the special case that 7 is a series system, and it is implied by (3.13).

THEOREM 4.2. If F/(X) is decreasing ini = 1,2, - - - for all X, and n = 2, then H
given by (2.1) satisfies Condition A.
OUTLINE OF PROOF. As in Theorem 4.1, it is sufficient to prove the result for
0<¢ <t, Let
b=1t/t, O=(,—-1t)/t.
Then if H is given by (2.1) and a > 0,

H(at, at)) = S_ge M2 ()\at2) Py(x1, x)s
where
(4.3) P2y, 20) = P (24, 25 Fyy Fp, » + + )
= s K )otos (S0 <z, s < ),

k=12--"

Consequently, by Lemma 1.2, it is sufficient to prove that

(44) [Fk(xl» xz)]l/k > [Fk+1(x1» xz)]l/(kH) forall x >0,
k=12---.

From the identity

k+1\_ [k k
(] )"(1)+(1—1)
and from (4.3) it follows that
(45)

Fk+1(zp 2y, Fl, Fp, - 0 ) = 01f6'f(z)sz(zl — Uy, 2y — Uy; Fy, Fa, - - - ) dF\(uy, uy)
+02fi§=013k(21’ 2y = tuy; Fy, Fy, - -+ ) dFy i 1(00, uy),
k=12,--"

Below, use is directly made of the fact that Fy(x) > F,(x) for all x; use is also

made of the fact that this implies
Jo(u) dFy(o0, u) < [@(u) dF(o0, u)

for all decreasing functions ¢ such that the integrals are defined. With this in mind,
and with the aid of (4 3) and (4.5), (4.4) can be verified for k = 1. In a similar way,
Pi(z), 233 Gy, Gy + + + ) > [Py(2y, 293 Gy, Gy, - )]'/2 for any sequence
G,, G,, - - - of distribution functions such that G,(x) 0 for all x .‘% 0 and
G(x)> G, (x)forallx >0,i=1,2,- - - . Assume that for all such sequences,

1B 1/Ge=1)
(4.6) [Pk_l(zl, 22; Gl’ G2, ot )]
> [Ec(zl, 2y, Gp G2, ct )]l/k forall z > 0.

Using this and arguments similar to those above, (4.4) can be verified.
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5. H and conditions C, D. In Section 3 and 4 it is shown that at least when
F, = F, = - - - = F, the survival function H given by (2.2) satisfies Conditions A
and B of Figure 1. This figure suggests the question of whether or not Condition C
is satisfied. Although this question is open, it may not be an important one:
Condition C is of primary interest as a model for a kind of dependence often
encountered in practice. Beyond that, its usefulness up to now lies primarily in the
fact that it implies Conditions A and B.

It is not difficult to show that Condition D need not be satisfied by H of (2.2).
For example, if n = 2, x;, = x, =1 and F places mass 1/2 at (1 — ¢, 1 + ¢) and
(1+¢1—c¢), where 0 <e < 1, then H is absolutely continuous but is not a
distribution of independent random variables. As was observed by Esary and
Marshall (1979), this means Condition D fails.

6. Association of 7, - - - , 7,. Random variables Y,,- - -, Y, are said to be
associated if Cov{y,(Y), ¥, (Y)] > O for all pairs of increasing binary functions y,,
Y, defined on R™. Association, a notion of positive dependence introduced by
Esary, Proschan and Wallup (1967), leads to various inequalities such as

P{Y,>t, -, Y, >t} > P{Y, >t}
In the following, repeated use is made of the facts that
6.1) A set consisting of a single random variable is associated;
6.2) if two sets of associated random variables are independent, their union is
a set of associated random variables; and )
6.3) increasing functions of associated random variables are associated.

Additional results concerning association have been obtained by Esary and Pro-
schan (1970, 1972).

THEOREM 6.1. If T,,- - -, T, have a joint survival function H of the form (2.2)
and if F,=F,=--- =F, then T\, - - -, T, are associated.
This result need not be true without the condition F; = F, = - - - . The proof of

Theorem 6.1 is based on some preliminary lemmas.

LEMMA 6.2. Decreasing functions of associated random variables are associated.
The proof of this lemma is similar to the proof [Esary, Proschan and Wallup
(1967)] of (6.3).

LEMMA 6.3. If {N(t), t > 0} is a Poisson process and 0 < z; < - - - <z, then
N(z)), - - -, N(z) are associated.

PrOOF. This follows from (6.1), (6.2), (6.3) and the fact that N(z)), - - - , N(z)
are increasing functions of the independent increments of the process. []

LeMMA 6.4. If {F)} is a decreasing sequence of distributions converging in
distribution to F, if H is given by (2.2) with F being the identical distribution of the
damages, and if H; is given by (2.2) with F, being the identical distribution of the
damages, then H; converges to H in distribution.
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PrROOF. Because of symmetry, it is sufficient to prove that hm,_,wH t) = H(t)
when 0 < ¢, <1, < - - - <t, In this case, with 1, = 0, k, =

Ht; x) =H(t) =3¢ _ oS24, 20, 10,

e—k(g~y_.)M F(kl " ka)(x)
!
j~l
and H; has a similar form with F, in place of F. Since {F,} converges to F in
distribution, it follows [Feller (1971), page 257] that F&v %) converges to
F®u k) in distribution for all k,, - - - , k,. Since

At — 4_))] 5
S SRR S P U Lyl 1] Y
ky=0<k,=k, kn=tk,_1j=1 (k/—kj—l)'

it follows from the dominated convergence theorem that if x is a continuity point
of F&v -k for all k,, - - - , k,, then H(t) converges to H(t) for all t. If x is not a
continuity point of F*v'~":%) for some k,,- - - ,k,, let x¥) be a decreasing
sequence of continuity points converging to x. By assumption the sequence F,(x?)
is decreasing in i for fixed j. This implies that for every (k;,- - -, k,),
Fke-k)(x0)) is decreasing in i. Hence H(t; x) is decreasing in i [respectively, j]
for fixed j [respectively, i]. Thus, for every j,

lim,_, . H(t; x) > lim,_, H(t; x?) > lim,_,, lim,_,,, H(t; xV),
Y hnlj—-»ool i—>00 H(t XU)) > hmx—»oo lim, j—->oo H (t XU)) Slmllal'ly,

lim, ,, lim,_, ., H(t; xC )) > lim m,,, lim,_,, H(t; x()),

hence

lim, | lim,

J—0 m; e

H(t; X)) = lim,_, , lim,_, . H(t; x").
Applying the dominated convergence theorem twice gives

limi—-»oo E(t; X) = ]j'mi—wo 1 J—)OO H(t X( )) h j—-)OO hn]i—»oo E(t’ X(j))

= lim,_,,, H(t x) = H(t; %). 0

PROOF OF THEOREM 6.1. Suppose first that F places mass p;, at a, =
(@, ,a,), i=1,2,---,m, Z'p, =1, where each a, > 0. In this case the
Poisson process {N(f), t > 0} governing the occurrence of shocks decomposes
naturally into m independent Poisson processes {N(¢),t >0}, i=1,2,---,m,

where N,(¢) is the number of damages of magnitude a; suffered by time ¢. The
damage to the jth component accumulated by time ¢ Gan be written in the form

ij(t) = 3714, N,(2).
If
X()=0 if Mjt) > x

=1 if M(1) <x
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then T, = sup{z : Xy(y) = 1},j =1, 2,- - - , n. Choose an integer k and real num-
bers 0 <z; < - <z. By Lemma 6.3 and (6.2), the random variables N(z)),
i=12---,k,j=12,---,n are associated. Together with (6.3), this implies
that My(z), i=1,2,---,k j=12,---,n are associated. Since X(?) is a
decreasing function of M;(?), it follows with the aid of Lemma 6.2 that X(z),
i=12---,k j=12,---,n are associated. But this fact implies that
T,,- - -, T, are associated (Esary and Proschan (1970), page 333).

If F has more than a finite number of points of increase then F can be written as
a limit in distribution of a decreasing sequence of distributions F;, i =1,2- - -
where, for each 7, F; has a finite number of points of increase. Define H, by (2.2)
with F, being the identical distributions of the damages and note that by the
previous paragraph H,; is a distribution of associated random variables. From
Lemma 6.4 H; converges in distribution to H. The proof is complete by recalling
that limits in distribution of associated random variables are associated (Esary,
Proschan and Walkup (1967)). ]

7. An NBU property of H. If the (univariate) survival function G of a device
satisfies

(7.1) G(t+u)/G(1) <G(u) forall ¢, u>0

then the device, when aged but unfailed, has a stochastically shorter remaining life
than it did when new. Consequently the device, or its survival function, is said to
be “new better than used” (NBU). This property was encountered in a replacement
setting by Marshall and Proschan (1970), and has been discussed by various
authors (see Barlow and Proschan (1975)).

There are a number of potentially interesting multivariate extensions of the NBU
property, two of which are:

CoNDITION (). G(f; + A, - - -, £, + &) < G®G(, - - -, A) for all A, t >0,
together with the same condition on all marginal survival functions.

CONDITION (ii). G(u + t) < G(u)G(t) whenever the vectors t and u are similarly
ordered (i.e, (4, — u)(%, — 1) > 0 Lji=12---,n).
Condition (i) was introduced and discussed by Buchanan and Singpurwalla (1977).
Clearly (ii) implies (i). It can be verified that the multivariate exponential distribu-
tion of Marshall and Olkin (1967) is characterized by Condition (ii) with equality in
place of the inequality.

THEOREM 7.1. If F, = F, = - - - = F, then H of (2.2) satisfies Condition (ii).
This result can be proved with the aid of

LeMMA 7.2. If the vectors a and b with nonnegative integer components are
similarly ordered and F(x) = 0 whenever some x; < 0, then

(7.2) FOD(x) < FOx)F®(x)  forall x.
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PROOF. As noted in Section 2, F@*P(x) = (F® » F®)(x) because a and b are
similarly ordered. Consequently,

F(a+b)(x) = fu<x F(“)(x —u) dF(b)(ll) < f“<x F(’)(x) dF(")(u) = F(a)(x) F(b)(x). a

Proor or THEOREM 7.1. For notational simplicity take A = 1 in (2.2), and
suppose without loss of generality that 7, < - - - < ,. Let #, = u, = 0. Then

H(t + u)
k,
(6 tj_l + 1{/ u["l) !F(khkl"'klr' .o 'zg-lkl)(x)

k!

= S'® e ] —(t,+u,)IN
"zk.-o % =o€ (%, ")Hj-l

© - u,)T[n 1 k; j -
=320 ZRae (" ")HJ-IFZ;L‘)( lj)(tf - ’j-l)l'(“j — )Y
J*° 7

.F(kh kitky: -, z’i’-lki)(x)

= 220_0 e 2f=oe_(t"+"")nf-1(i:'l;?——l)ljz°r:.=o’ - Ez_onzslgf"‘—_mﬁ:_‘ﬁ
Fmctlymitmt bt by B D) (),
An application of (7.2) with
a=(m,m+my,- -, Zm), b=0,L+15h -2}
completes the proof. []
8. Examples. Special cases in which F, = F, = - - - = F and H of (2.1) has

exponential marginals or gamma marginals are exhibited below. In addition, a
special case of a distribution of Freund is obtained from (2.1).

8.1. Exponential marginals. 1f H is given by (2.1), and F, F, denote the
marginal distributions of F, then the marginals H,(?) = H(¢, 0), Hy(¢¥) = H(O, ?)
are given by

k
() = e G 1), i=12,

According to Corollary 4.5 of Esary, Marshall and Proschan (1973) these marginals
are exponential if and only if ; has no mass in (0, x;], / = 1, 2. This means that F
can have no mass in {(x,y):0<x <x,} U {(x%,): 0<y < x,}. Thus, a
shock produces no damage (with probability F{0, 0}),-or “kills” one component
without affecting the other, or “kills” both components. This means that if A has
exponential marginals, it coincides with the bivariate exponential distribution of
Marshall and Olkin (1967).

8.2. Gamma marginals. Suppose that the damage distribution F gives all its
mass to the four corners of the unit square. Then, without loss of generality, the
thresholds x, and x, can be assumed to be integers. In this case, for i = 1, 2,
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N; — x; — 1 has a negative binomial (Pascal) distribution, where N, is the number
of shocks to failure of the ith component. Because 7, = %_,Z, where Z, are i.i.d.
exponential random variables (with mean A~!) that are independent of N,, it
follows that 7; has a gamma distribution. In the bivariate case the distribution
obtained in this way is given by

— Pt — P AL X X3 j+n P(‘)I_JP{(;" j+n ’(}‘tl)
(81) H(tl, 12) =eF 2j= e ji-max(j,n) (i _])' (i — n)! (] +n-— i)!

PA(t,—t)]"
XE’,‘}:()'[ : r2n! ] ) >4 20

The case ¢, > ¢, > 0 can be obtained from this expression by interchanging P,
and Py, P,. and P, ¢, and #,, x; and x,, and j and m.

If x, = x, = 0 (or more generally 0 < x; < 1,0 < x, < 1), then as expected, H
is the bivariate exponential of Marshall and Olkin (1967).

In general, the (integer) value x; + 1 is the shape parameter of the gamma
marginal distribution of T}, i = 1, 2. Other simple explicit special cases can be
obtained with x; = 0, x, = 1, with x; = x, = 1, and with x;, = 0, x, = 2.

Random variables T, T, with the joint distribution of (8.1) have a representation
of the form

(82) T,=320,2Z, T,=3)Z
where N, and N, are correlated but independent of the independent exponentially
distributed random variables Z,, Z,, - - -, and where N, — x; — 1 has a negative

binomial distribution, i = 1, 2. A similar model has been studied by Gaver (1973).
For his distribution,

M+x,+1 M+x,+1
=20z, = S,

where Z,, Z,, - - -, Wl, W,, -+ - areiid. exponentlal random variables indepen-
dent of the negative binomial random variable M. It is easy to verify that if T, and
T, have Gaver’s representation and, if T, and T, are exponentially distributed, then
T,, T, have a joint distribution which is a special case of the bivariate exponential
distribution of Downton (1970). This is to be contrasted with the conclusion of
Section 8.1 above.

Another model similar to (8.2) has been considered by Arnold (1975). Explicitly,
Arnold considers the case that X,, X,, - - - are ii.d. (not necessarily exponential)
and

T, =3.X, . i=1,2---,n
Moreover, My, - - - , M, have the same distribution (multivariate geometric) that
the random variables N,, - - - , N, of Section 2 have when F, = F, = - - =F, F
has mass only on the coordinate axes, and the thresholds are all zero. Arnold
proves that the 7, are independent if X, X,, - - - are exponentially distributed by
using generating functions. This independence also follows from the remark
concerning independence in Section 1.



358 ALBERT W. MARSHALL AND MOSHE SHAKED

8.3. Example. To obtain a special case of the density discussed by Freund
(1961), let x, = x, = 2 and suppose F, = F, = - - - = F where F gives mass a/\
to(1,3)and B/Ato (3, 1), A = a + B. If Z,, Z, denote the first two waiting times
in the underlying shock process then T, = Z, and T, = Z, + Z, with probability
a/Aand T, = Z, + Z,, T, = Z, otherwise. In this case, T, T, have joint density

h(t), 1,) = a(a + B)e~*+F), 0<t <t
= Bla + B)e~x+Pn, 0<t, <t
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