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EXPONENTIAL MOMENTS OF VECTOR VALUED
RANDOM SERIES AND TRIANGULAR ARRAYS!

By ALEJANDRO DE ACOSTA
Instituto Venezolano de Investigaciones Cientiﬁcas

We prove the finiteness of certain exponential moments of Banach space
valued random series and triangular arrays. We also prove integrability results
for Poisson measures on Banach spaces.

1. Introduction. This paper contributes to the study of integrability properties
of independent series and triangular arrays of random vectors taking values in a
Banach space.

For the case of random series, previous research on this question has been
carried out in Hoffmann-Jorgensen [4], [5] Ch. 11.4, Jain and Marcus [6], Kwapien
[9] and Kuelbs [8]. Let {X;} be independent random vectors taking values in a
Banach space, S, = Z7_,X. In the case when S, — S a.s., we give necessary and
sufficient conditions for the finiteness of the expectation of certain exponential
functions of ||.S|| (Theorem 2.8); we also obtain results on the exponential integra-
bility of sup,||S,|| even when S, » a.s. (Theorem 2.9). Theorems 2.3, 2.8 and 2.9
improve results in [6] (Theorems 3.8 and 3.11) and in [5] (Corollary I1.4.8); in
particular, Theorems 2.8 and 2.9 answer a question posed in [5], page 4. Our
approach is somewhat different from that of [4], [5] and [6]; we use truncation and
inequalities which involve the exponential moments directly, instead of inequalities
which make possible the comparison of the tails of sup;||Xj|| and sup,||S,|, as done
in the aforementioned papers. (Although we deal only with exponential moments,
we remark that the results on integrability of powers of ||S|| and sup,||S,|| in [4]
and [6] can also be proved by our method.)

In Section 3 we prove the finiteness of first-order exponential moments of
uniformly bounded triangular arrays (Theorems 3.1 and 3.2). As corollaries of
Theorem 3.2, we obtain two results on the integrability of Poisson measures:

Corollary 3.3 improves a result of Yurinskii [10] and’ Corollary 3.4 extends to

Banach spaces a result of Kruglov [7] for the case of Poisson measures on Hilbert

space.
In what follows, B will denote a separable Banach space.

2. Exponential moments of random series. We recall the following well-known
inequality.
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LeMMA 2.1. Let X, Y be independent B-valued random vectors, X € L'(B), EX
= 0. Let f: R + — R be a convex function such that Ef(|| X ||) < o and Ef(|| Y||) <
. Then Ef(|Y]) < Ef(|X + Y.

The next lemma is the exponential form of the converse Kolmogorov inequality
(de Acosta and Samur [2]). It is essential for what follows.

LEMMA 2.2. Let {X;:j=1,- - -, n} be independent B-valued random vectors,
S, = 2}.1X,, and assume || X}|| < ¢ <o as.,j=1,- -, n. Then
(@ fEX;=0,j=1,---,n,then for all A > 0,¢t > 0,

E(exp A||S,|l) < P {sup; el Sill > 1} E(exp A|[S, [|) + €
(b) if each X is symmetric, then for all A > 0, ¢ > 0,
E(exp A||S,|l) < 26N OP{||S,|| > 1} E(exp Al|S,[|) + €.
PROOF. (2) Let 4, = (S|l < 1,j < k; IS >}, 4 = Ul_ 4, =
{sup; <k <nll Skl > ¢}. Then
E{(exp A||S,l1)Ls} = 2% E{(exp NS, Ly, }
< Z%ciE{(exp AISell + 1IS, = SelD) Ly, }
= Zhai(E{(exp NSl Ly, })(E(exp AlIS, = Sill))-
By Lemma 2.1, E(exp A||S, — Si||) < E(exp A||S,|)). Since for w € 4, we have
[[Se@)]] < || S (@) + || X (w)|| € ¢+ c, it follows that
E{(exp AlIS, )L} < eX* O E(exp Al|S,[)Z% - P(A)
= I E(exp A||S,[) P(4).

Since E {(exp A||S,|[) 4} < eMP(A°), part (a) follows by addition. To prove (b), we
use P. Lévy’s inequality: P(4) < 2P{||S,|| >¢}. O
We shall use the notation M = sup,||S,||.

THEOREM 23. Let {X;:j € N} be independent B-valued random vectors, S, =
251X Assume () || X)|| < ¢ < oo for all j € N;

(b) S, — S almost surely in B.
Then for every A > 0, E(exp A||S|) < o0, E(exp AM) < oo and lim,E(exp A||S,,||)
= E(exp A||S )

PROOF. Assume first that each X; is symmetric. For m <n, let 4, , =

{IIS, — S,.,/l > ¢}. By Lemma 2.2, we have :
E(exp A||S, = S,ll) < 2N OE(exp A[|S, = S,|)P(4,,,) + V.
Choose m so that P(4,, ,) < (3)e~*¢*9 for all n > m. Then
(%)E(exp AlS, — S,l) <eM  forall n>m
and, therefore, E(exp A|S — S,|) < 2e™. Since E(exp A||S,|[) < oo and
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E(exp A||S|)) < E(exp A|S,,|]) - E(exp A||S — S,,||), it follows that E(exp A||S||) <
0. By P. Lévy’s inequality and Fubini’s theorem also E(exp AM) < co.

A standard desymmetrization procedure (see, e.g., [4] or [6]) completes the proof
of the integrability statements. The convergence statement follows by a well-known

argument. []

The following example exhibits a real-valued independent random series such
that |[X;| < 1 a.s. for all j, S, — S a.s. but E(exp|S|?) = oo for all p > 1. Thus the
above integrability result is best possible when one considers functions of the norm
of the form g(x) = exp(A[|x||?) (x € B).

ExampLE 24. Let 0 < p; < 1. Let {X, : j € N} be independent random vari-

ables with £(X;) = (1 — p;)8, + p;6,. Then for anyp > 0,n E N,
E(exp S?) = 2% .o(exp k?)P{S, = k}
> (exp n?)II}_, p;-
Now take p; = j ~2forj € N and p > 1; then S, converges a.s. by the three series
theorem but
E(exp S?) > exp(n?)(n!) > > o as n— oo.

If in Theorem 2.3 we merely assume that {S,} is stochastically bounded, then we

obtain a weaker result.

THEOREM 2.5. Let {X; :j € N} be independent B-valued random vectors, S, =
251X, Assume (a) | X)|| <c < oo  forall jEN;

() {S,},.cn is stochastically bounded.
Then M < oo a.s. and there exists ¢ > 0 such that E(exp eM) < o0.

PROOF. Assume first that {X;} is symmetric. Choose # > 0 so that sup, P {||SS,,||
>t} <3 and then ¢ > 0 small enough so that exp(e(z + ¢)) < 2. Then Lemma 2.2
implies: for all n,

(3)E(expellS, ) < e*.
By Lévy’s inequality and Fubini’s theorem we have: for all n
E(exp eM,) < 2E(exp &||S,||),

where M, = sup, || S;/l. Now monotone convergence implies (E exp eM) < 4e*®.
Again, a standard desymmetrization procedure ends the proof. []

The following lemma appears in [3]. We give a differ.ent proof. For a B-valued
random vector X, 7 > 0, let X, = X/ y <.y X" = X — X,.

LEMMA 2.6. Let {Xi}1<j<n be independent symmetric B-valued random vectors,
S, = 271X Let S, , = 27_,X,,. Then for every measurable convex subset K of B,

P(S,.& K) <2P(S, & K).
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ProOF. It is easily verified that if X is symmetric, then £(X, —X7) =

L(X,, X).
It follows that
Xy = XT3 Xop = X35+ 5 X — X)) = (X, —X]) ® -+ - BL(X,,, —X])
= (X, X{) ® - - - ®L(X,,, X))
= LX), X7+ - - 5 X, X)),

and, consequently, £(S,, — S;) = £(S, , + S;) = £(S,), where S; =37_ X/

Now P(S,,& K} < P{S,,+S; & K} + P(S,,— S] & K} =2P(S, & K).
0

LeMMA 2.7. Let {X,},,, be independent symmetric B-valued random vectors,
Sn = ;n lAlj'

(a) Suppose {S,} converges almost surely. Then for every T >0, {S, ,} converges
almost surely.

(b) Suppose {S,} is stochastically bounded. Then for every v >0,(S, .} is

stochastically bounded.

Proor. (a) By well known results, (see, e.g. [4]), it is enough to prove that
{S,, .} is Cauchy in probability. But Lemma 2.6 implies that for every ¢ > 0, n,
m € N with n > m,

P{|IS, , = Sy .l >e} <2P{||S, — Sl >e}.
(b) is similar. [J

We shall now consider exponential moments in the unbounded case. Let us
remark that if 0 < p < 1, then f(x) = exp(Ax?)(x > 0) is not convex and therefore
Lemma 2.1 does not apply to f. However, one may easily prove the following
substitute inequality: if X, Y are independent B-valued rv’s, 0 <p < 1 and A > 0,
then

2.1) E(exp A X + Y||?) > E(exp Al|X|[|”) - E(exp(—A[| Y ||")).
We shall write V' = sup,|| X/

THEOREM 2.8. Let {X;:j € N} be independent B-valued random vectors, S, =
271 X. Assume S, — S as.,and let A > 0,0 <p < 1. Then the following conditions
are equivalent:

(1) E(exp AV?) < o0;

(2) E(exp A||S|IP) < oo;

(3) E(exp AM?) < 0.

Moreover, if any of (1)-(3) is satisfied, then lim,E(exp A|| S,||?) = E(exp A||S||?).

PROOF. Assume first that each X; is symmetric.
()= (2). Let f(x) = exp(Ax?) for x >0 and let 7 > 0. Define 4, =
{sups < j<nll X;ll > 73, A, & = {5UPy < s 1l Xll <75 | X, ]l > 7). Then, if S® = S,
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— X, using f(x + y) < f(x)f(y)(x > 0,y > 0), we have

(22) E{f(I1S.I)1,,} = 2% E{AUIS DL, }
< St E{AUSEN + 11Xl x> )
< Zh EAISEON) - E{ AU XD T x>y )
< (supy k< EAIISKON)) F(7)

where F(1) = 20-1E{f(||Xk||)I(||Xk||>-r)}'

Since S, — S a.s., it follows that for some r > 0, inf,c y P{||X|| <r} > (3)- Let
a = 2 exp(ArP); then by (2.1)

(2.3) Ef(IISNl) < aEA(|| S,])-

Next, let us observe that Ef(V) < oo implies lim,_,  F(7) = 0. In fact, according
to [6], Lemma 3.1, there exists a > 0 such that F(a) < oo. The claim follows then
from the Fatou-Lebesgue lemma (for series).

By (2.2) and (2.3),

Ef(I1S,1) = E{f(IS,IN1y,} + E{ SIS )L}
< aF(1)Ef(||S,]1) + Ef(IS,,.I),

where S, . = 2% _ 1 XL x 1<)
Now choose 7 so that aF(1) < %; then Lemma 2.7 and Theorem 2.3 imply

(2)sup, EA(IS,I1) < sup,Ef(||S, .Il) < o,

and, therefore, Ef(||S||) < co.

(2) = (3). This follows from Lévy’s inequality and Fubini’s theorem.

(3) = (2). Obvious.

(2) = (1). By (2], Lemma 2.3), P{V >t} < 2P{||S| >t} for all z > 0.

The result follows now from Fubini’s theorem.

By well-known, elementary arguments, in order to prove the convergence state-
ment it is enough to show that

(24) limtaoosuan{f(”Sn”)I(IIS,,||>t)} = 0.
Now (using the notation in part (1) = (2)), forz > 0,7 > 0
E{ S s>} < E{SUSMN s> lac} + E{AUIS,INL,, }
S E{ IS, ys,u>} + aF(m)Ef(IS, )

< (EFIS,, D)2 (P{IIS,| > })F + aF(r)EF(|1S, )

1 1
< (E(exp BI1S,, - 1D)?(P{lIS,ll > ¢})* + pF(7)
for an appropriate 8 > 0, where p = a sup, Ef(||S,||) < co. By Theorem 2.3, for
any 7 > 0

sup, E(exp B S, .l) < ;
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therefore, given ¢ > 0, one may find 7 > 0 so that pF(r) < ¢/2 and then ¢ > 0 so
that the first summand is less than ¢/2 for all n. This proves (2.4).

The general (nonsymmetric) case follows by a standard desymmetrization proce-
dure, similar to those presented in [4] and [6] (see also Theorem 3.1 below for
desymmetrization in a slightly different situation). []

REMARK. In connection with (2) = (1) above, let us remark that it is a standard
procedure in similar contexts to use the inequality P{V >t} < 2P{||S| >1t/2},
which is deduced at once from Lévy’s inequality and the obvious fact V' < 2M.
This somewhat weaker inequality would not suffice for our present purposes.

An analogous argument, using Theorem 2.5 and the ideas in the proof of
Theorem 2.8, yields the following result. We omit the proof.

THEOREM 2.9. Let {X;:j € N} be independent B-valued random vectors, S, =
371X, and assume that (S} is stochastically bounded. Let V = sup||X,|, M =
sup,|S, 1, A > 0.

(1) Let 0 <p < 1. Then E(exp AV?) < oo if and only if E(exp AM?) < oo.

(2) If E(exp AV) < oo, then E(exp eM) < o for some ¢ > 0.

3. Triangular arrays and the integrability of Poisson measures. The methods we
have used also yield integrability results for vector-valued triangular arrays. The
following result improves Theorem 2.3 (1) of [1].

THEOREM 3.1. Let {X,;:j=1,-"", k,;n € N} be a row-wise independent
triangular array of B-valued random vectors, S, = 2, X,,. Assume
@) [I1X,ll < ¢ < oo as. for all n, j;
(b) {S,} is stochastically bounded.
" Then there exists € > 0 such that sup, E(exp &||S,||) < oo.

PROOF. Assume first that {X,;} is symmetric. Then the proof is entirely similar
to that of Theorem 2.5.

The desymmetrization technique is a variant of that used in the case of series.
The details are as follows. Let {X,} be a row-wise independent triangular array,
independent of {X,,} and such that £(X,) = £(X,,) for all n, j, and let S, = 3, X,,.

If {S,) is stochastically bounded, then so is {S, — S,}, and the result for the
symmetric case implies: for some ¢ > 0,

D = sup, Ef(||S, — S,l) < o,

where f(x) = exp(ex)(x € R). Let g,(¥) = Ef(||S, — »||),» € B. By Fubini’s theo-
rem, for all n :

J8(») dE(S,)(¥) = EAIIS, — S,ll) < D.

Let r > 0 be such that sup, P{||S,|| >r} <3, and let B, = {x € B : ||x|| <r}.
Then B, N {y : 8,(y) < 3D} # ¢. In fact, if B, C {y : g,(y) > 3D}, then

D > [p.(») d2(S,)(») > 3D)(3) = 3)D,
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impossible. For each n, choose y, € B, so that g,(y,) < 3D. Then for all n,
Ef(11S,11) < Ef(I1S, = yall + 1174l
= f(1y.1)8(y,) < (exp(er))(3D). 0

We may prove a better result under more restrictive conditions on the triangular
array {X,;}. We refer to [1] for definitions and basic facts on Poisson measures.

THEOREM 3.2. Let {X,;} be a row-wise independent infinitesimal triangular array
of B-valued random vectors. Assume

@ (|1 X,ll < c < o as. for all n, j;

(b) £(S,) —>,8, * c, Pois p for some z € B and v > 0 and some Lévy measure p.

Then for every A > 0, sup,(E(exp A||S,||) < oo.

PrOOF. As in Theorem 3.1, it is enough to prove the result in the symmetric
case. Thus we may assume £(S,) —,, Pois p, where u is a symmetric Lévy measure.
By Lemma 2.2 we have for any a > 0,7 > 0, n € N (taking ¢ = ¢)

(G.1) E(exp a| S, ,II) < 2e**P (]IS, || > 1} E(exp al|S, I|) + e™.

Since Pois(p|B,)—, 08, as r—0, given ¢ >0 we may choose 7> 0 so that
Pois(u|B,)(Bf) < ¢e/2 and 7 is a continuity radius of u. By [1], Theorem 2.10,
£(S,, ;) —,Pois(u|B,) and therefore there exists n, such that n > n, implies

P([S,, Il > 1} <e.
Taking ¢ = (%)exp(—Zat) we obtain from (3.1): for all n > ng,
(3)E(exp alS, ,II) < e,

~and, therefore, sup,E(exp «|S, ,||) < . We proceed now to bound
E(exp a||S,”|), where S =S, — S, . Let ¢, =1Iyy ~n ¢, =3, Then
ISPl < ¢, max|IXy|| < g,
By the independence of {¢,; :j =1, - -, k,},

E(exp(al|S7I1)) < E (exp(acZ,¢,))

= I, E(exp(ace,;))
= I(e*P {9, = 1} + P{9, = 0})
=IL,(1+ (e = DP{| X, >})
< exp((e® — D, P{[1 X, >}).

By [1], Theorem 2.2, sup, ;P {||X,|| > 7} < co. Therefore,

sup, E(exp(a]| S{”|])) < oo.
Given A > 0, take a = 2A; then, since S, = S, , + S, we have for all n

E(exp(AIS, 1) < E(exp(AllS,, Il + AISE)
< (E(exp(allS,, 1)) *( E(exp(all SOI)))?. 0
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As a consequence of Theorem 3.2, we obtain an improvement of the following
result of Yurinskii [10]: if p is a Lévy measure on B with bounded support then
J exp(e|| x||)(¢c, Pois p)(dx) < oo for some & > 0.

COROLLARY 3.3. Let yu be a Lévy measure on B such that W(Bf) = 0 for some
r > 0. Then for all A > 0, all 7 > 0,
J exp(A[|x[1)(c, Pois p)(dx) < co.
Proor. Let {X,} be an infinitesimal triangular array such that
£(S,) —>,¢, Pois u; say, let {Xy :j=1---,n} be independent with £(X,) =

¢, Pois(pu/n).

By [1], Theorem 2.10, for every 8 which is a continuity radius of u we have
£(S, s — ES,, 5) =5 Pois(u|By); if & > r, then p|By = p and if Y, = X, —
EX,s T, = Z,Y,, we have

£(T,) —,c5 Pois p.

By Theorem 3.2, sup,E(exp A||T,|[) < oo; therefore, by a standard argument

J exp(A||x][)(c,; Pois p)(dx) < oo. []

ReMARk. If B is Hilbert space, Kruglov [7] has a sharper result: if u is a Lévy
measure with bounded support, then [ f(x)(c, Pois p)(dx) < co, where f(x) =
exp(a|x|[log(l + ||x||)) for some a > 0.

Our next proposition generalizes to Banach spaces a result of Kruglov [7] for
Poisson measures on Hilbert space.

COROLLARY 3.4. Let ¢ : B— R™ be a continuous function such that ¢(x + y) <
co(x)p(y) for all x,y € B. Let p be a Lévy measure on B. Then [ ¢d(u|Bf) < oo
Jor some (for all) r > 0 if and only if for some (for all) T > 0 [ ¢d(c, Pois p) < 0.

PrROOF. If ¢ is a function with the stated property, then it easily follows that
there exist « > 0, 8 > 0 such that for all x € B

(32) #(x) < a exp( B[ x[).
Assume [ ¢d(u|Bf) < oo. Since

Jod(c, Pois p) = [ ¢(x + y)d(c, Pois( u|B,))(x)d(c, Pois(u|B))(»)
<c [ ¢d(c, Pois(p|B,)) - [ ¢d(c, Pois( u|B))),

in view of (3.2) and Corollary 3.3 it is enough to prove that [ ¢d Pois » < oo, with
v = p|BS (recall that u(BS) < oo). But the usual expansion gives

e [ ¢d Pois v = 32_o(k!) ™" f pdv*
= ¢(0) + T ,(k) 7' [ o(x, + - - - +x)u(dx,) - - - v(dx,)
< 9(0) + ZE_ (kD) T TK T [ o(x)) - - - d(x)w(dx) - - - v(dx)
= $(0) + Z_ (k) 'k pdv)*
= ¢(0) + ¢~ '{exp(c [ ¢dv) — 1} < o0.
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To prove the converse statement, just use the above expansion to obtain, for any
t>0

J ¢d(p|Bf) < exp{ u(B;)} [ ¢d Pois(pu|BS) < 0. 0
Let us point out that as particular examples of functions ¢ we have
o(x) = exp(al x||?) for a« >0, 0<px<l1

and
&(x) =2°2 + ||x||?)) for p>0 (with c¢=1.)

NOTE ADDED IN PROOF. It is possible to prove versions of Theorems 2.8 and 2.9
for functions ¢ as in Corollary 3.4. Thus one may unify in a single statement the
results in [4] and [6] on the integrability of vector valued random series in the case
of arbitrary powers of the norm and the results of the present paper in the case of
exponential functions of the norm. An investigation along these lines for triangular
arrays will be carried out in a forthcoming joint paper with E. Giné.

Acknowledgment. Example 2.4 was the outcome of a stimulating talk with J.
Kuelbs; he should be given the main credit for it. I also thank E. Giné and J.
Samur for some useful conversations.
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