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MONOTONICITY OF AN INTEGRAL OF M. KLASS!

By JAMES REEDS
University of California, Berkeley

For each value of 8, 0 < B < 2, the integral
S 2o {1 — exp(— x~sin’tx) }|¢| = ~Adt

decreases monotonically as a function of x, x > 0. This result is useful in
approximating the absolute Sth moment of the sum of zero mean i.i.d. random
variables.

Let 0 < B < 2; define g: R —> R by
g(x) = [P {1 — exp(—xZsin’tx)}|¢| "' "Pdt  for x#0
and by
g(0) = lim, og(x) = [® (1 — e~ ")|t| "~ Fdr.
It is easy to check that g is continuously differentiable for x # 0.
The following result was conjectured by M. Klass (1978):

THEOREM. g'(x) < O for all x > 0.

REMARKS. Actually, Klass worked with the integral

f°_°°°{l — expgcimz—_1 }]t["‘ﬁdt;

x
the double angle formula cos 26 — 1 = — 2 sin’d shows that his integral is our
278/ 2g(2”%x). He gave a proof of the theorem in the special case 8 =1 and
“verified it by computer for many other values of 8. He used the present result to
derive high precision bounds on E|S,|#, where S, is the sum of ii.d. random
variables.

Proor. It is clear from the definition of g as an integral that 0 < g(x) < g(0)
for x > 0, and that lim,_  g(x) = 0. Hence g'(x) < O for certain values of x
arbitrarily close to 0 and for certain other values of x arbitrarily large. A Laplace
transform argument below will show that. the set of x for which g'(x) < 0 is an
interval; taken together these observations certainly imply that g’'(x) < 0 for all
x> 0.

The Laplace transform argument is easiest done under the change of variables
s =x"2 Let ‘

(+) k(s) = [2(1 — e ) [s| =+ Py
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then k(s) = g(s‘%)s’g/ 2 so if x >0,g(x) <0 if and only if A(s) =
sP/%(d/ dsyk(s)s#/?) > 0.

The claim is that the set of s > 0 such that A(s) > 0 forms an interval. Actually,
more is true: A(s) has at most one sign change in (0, o0). This follows because A(s)
is (a constant multiple of) the Laplace transform of a certain function f, —
(B/2)f defined below, which itself has at most one sign change in (0, o). (By the
“variation diminishing property of the Laplace transform” (Karlin, 1968) Laplace
transforming cannot increase the number of sign changes of a function.) The gist of
the proof consists in exhibiting f, — ( 8/2)fyz, showing that its Laplace transform
is a constant multiple of the function A(s), and finally, showing that f, — (8/2)fy;
has at most one sign change.

By definition

h(s) = sﬁ/zi(k(s)s‘ﬁ/z) = k'(s) — 2—’Iik(s).

It is clear from (*) that k(0) = 0, so

h(s) = k'(s) — 2—‘i [5k/(0)do

= k'(s) — gEk’(sU),

where U is a random variable uniformly distributed on [0, 1]. Examination of (%)
shows that k’(s) is a Laplace transform:

K'(s) = [ sin¥|t]| = +Bessingy,
Let T be a random variable (independent of U) with density function
" (1/c)sin’|t]~*B), where ¢ = [®_sin%|t|"+Pdsr. Then k'(s) is just ¢ times the
Laplace transform of Z = sin’7, that is,
k'(s) = c- E(e™*%).
Let f, be the density function of the random variable Z and let f,, be the density

function of the random variable UZ. f,(¢) and f,,;(¢) both vanish if 7 is outside the
range [0, 1]. Then

h(s) = c(Ee—sz - gEe—suz)

= e} 1o(2) = S a7z

as promised.

All the remains to be proven is that the function f, — (8/2)f,, has at most one
sign change in (0, 1). ’

To see this define the random variable 7’ to be the mod « residue of 7, so
PO< T <w)=1and P(3n € Z such that T’ = T + nw) = 1. The density func-
tion of T’ is equal to O for 1 < 0 and ¢ >, and for 0 <t <« is given by
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(1/ c)sin’t¢(t) where
¢(1) = 2. _ |t — nm|717E.
Calculus, change of variables, and the fact that ¢(¢) = ¢(7 — ¢), yields

A(£2) — 5 1() = tan 1900) - BT 0(au = 1), say,

where 4 > 0 is some suitable constant and ¢ = arc sin z? for 0 <z <1, ie., for
0<t<m/2. We prove /’(f) > 0 on (0, #/2]; this shows f, — g fuz is monotone
on (0, 1].
Differentiating, we obtain
I'(t) = seckd(t) + tan t¢'(¢) + Bo(2);
we show this is positive by arguing term by term in the summation defining ¢.
Since
#() = 32O (e~ )

1 1

t — an|'*B t — an’

= - (1 + B)E;z.o-—ool

the nth term in /'(¢) is

{sec’t +B8—-(1+p8) tan ¢ }

|t — an|'*A t—an
We argue that the quantity in braces is > 0 for each ¢ in (0, 7 /2] and each integer

n.
Since sec’ and tan ¢ are periodic with period =, it suffices to show that
tan w -

(**) secw + B > (1 + B)T‘

for all w of the form w = ¢t — @n, where 7 is an integer and 0 <w < /2.

By periodicity, and since tanw > 0 for all our w’s, it suffices to check the
“worst” case 0 < w < /2. Further, tan w > w for each such w, so the function
secw + B — (1 + B)(tan w/w) decreases as B increases. Thus if the inequality (*x)
is verified for 8 = 2 it is automatically true for all 8 < 2. When 8 = 2, (**) reduces
to

w(l + 2 cosw) > 3 cos w sin w
for all w € (0, 7 /2]; the double angle formulae imply that this is equivalent to

A(#) =02+ cosf)—3sinf >0
for all 8 € (0, 7). Now,
N(@)=2—-2cos8 — @sin¥,
A"(8) =sin 8 — @ cos 0,
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and
A’(@) =0sind > 0in (0, 7].
Further, A(0) = A’(0) = A”(0) = 0, so by Taylor’s theorem, if 0 < § <,

2
A9) = fgx"(t)@;—’)dt > 0. 0
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