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DISCRETE ANALOGUES OF SELF-DECOMPOSABILITY AND
STABILITY

By F. W. STeUTEL AND K. VAN HARN
Technological University, Eindhoven

Analogues are proposed for the concepts of self-decomposability and
stability for distributions on the nonnegative integers. It turns out that these
“discrete self-decomposable” and “discrete stable” distributions have properties
that are quite similar to those of their continuous counterparts.

1. Introduction and preliminaries. A probability distribution on R is said to be
self-decomposable (or, of class L) if its characteristic function (ch.f.) satisfies (cf.
[5], page 161)

(1.1) o(t) = p(an)g, (1)  tER;a €(0, 1),

with @, a ch.f. For the corresponding random variables (rv’s) this means that (in
distribution)

(1.2) X=aX"+X, a€(0,1),

where X’ and X, are independent and X’ is distributed as X. Clearly, apart from
X =0, no lattice rv can satisfy (1.2); in fact, all nondegenerate self-decomposable
(self-dec) distributions are known to be absolutely continuous (see, e.g., [3]).

In this note we propose analogues of self-decomposability and stability for
distributions on Ny:= {0, 1, 2, - - - }. It turns out that the discrete self-dec distrib-
utions and the discrete stable distributions share the basic properties with their
continuous counterparts. The discrete self-dec distributions, for instance, are uni-
modal, and the discrete stable distributions are very similar to their continuous
analogues on (0, o0).

We shall need the following two lemmas for probability generating functions
(p.g.f’s), and on infinite divisibility (inf div). For a proof of the second lemma we
refer to [1] and [6]. The generating function of sequences (a,)3, (5,)3, etc. will be
denoted by 4, B, etc.

LemmA 1.1. If P is a p.gf., then
lim,,,(1 — x)P’(x) = 0.

ProOF. For x € [0, 1) we have 1 — P(x) = (1 — x)P’(§) with £ € (x, 1). As P’
is nondecreasing, we have (1 — x)P’'(x) < (1 — x)P'(§) = 1 — P(x) »> 0 as x71.

LemMaA 1.2. A4 p.gf. P with 0 <p, < 1 is inf div iff P has the form
(1.3) P(z) = exp{MG(2) — 1)},
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where A > 0 and G is a (unique) p.g.f. with G(0) = 0. Equivalently, P is inf div iff

(1.4) P(z) = exp{ — [R(u) du},
where R(u) = Zr,u”, with r, > 0 and, necessarily, Z3°r,(n + D! < o, ie., iff the
D, satisfy
(1.5) (n + DPus1 = ZhcoPiln—k n € Ny,
with r, > 0.
2. Discrete self-decomposability. We start with analogues of (1.1) and (1.2)

that operate within the set of distributions on N,. For definiteness we shall assume
0<p, <1l

DEFINITION 2.1. A distribution on N, with p.g.f. P is called discrete self-decom-
posable if
2.1) P(z)=P(1 —a+ az)P(z) |z]<1; a€(0,1),
with P, a p.g.f. ’

Equation (2.1) can be written in terms of rv’s as follows:
(2.2) X=acX +X,
where a ° X’ and X, are independent, and X" is distributed as X. Here a © X is
defined (in distribution) by its p.g.f. P(1 — a + az), or by
(2.3) a° X =3N,
where P(N; = 1) = 1 — P(N, = 0) = a, all rv’s being independent. It then follows
that a e X €Ny, with 1°c X =X, 00X =0, and Ea > X = aEX, as in scalar

multiplication; an empty sum is zero.
We first establish the canonical form of the discrete self-decomposable p.g.f.’s.

THEOREM 2.2. A p.gf. P is discrete self-dec iff it has the form

(2.4) P(z) = exp{ —x;;ll;_q%‘l du},

where A > 0 and G is a (unique) p.gf. with G(0) = 0. Equivalently, P is discrete
self-dec iff it is inf div and has a canonical measure r, (cf. Lemma 1.2) that is
nonincreasing.

PROOF. Let P be self-dec, i.e., satisfy (2.1). Then for » > 0 and r(1 — a,)"' €
N,
(25) Q. (2):= (P, ()}
isapgf. AsPl—a+az)=P2)+ (1 — a)l —2)P'(z2) + o (1l — a) as all, by
(2.1) and (2.5), with a, such that «,11 as n — oo,
(2.6) Q,(2):=lim,_,, @, ,(z) = exp{—r(1 — 2)P'(2)/P(2)}.
As (cf. Lemma 1.1) Q,(z) — 1 as z11, by the continuity theorem for p.g.f.’s (cf. [1],
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page 280), Q, is a p.g.f. for every r > 0. It follows that Q:= Q, is infinitely
divisible, and therefore by (2.6), and (1.3) applied to Q, that

_P@ _ 180 _\1-G()
(2.7) R(z):= P(z2) 1—z 1—2z
equivalent to (2.4). Comparing (2.4) and (1.4) we see that P is inf div, with
(2'8) Iy = >‘(1 - 2;=1g]) = )\2}.;,,.‘.1&',

which is nonincreasing. Conversely, let P satisfy (2.4); this is easily seen to be the
case if P is inf div with nonincreasing r,, i.e., satisfying (2.8). Then P satisfies 2.1
with

P,(2) = exp{ — {1 0=IR(u) du},
ie., with R (2):= P;(z)/P,(z) = R(z) — aR(l — a(l — z)), with coefficients

r, — aZZL,,(ﬁ)a"(l —a)f " > r,,{l —amtlEe, (n +J)(l - a)’}

where we have used the fact that 7, is nonincreasing. It follows that P, is a
(infinitely divisible) p.g.f.

The unimodality of discrete self-decomposable distributions is a corollary to the
following theorem.

THEOREM 2.3. Let (p,)§ and (r,)S be sequences of real numbers with p, >0,
Po > 0, and r,, nonincreasing. Furthermore let p, and r, be related by

(29) (n + l)pn+l = 27(=0pkrn—k ne I\IO'
Then (p,);” is unimodal, i.e., p, — p,_, changes sign at most once ( p_1=0)p,is
nonincreasing iff ry < 1.

PRrOOF. The proof is very similar to that in [7] for self-decomposable densities
on (0, ). Putting d, =p, — p,_, and A\, = r, — r,,,, from (2.9) we obtain by
subtraction

(2.10) (n+1)d, = (ro— 1)p, — P n € N,.

Clearly, d, < 0 for n € N iff r, < 1. Now let 7o > 1, and suppose that

(2.11)

d >0, d>0,-- “5d, 20, d4,,,<0,--- sy ysm =4, <0, d, ,+1 > 0.
Then we have, putting p, _ ;=0ifj >n,

Pny—j < Pny—j Jj=m+1m+2, .-

Pn,—j < Py, J=L2:-,m

From (2.10) and (2.11) we have

(2.13) (m + 1d, oy = (rg — Dp, — 1!\, m—i—1 <0,

(2.14) (n, + 1)d,,2+1 (ro — l)Pn - 2"2 )\jp"z—.l 1> 0.

(2.12)
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As 257 '\p, < Z¢7'\p,,_,;_1, from (2.14) it follows that (ry = r, + Z7ZgA)

(2’15) (rm - l)pnz -_"llAjpnz—j 1
But, from (2.12) and (2.15) we obtain

n,—l

2o AP, —j—1 < 275, A,Pn + 27'-ml>‘,1’nz—j—|
<P (ro = 1) + P (r — 1) <py(ro — 1),
which contradicts (2.13). It follows that (2.11) is impossible.
COROLLARY 2.4. A discrete self-dec distribution (p,)§ is unimodal; it is nonin-

creasing iff ry = p,/p, < 1. Equivalently, an inf div distribution on N, (with p, > 0)
is unimodal if r, (cf. (1.5)) is nonincreasing; it is nonincreasing iff in addition r, < 1.

REMARK 1. In Theorem 2.3 the r, are not supposed to be all nonnegative, i.e.,
we seem to find a sufficient condition for unimodality of more general sequences
than inf div distributions. For nonnegative p,, however, 7, nomncreasmg implies
r, 2 0(n € Ny).

REMARK 2. Theorem 2.3 could be used to give a slightly simpler proof of the
unimodality of continuous self-dec distributions on (0, o0), as any such distribution
is the limit of discrete self-dec distributions. This procedure amounts to a more
drastic discretization than the one used in [7].

3. Discrete stability. The set of distributions on R that are (strictly) stable with
exponent v is the subset of the set of self-decomposable distributions with rv’s X
satisfying (cf. [2], page 171)

(3.1) (s + "X =s'7%, + /X, s5,t>0,

in distribution, where X, and X, are independent and distributed as X. We rewrite
(3.1) as

(3.2) X=aX,+(1-a)X, O0<a<l.
Now replacing aX; by a ° X, as defined in (2.3), and similarly for the other term,
we obtain the discrete analogue of (3.2). In terms of p.g.f.’s we then have
(3.3)

P(z)=P(1 — a(1 —2))P(1 — (1 — a?)/r(1 - z)) lz] < I; & € (0, 1),
and we give the following definition.

DEerFINITION 3.1. A p.g.f. P (with 0 < P(0) < 1) is called (strictly) discrete stable
with exponent y > O if it satisfies (3.3).
From (3.3) it follows that

1-PQ-(1-an/"( - 2)) __ P(—a(l —2) - P2) LP@
(1-a)(1-2) T U=a)(-2P(1-al-2)  P(2)
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as afl. Putting (1 — a”)'/? = u, this means that

1 — P(1—u(l —2)) l(] — 1-y P'(2)
(34) P A A U7
and with z = 0,
1— P(1—u) P
(3.5) s u}0.
Combining (3.4) and (3.5) we conclude that
(3.6) % = ;;—;(1 —" ze[o,1).

As P’(1) > 0 (possibly infinite) unless P(0) = 1, from (3.6) we see that 0 <y < 1.
Integrating (3.6) we obtain

3.7 P(z) = P)z):= exp{ —A(1 — 2)"} lz] < ;A >0,
by analytic continuation. As any P satisfying (3.7) satisfies (3.3), we have now
proved

THEOREM 3.2. Discrete stable p.gf.’s (i.e., satisfying (3.3)) only exist for y €
(0, 1], and all stable p.gf.’s with exponent y are given by (3.7).

ReMARK. The discrete stable p.g.f.’s are quite similar to the Laplace transforms
exp(—A7Y) of the stable distributions on (0, o) (cf. [2], page 448). Rather curiously,
the Poisson distribution replaces the degenerate one, i.e., we have

COROLLARY 3.3. The Poisson distribution is discrete stable with exponent one.
Further, as in the continuous case, we have by (3.3) and (2.1)

COROLLARY 3.4. A discrete stable distribution is discrete self-decomposable, and
hence unimodal.

ReMARK. If we define a p.g.f. P to be in the domain of (discrete) attraction of a
stable p.g.f. P, if there exist a, such that
lim, , {P(1 — &, + a,2)}" = P.(2),

then it follows that all distributions with finite first moment are attracted by the
Poisson distribution: take a, = n~'. A general theory of attraction could easily be
developed. However, as for y € (0, 1) we have P, (1 — 1) = exp(—77"), and for
every finite 7 > 0

P"(1 — a,7) = { E exp(X log(1 — a,,'r))}" ~ {E exp(—a,7X)}" n— oo,

X € N, is in the domain of discrete attraction of Py" iff it is in the domain of
attraction of exp(—Ar?) (cf. remark following Theorem 3.2).
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4. Concluding remarks. We were led to consider equation (2.1) by first consid-
ering a more formal analogue of (1.1), viz. (cf. [4])
P(az)

(4.1) P@) = 3e5 Pala) < Lag@).

This equation can be treated in the same way as (2.1), and it turns out that one has

THEOREM 4.1. A4 p.gf. P, with P(0) > 0, satisfies (4.1) iff it is infinitely divisible,
i.e., (cf. (1.3)), iff it is compound Poisson.
Defining & * X (in distribution) by its p.g.f. 1 — a + aP(z), or by

axX = ZIIVXJ»,
with N as in (2.3), we may consider the equation X = a * X’ + X, or in terms of
p.gf.’s
4.2) P(z) = {1 — a + aP(z)}P,(2) Iz) < I; & €(0, 1),
to obtain )

THEOREM 4.2. A p.gf. P, with P0) > 0, satisfies (4.2) iff it is compound
geometric.

Equation (1.1) can be handled in a similar fashion, avoiding the use of triangular
arrays, and one finds in exactly the same way: ¢ satisfies (1.1) iff (this seems to be
new)

o(f) =expfoh(W)u~'du tER,

where exp(A(w)) is an inf div characteristic function. To prove this, however, one
needs to know that ¢’ exists in R\ {0}, and is such that ¢¢’(f) > 0 as  — 0. No
such complication arises in the case of distributions on [0, o) if one uses Laplace
transforms instead of ch.f.’s.

Corollary 3.3 seems to suggest that the distribution of a sum of ii.d. random
variables with only a first moment should be approximated by a discrete stable
Poisson distribution rather than by a stable degenerate distribution. If higher
moments exist, a normal approximation would, of course, be preferable.

It might be possible to develop a theory of discrete limiting distributions for
maxima of ii.d. random variables in N,. This will be investigated later.
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