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A NEW MIXING CONDITION FOR STATIONARY GAUSSIAN
PROCESSES!

BY YASHASWINI MITTAL
Stanford University
A new mixing condition is proposed for the study of stationary Gaussian
processes on R . If the covariance function of the process is r, assume

Lebesgue measure {t|0 <t<T;r(®) > Ih%%} = o(TF)

as T — oo, for some 0 < B < 1 and some f(f) = o(1). The stated condition is
weaker than those in common use, and yet it is shown to imply the same limit
theorems on the distribution of the maximum of the process. Examples are
given of processes which satisfy the new condition and not the previous ones.

1. Introduction. Let {X(¢), ¢t > 0} be a stationary Gaussian process with mean
zero, variance one. Let () = EX(0)X(¢) and suppose X(¢) has continuous sample
paths. In studying the asymptotic behavior of M; = max,,7X(#), one requires a
“local” and a “mixing” condition on the process. A standard local condition is

(1 1= r(t) = Cle*

as t >0 for some 0 <a <2 and a constant C. (The constant C may also be
replaced by a slowly varying function without undue effect; see Berman [3], for
example.) Two types of mixing conditions are commonly used. The first type is a
rate of decay condition as in

2) r()n ¢t = o(1).
' (o(1) will always mean as ¢t — o0.) The second type is an integral condition; for
instance,

(3 [e|r()|Pdt < o0

for some p > 0. The conditions (2) and (3) are not comparable.
Consider now the following mixing condition on r(¢):

4 )\{tlo <t <T;|r(0) > %} = o(T*)

for some 0 < B < 1 and some f(#) = o(1). (A denotes Lebesgue measure.) It will be
shown in Section 2 that (4) is a strictly weaker condition than (2) or (3), and some
examples of covariance functions satisfying (4) will also be given there.

In Section 3, the asymptotic behavior of My is studied. A mixing condition is
used to compare, via Berman’s lemma, M, with the maximumi of a suitably chosen
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sequence of independent standard normal variables. This procedure requires that a
certain sum be shown to be o(1). The lemma proved in Section 3 shows that this
sum is o(1) under (4) and r(¢) = o(1). Thus, in view of this lemma, (4) together with
r(¢Y) = o(1) can replace the conditions (0.5) in [3], (1.4) in [2] and (3.15) in [1]. See
also (5.4), (5.5) in [4], Theorems 5.2 and 5.3 in [9] and (1.3), (1.6) in [7] for more
examples. Note that Berman’s condition

5) F( s absolutely continuous for some p > 0,

where F is the spectral distribution, is actually too weak for the asserted Theorem
3.1 in [3] to hold. For, define

1
1—r(t) = zjltl, [t| < €

1

__ 2
TR [t] > e

=1
This covariance function satisfies (5) for p = 1. However, the limit distribution of
the normalized maximum in this case is a convolution of the extreme value
distribution exp(—e~*) with the normal, and not the double exponential
(exp(— e~ ™)) itself (cf. [8]). Theorem 3.1 of [3] is valid under a condition such as

(6 & [suPss lr(x)|]%dt < o

for some p > 0 as has been suggested by Berman in a private communication.
However, (6) is stronger than (3) and therefore (4). Theorem 7.1 of [2] is correct
despite an unverified statement at the bottom of page 935. But a better theorem
- would result with (1.4) replaced by (4).

2. Mixing conditions. Here the weakness of condition (4) is to be demon-
strated.

Suppose (2) holds, i.e., r(¢)In ¢ = o(1). Take f(t) = r(¢#)ln ¢ and observe that (4)
holds with 8 = 0.

Suppose next that (3) holds. Note that if (4) is valid for some f(¢) then it is true
for any function that decreases at a slower rate. Thus we will assume throughout
that f(¢) decreases sufficiently slowly, viz, not faster than (In #)~'. Now let us define
Ap = {T" <s <T||r(s)| > (f(s)/In 5)} for some 0 <y < 1. Then

o > [§|r(s)PPds > [T|r(s)Pds > A(AT){ ﬂl%i%‘{‘(s—) }

Hence A(4;) = o{In T'}?" because of the choice of f(¢). Obviously A(B;) = A{0 <'s
< T||r(s)] > (f(s)/In 5)} = o(T"). The Lebesgue measure in (4) is AM(47) + A(By)
and hence (4) is satisfied.

In the following, there are some examples of covariance functions for which the
local condition (1) holds together with (4), and for which neither (2) nor (3) holds.
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A. The first set of examples is derived from the symmetric Bernoulli convolu-
tions. Consider the infinite convolution

(™ Yo(t) =I5 cos(a"t)
for 0 < a < 1. The product is absolutely convergent since 3_,a%* < oo and thus

defines a singular covariance function for all 0 < a <3([6], page 67). If a = m™!
form=3,4,:- - - then

(8) lim suPM—»wlYm‘l(t)l =c>0.
(See [6], page 67, or [10], page 140; (256).) Moreover, for all 0 < a <3
(9) flea(t)lzdt = O(Tl—(lnz/lnm))

as T — oo. The exponent In 2/In m in (9) cannot be improved ([10], page 145).
Now define

t
riym(t) = (1 - : )Yl/m(t)§ 7| < €
(2¢%)
(10)
1
= T Yim(2); 1] > €2
(In [4)?

Observe that (2) is violated, since

1
lim supy,_, ,(In t)(rl/m(t)) = lim sup),_, ,(In )2y, ,,(t) =

from (8). Furtheremore,
1—(in 2/In m)

(1) (comst)T'~G2/mm > [T\ ()P4t > (const)— —

because of (9) and the remark about the exponent In 2/In m. Thus r, ,,,(¢) cannot
satisfy (3) for any 0 < p < 2. The condition at (6) is no help, since the integral is
clearly infinite for all p > 0.

Now ry,,,(¢) does satisty (4) with 8 = 1 — (In 2/2 In m) and f(¢) = 1/In ¢. For if
not, then [r, ()] > 1/(n#)> on a set of measure 7T'~@n%/2Inm gapd
J8Ir1 m(OPdt > T'=2/212m /(1n T)* contradicting (11). That r, ,,,(?) satisfies (1)
for a = 2 is easily verified. '

B. This example is a minor modification of the one suggested by L. A. Shepp.
Define

2n

(12) g(x)=c/ (7% for ¥ <x<¥+———~, n=0,12---
(n+1)2
=0 otherwise.
M 2 .
Then [Pg*(x)dx = 2;,”_0—5—7 = ] by choice of ¢. Theorem 4.2.4 of Lukacs [6]
(n+1)?

gives that
(13) r(1) = [5g(x)g(t + x)dx
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is an absolutely continuous covariance function. We notice that for all n large
3
(14) r(2¥ + x) > 770D g ()8 (27 + x + y)dy

for at least all x in [0, 2" '/(n + l)%]. The R.H.S. above is at least
2 2K/2

4
n =0 3
2275 (k1)

Where K, is chosen so that 22"™' < 27=1/(n + 1) < 2. The R.H.S. in (15) is at
least
c? 2K,/2

(15) 2,./2 e gy >

27 (ks i 2,,/2 F 28> (const) {(n — Din2 - 3/2In(n + 1)}*.

Thus for large n

(const.)n%

2"
(16) 2 +2) >

forall0 < x < 2" !'/(n + 1)%. This implies that r(t)ln t»0 and
K
[E|r(D)|Pdt > (const.)Z%_, (K? )1 2 3
(2“1’)5 (K + 1)2
where ny is the largest integer for which 227 + (2" /(ny + 1)7) < T. Thus for
all 0 <p <2, [T|r(®)Pdr =

To see that r(¢) satisfies (4), we look at ¢, 0 < ¢ < T, for which r(¢) # 0. This is
possible only if ¢ is of the form which gives

Y

22 <t+y<2¥+—="—  forsomey such that
(+1?
K
2% <y <22K+—2—2—,0<K<j.
(K +1)2

Let us write y =224+ 0 0<0<2X/(K+1)? and t+y=27+1n, 0<9 <
3

2X/(j + 1). Then
@17 t=22-2+q9-0.
For each K, 0 < K <, the length of the t-interval for which (17) is satisfied
cannot exceed 2. Thus the total length up to 2% is less than j2/ and hence in
0 < ¢ < T it is no more than 372, j2/ where J, is such that 22°<T.

Finally, for ¢ in the neighborhood of zero, we have

(18) o r(t) = 2=%. _"(—l——g - |t|)

Hence r(?) satisfies (1) for a = 1.
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3. Asymptotic behavior of M. Let X(¢), M, and r(¢) be as before and suppose
(1) holds for some 0 < a < 2. The behavior of M, is studied by discretizing the
process sufficiently closely and then comparing the maximum of the discretized
version to that of the independent standard normal variables via Berman’s lemma
(see [1] for the statement of the lemma). The normalizing constant for M. (given as
ur below) and the choice of how closely to discretize the process (determined by
value of n(T) defined below), both depend on the local conditions of the process,
viz., the value of a in (1). For constant k > 0, define

k/2
A7)

n= n(T) = 1
(AT))*

and

w=u(T)=Q21InT)+ ((k — 1)/2)lnln T/ 2 In T)".
The function f(¢) is as in (4) and 0 <y < 1. The choice of vy is specified in the
beginning of the proof of the lemma.

The constant k£ > 0 is used for generality. The proper value of k for continuous
processes satisfying (1) is 2/a. It should be noted that this value of k is also
appropriate in n(T). The value of n is used in comparing M, = maxy,¢ X, With
M, = max,,;<,X(jT/n) and hence should be large enough for the discretized
version to approximate the process itself. Pickand’s Lemma 4.2 in [9] shows that
21In T)%(MT — M,)—>0 in probability if n is chosen slightly larger than
T(In T)"/*. Thus the choice of n(T) for k = 2/a is in general fine enough for
closeness of the maximum to that of the discretized version. (See also page 43,

- Chapter 6, of Leadbetter [4] and (2.6) of Mittal [7].) Berman [3] uses n(T) for
k =3/a in (3.7). A close inspection shows that with the help of the following
lemma we could change it to the above choice. For Gaussian sequences the proper
normalizing constant is #(7") with k = 0 and this choice of k in n(T) gives n = [T]
as it should.

LEMMA. Let r(T) be o(1), satisfying (1) and (4). Then

2

T u
) 2wyl ) o0} = 2= o)
J
1+ |r(—)|
n
Jor every € > 0.

Proor. We first note that if (4) is valid for some f(r) = o(1) then it is also valid
for g(¢) = sup,,,f(x) where g(¢)|{0 as ¢ - co. Thus without loss of generality we
will assume that f(¢) is nonincreasing.

Fix € > 0 and define & = 8(e) = sup,-,|7(s)|, then 0 < & < 1. Split the sum in
(19) in two parts—[ne/T] < j < [n?] and j > [n"] for 0 <y < (1 — 8)/(1 + §).
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The first part is at most

2
1+y — u
" exP{ 1+ 8}
1+ y)k 2

<exp{(1+y—l—i—s)mT+{ ; +1+8}]nlnT}.

We notice that u?/(1 + §) contributes the term —((k — 1)/(1 + 8))lnln T
which is at most (1/(1 + 8))nln T. Also —iln f(T7) < (lnln 77)/2
< (Inln T)/(1 + &8). The upper bound for the coefficient of Inln T above is some
fixed positive constant, while the coefficient of In 7 is a fixed negative constant
because of the definition of y. Thus the R.H.S. above is o(1). We now look at the
second part of the sum in (19), i.e., when j > n”. The only difficulty in finding an
upper bound for this sum arises in being able to find appropriate upper bounds for
(7). Recall the definition of set 4, in Section 2 and set

f(s)
A€ {T" <s < Trs)| < m}

Due to the continuity of r(t) Ap = UR.ol, where I, is the union of all intervals in
Arof length I, (m + 1)™! <1 <m™'. Let my = my(T) = [(In T)%/*]. We will show
that on U], we can estimate r(f) above by 8(T™), since the number of j such
that jT/n € Uyool,, is small. On U1, we can find a suitable upper bound for
r(¢) because of its smoothness (L1psch1tz condition of order a/2) and on Af the
. upper bound for r(¢) is obviously f(¢)/1n ¢t. The number of j in one of the mtervals
in I, is at most [A(interval) X ((In T)*/2/(f( T))%) + 2). Also Ay < T? by (4) and
the number of intervals in I, is at most 7% + 1. The number of j in the remaining
intervals (of length< 1) is at most ((In T)*/2/(f( T))%) + 1. Again there are at most
TA(In T)¥/* intervals in U™o_,I,. Thus the maximum number of j such that
JT/n € U™_,I, is at most (const.) TA((In T)s/"‘*"/z/(f(T))A) Now the sum in
(19)with j > n" and jT/n € UZl,, is at most

T] 8 (ln T)8/a+k
(AT))?

where 8(n") = sup,, ,+|r(jT/n)|. Because r(r) = o(1), 8(n") = o(1). Hence the ex-
pression in (20) tends to zero as 7 — oo forall 0 <8 < 1.

By definition of the set 4, and the continuity of r(f), we know that at the
endpoints of an interval in Z,,, (t) < f(#)/In T. On the set 1, r() stays above the
curve f(¢)/In ¢, but when the lengths of the intervals are small it cannot get too far
above f(#)/In ¢. For, by the increments inequality of Loeve (12.4B),

|r(t + B) — r(DF < 2(1 — r(2)).

(20) (const.) exp{ —u?/ (1 + &(n"))}
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Thus |r(¢ + k) — r(t)| < (const.)h*/? in view of (1). Then for all s and ¢ in any one
of the intervals in U1,
|r(s) — r(¢)| < (const.)|s — ¢|*/? § ~—=
(n 7)*
since the largest length of the intervals in U 1, is (In T)~%*, Thus we can easily
see that '
f() , (const) _ . A1)
21 r(¢) < + < C ==
1) (o) y(ln T) (In T)* InT «
for all 1 € U, 1, and some constant C since we have chosen f(¢) to decrease
sufficiently slowly. If 7 € Af then by the definition of 4, we will have |r(f)| <
f(®)/Int < f(¥)/y In T. Hence we can use (21) as the upper bound on r(¢) for all
te(Uml)u A£. Thus the remaining sum in (19) when j > n” is at most

Cn? I(T;,) exp{—uz/ (1 +%(TTQ)]

(T 5 k-1
< T exp{ZCf(T ) + (k T3 AT/ T)lnln T}

< (const.)((TT))?

which tend to zero as 7 — oo.
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