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RAPIDLY GROWING RANDOM WALKS AND AN
ASSOCIATED STOPPING TIME!'

By HENRY TEICHER
Rutgers University

An exponential limit distribution is obtained for stopping times associated
with partial sums of independent, identically distributed random variables
whose distribution function is slowly varying at infinity. It is also demonstrated
that a generalized law of the iterated logarithm cannot obtain in such a case.

1. Introduction. Let {S, = 37_,X,, n > 1} constitute a random walk whose
underlying iid. random variables have distribution function F. Ironically, if
X, > 0 and 1 — F is slowly varying, the partial sums S, are rapidly growing. In
such a case, as pointed out by Lévy [4], a,S, + ¢, cannot have a nondegenerate
limit distribution regardless of how the constants a,, ¢, are chosen. Nonetheless, it
will be shown that a “pseudo limit distribution” is possible. In other words, there
may well exist a nondegenerate distribution G(x) and a function b(x) which is

nonlinear in x such that
lim, , P {S, < cb(nx)} = G(x),allc > 0.

Concomitantly, a bona fide limiting distribution exists for the collection of stop-
ping times
T, = T(c) = inf{j > 1:8; >cb(x)}, x>0,c>0

which turns out to be exponential and independent of c. The limit G(x) is one of
the extreme value distributions.

It will also be demonstrated that such i.i.d. random variables {X,, n > 1} do not
- obey a generalized law of the iterated logarithm. In other words, there do not exist
positive constants b,Tco and a finite, nonzero a for which

. 1
lim sup,,_,mb—z;?= X, = a, ac.

2. Mainstream. In the context of random walks whose underlying distribution
F sustains a (i) barely finite or (ii) barely infinite mean, it was shown in [3] how to
choose normalizing constants b, such that a one-sided iterated logarithm law and
weak law of large numbers hold. The prescription for the function b, in the case of
infinite mean is precisely the one needed here to obtain a limit distribution for the
normalized stopping time (1/n)7,. A theorem of Darling [1] plays a basic role in
the proof.
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THeorReM 1. Let S, = 37_,X;, n > 1 where {X,,n > 1} are nonnegative i.i.d.
random variables with distribution function F such that 1 — F is continuous and
slowly varying at . If w(x) = [3[1 — F(y)ldy, x > 0 and

(1) bx=(-l-’f§c-5) l, T, = T,(c)=inf{j >1:8;, >ch,};
then for x >0,y >0,¢c >0
) lim, , P{T, >ny}=1lim, P{Sy <cb,}=e/*
and, furthermore, for all x > 0

. S, . S,
3) lim inf, b,:c =,.0, limsup, = B " a.c.00.

ProOF. Note at the outset that x/u(x) and hence b, is increasing to infinity.
Moreover, slow variation ensures

@ . u(x) ~ x[1 = F(x)]
whence p(x)to0. Via slow variation, (4) and the definition of b,,
P{S, <cb,} = P{n[1~ F(S,)] >n[1~ F(ch,,)]}
=P{n[1- F(S,)] >n[1 = F(b,,)](1 + o(1))}

= P{n[l - F(S,)] > i "”)(1 + (1))}

= P{n[l - F(S,,)] >;(1 + 0(1))}

e V/x
by a theorem of Darling [1] and so via continuity of the limit function and
monotonicity of b,

lim,  P{T, >ny} =lim, P{S,) <cb,}=e/"

Apropos of (3), for all positive x and c,

n— oo

P{lim inf,,_,wbi > 20} < lim, ,,P{ N 2,[S >cb,])

< lim,_,  P{S, >cb,} <1
via (2) whence the initial portion of (3) follows from the zero-one law.
Analogously,
, S, , w o
P{lim SUPwg - €1 > lim P{ U 2,[S; > cb, ] > lim P{S, > cb,.} >0

implying the remaining portion of (3). [J

The limit in (2) is a distribution function in x for all y > 0 and 1 minus a
distribution function in y for all x > 0 and there is a certain resemblance between
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(2) and Theorem 1 of [6]. In obtaining (2) and (3), the requirement that X > 0 can
be weakened to F(— x) = o(1 — F(x)) as x — oo [1].

Next, it will be demonstrated that random walks of this sort cannot obey a
generalized law of the iterated logarithm.

THEOREM 2. Let {X,,n > 1} be i.i.d. random variables with df F. If 1 — F is
slowly varying and F(0) = 0, then for every positive sequence c,oo, either
lim, . S,/c, =,.0 or limsup,_, . S,/c, =, according as Z_,[1 — F(c,)] con-
verges or diverges.

Proor. The hypothesis guarantees that F is not in the domain of partial
attraction of the normal distribution. In fact,

XP{X| >x) x*[1 = F(x)]
EXLyxi<q  2/6Y[1 = FOY) ]y
and 1 - F(c,) ~ 1 — F(ec,), € > 0. Hence, setting S, = 21X, it follows from a

result of Heyde-Rogozin that for every positive sequence ¢,foo, either I{°[1 —
F(c,)] = o0 and

S, S,
(5) lim sup,,_mc—" = lim sup,_,., Ic"l = o0, a.c.,
or Z°[1 — F(c,)] < o and
1
(6) -C—'(Sn - 2;= IEXI[IXI<0,]) _)a.c.O'

Consequently, if
(x) = EXIjjx|<xp
integration by parts yields
v(x) = fo[1 = F(»)]dy — x[1 = F(x)] = o(x[1 = F(x)])
as x — oo. This implies for all sufficiently large m that

2:,:,,,1(;"—) <32 (1= F(c)] < o

n

and so Kronecker’s lemma ensures
1
= Z-() = o(1)
which in conjunction with (6), guarantees

n
C_ _)a‘c‘O
n

and- proves the theorem. []
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