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RATES OF ESCAPE OF INFINITE
DIMENSIONAL BROWNIAN MOTION

By K. BRUCE ERICKSON
University of Washington

In this paper the analogue in infinite dimensions of the Erdos-Dvoretzky
rate of escape test for finite dimensional Brownian motion is proved. Some
examples are constructed which exhibit the essential differences between the
finite and infinite dimensional cases and which suggest several conjectures and
problems.

Introduction. Let (¥, || - ||) be a real separable infinite dimensional Banach
space and let X = {X(¢); ¢t > 0} be a Brownian motion on V" with X(0) = 0. (See
Section 3 for the definition.) If X is genuinely d-dimensional with d > 3 (see
Remark 2) then P[lim,,[|X(#)|| = o] = 1, as one may easily show, see Section 3.
If also d < oo, then for any positive function » = h(#)]0 as o0

(1L1) P[IX(5)]| < £2h() io. astteo)
= 0 or 1 according as 3, h?~2(2*) converges or diverges

(i.0.= infinitely often.) See Dvoretzky and Erdos (1951). The main purposes here
are (a) to find the appropriate extension of (1.1) to the case d = oo (Theorem 2),
and (b) to exhibit some examples which illustrate the essential differences between
the cases d < oo and d = oo. These examples also motivate some conjectures and
suggestions for further research. (See Section 6). In Section 2 we prove a general
rate of escape result (Theorem 1) for processes with stationary independent

~ increments.
We now state Theorem 2a, the analogue in infinite dimensions of the Erdos-

Dvoretzky test (1.1). Let us call a function 4 continuous on (0, c0) admissible if

(1.2a) 0 <h(£)|0 and ¢2h(1)}oo, oo,
and
(1.2b) h varies slowly at o0; A(tx)/h(1) > 1, 110,  forallx > 0.

THEOREM 2a. Let X be a genuinely infinite dimensional Brownian motion on V
with X(0) = 0. Let | - | be a continuous seminorm on V of rank at least 3 with respect
to X (see Section 3) and let h be admissible. If for some 8 < 1 we have

(1.3) Sch A2 P[|X(1)] < 6h(25)] = 00 then
(1.4) P[|X(1)| < r7h(r) i0. as 1o ] = 1.
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326 K. BRUCE ERICKSON

However, if the series in (1.3) converges for some 8 > 1, then the probability in (1.4)
is 0.

(For an apparently stronger version, see Theorem 2 in Section 3. Appearances
notwithstanding, the two versions are equivalent.)

ReMARk 1. From (1.2a) and (1.2b) we see that for each fixed # > 0 the
function ¢ t~'h~%(#)P[|X(1)| < Oh(¢)] is nonincreasing on (0, co). Consequently
(1.3) holds if and only if

(1.5) [ 2O P[1X(1)| < 6h(1)] di = .

(Express the integral as a sum of integrals over intervals [2, 2¥*1), k =0, 1,- - - ).
From this observation one sees that if (1.3), (1.4), (1.5) hold for the function A4, then
they must also hold for the function ¢ — A(¢”) for any fixed 8 > 0 (provided A(¢#)
is admissible).

REMARK 2. Since ¢ ¢X(1/¢) is also a Brownian motion on ¥, Theorem 2a has
an analogue for ¢}0, e.g., if (1.3) holds for some admissible # and 8 < 1, then
P[|X(0)| < t%h(l /) i.0. as t[0] = 1, etc. A similar remark applies to Theorem 2 in
Section 3.

ReMARK 3. If for some closed subspace ¥V, we have
(1.6) P[X(1) - X(0) €V, forall ¢]=1,
but for every proper subspace W of V, we have
(1.7) P[X(1) - X(0)e W] <1 forall z>0,

then we say that the process X is genuinely d-dimensional, d = dim(V,), and that
V, is the support of X. It follows from the 0-1 law of Kallianpur (1970) that every
Brownian motion with values in a separable Banach space has a support space ¥,
and that the probability in (1.7) is in fact 0. See Fernique (1974). Compare also
Kuelbs (1970).

2. In this section we give a criterion for |X(#)| < y(?) infinitely often as ¢t — oo
where X = {X(¢); ¢t > 0} is a process with stationary independent increments and
v is a regularly varying function. This criterion is similar to a criterion in Kesten
(1970) page 1176, Theorem 2, for a point in R’ to be an accumulation point of a
random sequence {S,/Y,} where {S,} is a one dimensional random walk. Kesten
attributes his criterion, in a special case, to K. G. Binmore and M. Katz.

Let V be as in Section 1 and let X = {X(¢), ¢t > 0} be a strong Markov process
‘on ¥ which has stationary ilidependent increments, X(0) = 0, and, if the time
parameter ¢ is continuous, which has right continuous sample paths. The most
important property of such a process that we use is this: if 7" is any stopping time
(more specifically, if T is any hitting time for X)) relative to {o(X(s); s < ?); ¢t > 0},
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then, conditional on 7T < oo, the process {X(T + ¢) — X(T); ¢t > 0} is indepen-
dent of o(X(s); s < T + ) and is a probabilistic replica of X. Let y be a positive,
nondecreasing function on (0, co) which is continuous and varies regularly at oo
with positive exponent; for some 8 > 0 (the exponent)

(2.1) v(tx)/y(t) - xB, t1oo, x > 0.
THEOREM 1. Let | - | be any continuous seminorm on V not identically 0, let X and
v be as above and let b > 1. Then (2.2) implies (2.3) implies (2.4) where

(2.2) lim inf,, | X(2)|/v(¢) < 1 w.p. 1 (with probability 1),
(2.3) ZkP[lX(t)| < y(¢) for some t E[b", b"“)] diverges,
(2.4) lim inf,q.| X(£)|/v(£) < 1 w.p. 1.

NotE. The continuity of the seminorm | - | can be replaced by the considerably
weaker condition that the seminorm process ¢ — |X(#)| have continuous sample
paths. This remark applies to Theorem 2 as well.

Proor. We partially follow Kesten (1970), page 1176. Clearly (2.2) implies (2.3)
by the Borel-Cantelli lemma, so let us suppose that (2.3) holds. Let ¢ > 0 be fixed
but arbitrary and choose ¢ > 2 so large that

(2.5) Y(s:)/7(s)) < 1 +3e when ¢ <5, <5, <519/(q 1),
(2.6) ¥(s,)/v(s)) <3¢  when g <s <s5,/(q—1).

To prove (2.5) and (2.6) use Bojanic (1971) after noting that y(x)/x? is slowly
varying. Keep in mind that x? is continuous and monotone and 8 > 0 and that
v(x) is monotone. Since for each y > 1 we have

2.7 Levy/ ters = 0, 5700, uniformly in &k > 0,
where #, = b*, we may choose s > 1 so large that #, > 2 and
(2.8) ot/ e, =1/6°"1< 1/q  for k> 1
Fix k > ko, where 4, > q. Define the stopping times

A =min{s: ¢ > f, |[X(1)| <v(9)}.

Note that P[A < oo0] > 0 since for any j > k, P[A < oo] > P[|X(#)| < y(¢) for some
t €[4, t,,)] and the latter probability must be nonzero for infinitely many j on

account of (2.3).
On [A < o] we have | X(A)| < y(A), by continuity, so

D, ‘=“[|X(a)| > y(a)’for alla > 4, ,, A €[ 1, tk+])]
S[IXA + 1) = XA <y + 1) + y())  forall
Xt 2 by —MAE[fs by |-
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But for 4, <A<f,,andt+ A >, ,wehave A > q, ¢t >4, — b, > q, and,
more importantly,  + A < tg/(q — 1), A < t/(q — 1) by (2.8). Applying (2.5) and
(2.6) we get

D D[IXA + 1) = XN)| > (1 + e)y(r) forall t > g, X €[ 44, 1,41 ]-

Now {X(A + ¢) — X(\); ¢ > q} and A are independent on [A < o0] and Law
(XA + 1) — XA); ¢t > g}A < o) = Law {X(¢); ¢ > q}, consequently

(2.9) P(D,) > P[|X(1)] > (1 + €)y(1) forall ¢ > g] P(Ay)

where 4, = [A € [1, 4., )] = [| X(9)| < y(?) some ¢t € [b*, b**1)]. Clearly at most s
of the events D, can occur at one time, so E[# D, which occur] = 3, P(D,) < s <
co. Hence, by (2.3) and (2.9) we must have

P[1X(#)] > (1 + e)y(¢) forallt > q] =0

and this holds for all large g (and hence all ¢ > 1). In other words P[|X(¢)| < (1 +
€)Y(?) i.0. t1oo] = 1. But this is the same thing as (2.4) since ¢ > 0 is arbitrary.

COROLLARY. P[lim inf|X(?)| /() > 1] = 1 = series in (2.3) converges = P[lim
inf[X()]/v(5) > 1] = 1.

REMARK 4. The only property of the sequence #, = b* needed for the proof is
given by (2.7) and, of course, #, _, < f, — 0. So we can replace {b*} by any such
sequence, e.g., 4, = exp(k log k), 7, = exp(k?). This may be useful in showing
convergence in (2.3) rather than divergence. It would be of interest to determine
whether or not sequences {7, } slower than exponential could be used in Theorem 1.
See Feller (1968), pages 210-211, problem 7, where the sequence # =
exp(k/ log k) is put to good use in a similar situation.

3. Proof of Theorem 2. Let X = {X(¢); ¢+ > 0} be a Brownian motion on
(V, || - ) starting at O, that is, (i) X has stationary independent increments, (ii) X is
strong Markov, (iii) X has continuous sample paths, and (iv) X is centered
Gaussian; for any continuous linear functional f and for any ¢ > 0, {X(¢), f> =
f(X(?)) has a Gaussian distribution with mean E{X(¢), f> = 0 and variance
E{X(2), £)* = tECX(1), f)* (We added (iv) mostly for emphasis; it may be easily
seen that (i) and (iii) with E{X(?), f> = 0 implies (iv).) The essential implication of
(iv) (for our proof) is the Brownian scaling property; for each fixed ¢, X(¢) and
11X (1) are identical in law. For the essential implication of (i) and (ii) see Section 2.
Note that the law of a Brownian motion on V is completely determined by the
covariance function given by (f, g) » Ef(X(1)g(X(1)), f, g € V*.

Let us say that a continuous seminorm | - | on V is of rank at least d with respect
to X if there is a continuous linear transformation L: ¥V — V of rank d such that
the process LX is genuinely d-dimensional and

(3.1) ILv|| < |v|forallv € V.
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Observe that LX is also a Brownian motion and its support is L(V,) where V is
the support of X, see Remark 3, Section 1. The bar denotes closure in the norm
topology. We need only require | - | be continuous on V,,

THEOREM 2. Let X (with dim(V,) = o0) be as above and let | - | be a seminorm of
rank > 3 with respect to X. Fix b > 1 and let h be admissible, see (1.2). Then

lim inf|X(¢)|/£2h(¢) > 1w.p.1, or < 1wp.]1,
according as
(32) 3h2(b%) P[|X(1)| < h(b%)]

converges or diverges. Convergence (divergence) of (3.2) is equivalent to convergence
or (divergence) of the integral in (1.5), Remark 1, with § = 1.

PrOOF. Put
¥(1) = £2h(2)
where & satisfies (1.2). Then y satisfies the hypothesis of Theorem 1 (S =% in
(2.1)). Therefore, the conclusion follows from Theorem 1 and Lemmas 1 and 2

below.
Let us write

(v, 1, 1) = P[|X(s)| < y(s)  forsome s €&[1,1,)]

LemMMA 1. Forany b > landk =1,2,- - -
(33) p(v, 6571, b%) > a,h 2 (b*)P[|X(1)| < h(b*)]
where

ay = (1= b~ Y)(/&P[|X(s)| < 2] ds)”" > 0.

LEMMA 2. Forany b > 1,6 >0,k=0,1,-- -,
(34) p(v, b5, b**Y) < a,h~2(B*)P[|X(1)] < (1 + &)h(b¥)]
where

a, = max{4e~%(b2 — DE|X(1)% 2(1 + b~ )A*(b)} < oo.

In what follows, if Z is any random variable and 4 any set in the range of Z, we
write I[Z € A] for the indicator of the event {w: Z(w) € A}, also, P*, E* denote
probability, expectation when the process starts at x, P® = P, E® = E.

PrOOF OF LEMMA 1. Let T =min{s: ¢ > b*~!, |X(#)| < y(t)}. Then T is a
stopping time, p(y, b*~1, b¥) = P[T < b*] and we have

Ef5iad[|X(s)] < v(s)] ds = E{/FI[|X(s)| < (s)] ds; T < b*}

(3.5) = E[{E /8" 1| X(w)| < v(u + )] du}lyoxery, =75 T < b*]
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by the strong Markov property. But for y = X(7) we have |y| < y(b*) on T < b*,
S0

E’ (8] 1X(w)| < y(u + ©)] du < Ef§T[|X(w) + y| < y(b*)] du

< EfSI[IX(w)] < 2v(6%)] du = yA(6X)EfE/POOI[ X (s)| < 2] ds

< b*W*(b*)ESEI[|X(s)| < 2] ds = b*h*(b*)[FP[|X(s)| < 2] .
The first equality in thelpreceding calculation follows from the Brownian scaling;
Law (X(at)) = Law (a2X(?)), see (iv) above. The last equality is by Fubini’s
theorem. Returning to (3.5) we get

Ef’,;’;-J[|X(s)| < y(s)] ds < b*R*(b*)[FP[|X(s)| < 2]ds p(v, b*~", b).
On the other hand, by monotonicity of A,
Ef5-I[ X(s)] < v(s)] ds = [5-P[|X(1)] < h(s)] ds
> (b* — b* ) P[|X(1)| < R(B¥)].

The last two inequalities give (3.3).
It remains to show that a, > 0, i.e., that

(3.6) CP[1X(#)| < a] dt < oo, a>0.
Let ¥, be the support of X and let L be as in (3.1), L continuous. Put N = L( V),
then N is the support of the process LX = Z and, by hypothesis, we can suppose
that N is 3-dimensional, i.e., that Z is genuinely 3-dimensional. Let v,, v,, v; be a
basis for N and let us write
LX(?) = Z(t) = Z,(t)v, + Z,(8)v, + Z5(t)vs.
Then the covariance matrix D = (EZ(1)Z(1)) i,j = 1, 2, 3 must be nonsingular,
hence, positive definite, and we have
P[|Z(1)|, <b] = (2wt)_%6 _%fz%ﬂgﬂkbzexp(— 372D 7) dr
where |Z(9)|, = (ZX¥) + ZX(t) + Z}(t))il, 8 = det(D), z' = transpose (z) =
(2}, 25 z5). It follows that for b < oo
1
(B7)  JEP[1Z(1)), < bl dt = [i+ [2 < 1+ (1878) " 2b3 ("7 dt < oo.
All norms on the finite dimensional space N are equivalent, so there exists a
constant C, 0 < C < o0, such that
1Z(5)l, < CllZz(o)l.
But from (3.1) we have
1Z(ON = ILX (DI < |X (D).
Hence
P[|X(?)| < a] < P[Z(1)], < aC],
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and (3.6) follows from this and (3.7).
PROOF OF LEMMA 2. Let A = min{#: |X(¢)| < y(2), ¢ > b*}. Then

Ef3T[1X(9)] < (1 + )y(s)] ds
> E[[{I[1X(s)) < (1 + e)y(s)] ds; A < e+t
(3.3)
= E[E(/5"" 1] |1X(u) + y|
<A+ e)y(u+ )] du)ly_w‘),,_)‘; AL b"“]
as in the proof of Lemma 1. When y = X(\) and b* < ¢ =\ < b**! we have
|X(w) + y| < |X(w)| + v(2), so,
81X (u) + y| < (1 + e)y(u + 0)] du > SETTIX (w)] < ex(1)] du
>[5 I1X )] < ev(b*)] du
by monotonicity of y. Using this and Fubini’s theorem in (3.8) we get
3.9
J5TPLIX ()] < (1+ e)y(s)] ds > p(y, b%, b**1) =2 P[|X(u)| < ey(b*)] du
Choose
a® = max{2E|X(1)]%, h*(b)/ (b — b)), a>0o,

then @ < oo (the finiteness of E|X(1)|? is immediate from Fernique (1974), page
11), and we have

a~%A(b*) = a“%MA(b*)b* < (b — 1)b**!
for all k£ > 0 (recall that A is nonincreasing). For any 0 < u < a~%%2(b*), we get
P[|X(w)] < ev(6%)] = P[|X(1D)] < u3ey(b%)]
> P[|X(1)| <a] >3,
by Chebyshev’s inequality and Brownian scaling, and thus,
(3.10) JEVPP[1X ()] < ey(b%)] du > La~%%b n(b*).

Clearly
(3.11)

S5 PLIX(9)] < (1 + €)y(s)] ds = f57"P[|X(D)|
<(1+ s)h(s)] ds < (bF*2 — b")P[IX(l)I <(1+ e)h(b")].
Going back to (3.9) with the bounds (3.10) and (3.11) we get (3.4).

4. Examples. In this section we shall construct some Brownian motions with
support in /% or /® and determine their rates of escape. These examples illustrate
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the difference between the finite and infinite dimensional cases and suggest some
interesting conjectures and problems (discussed in the last section).

Throughout this section let {{B,(¢), ¢t > 0}}%_, be a sequence of mutually
independent one dimensional standard (EB(f) = 0), EB*(¢) = ¢ all {) Brownian
motions all defined on the same probability space. Let {o,} be a sequence of
constants such that

(4.1a) o, > O for all k sufficiently large,
(4.1b) {0, } ultimately decreasing and o, — 0, k — o0.
Our examples will be of the form
(4.2) X(2) = (0,B,(1), 0,By(1), - - - )

= Z5-10:Bi (Ve t>0,
for various choices of o,. Here ¢, = kth unit coordinate vector =
(’o,_lgf—%'(? Lo, ) Note that (4.1a) and mutual independence of the B, gua-

rantees that X is genuinely infinite dimensional. We also note the following
lemma whose proof will be left to the reader.

LemMA 3. Let 1 < p < 0. P[X(¢) € I for all t] = 1 if and only if
(4.3) Z%-10f < .
Moreover, under (4.3), X is a Brownian motion on I”,

If X = (X,, Xy, - - - ), we write |X|, for the /” norm of X: |X|, = (|X,[")'/7, p
< o, |X|, = LUB{|X,| : kK > 1}. For our examples we want to find admissible A
so that

(4.4) 0 < lim inf|X(9)|,/2h(£) < oo
w.p. 1. (Note that (4.4) is impossible in the finite dimensional case; the lim inf is
either O w.p. 1 or oo w.p. 1.) From Theorem 2 it is clear that to determine such 4 we
must get very sharp asymptotic estimates for the probabilities

P[|X(1)|, < €] as &l0.

Unfortunately this seems to be a very delicate problem even in the case p = oo.
(See Section 5.) However, the recent work of Dudley, Hoffman-Jergensen and
Shepp (1979) provides estimates in the cases p = 2 and p = oo which are sufficient
for a wide variety of sequences {0, }.

ExaMPLE 1. Let o, = 1/k® (B >3) in (4.2). For this process we have (4.4) with
p =2 and h(t) = (g lg 1)~ P~ 2 (Ig stands for the natural logarithm). More precisely

'3_% 1
(4.5) (1/2p)"/* < lim inf(—lg-lgT’)—p((tn2 < (2p)?B%,
{2

wherep = 28 — 1)~ L.
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Proor. From Example (4.5) in [2], we have
F(h) = P[|X(1)|, < h] > BrPC~Pexp(—B(1 + p)h=%),
F(h) < ARP"~Pexp(— B —3)n =

where A and B are finite positive and independent of h. Replacing 4 by hy(e”) =
Oh(e™) = O(g n)~ /% we get A,(Ign)n~" < hy (e")F(hy(e™)) < A,(Ig n)n~"
where v, = B(1 + py0 =%, v, = (B — 3)0 "%, A,, A,, C,, C, are independent of n.
An application of Theorem 2 easily yields (4.5).

REMARK 5. Occasionally, the probabilities P[|X(1)|, < h] are quite obliging. In
Example 1, if 8 =1 we find, see Theorem 5.3 of [2], that this probability is
bounded above by a constant times A~ ! exp(—(7*/8)h ~?) and is bounded below
by a constant times & exp(—(72/8)h~2). From this we get

lim inf(lg lg /)3 (S_,(1/K) BA(1)? = 7 /84,

w.p. 1. (Take h = O(1g 1g ¢ -3 in Theorem 2 with 8 slightly smaller and then slightly
larger than 7/ 8%, keep in mind that the lim inf must-be a constant w.p. 1.)

REMARK 6. For any process of the form (4.2) let us write
X,(0) = 24_10.B(De,  XU1) = X(1) — X,(0).
In Example 1, we find that for every d > 1,
lim inf s(r)(lg Ig )2 X,()],/ 73 = oo
lim inf s(¢)(1g 1g £)| X, (¢)],/13 = 0

w.p. 1 whenever s(f)foo as 7o and I[s(2¢)(g lg 2%)7]~“~? = co. (This follows
from (1.1) for X, and (4.4) for X?.) Thus, as one might expect, with respect to | |,,
X of Example 1 escapes to oo slightly faster than any of its finite dimensional
projections.

EXAMPLE 2. Let o, = k~2e (A > 0, const.). Then (4.4) holds with p = 2 a~d
h(t) = exp[ —(2A1glg t)%].
PrROOF. Arguing as in Example 4.7 of [2] we obtain
F() = P[|X(1)], < 1] < AP[lg |73 exp[ — (1/20) 1g% ],
F() > BrPallg 1|5 exp[ — (1/20) g2 1]

where p; = — 2 and p, = (1/2\)(1 + A + lg 4). Setting ¢ = hy(e”) =

0 exp[—(2A 1g n)%], we find that, épart from a constant multiple, the series (3.2)
(with b = e, h = hy) is dominated by and in turn dominates a series of the form

S(lg n) "% exp[ C(8)(2\ Ig n)7 — Ig n]
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where C(#) =2 — p, + A" '1g 8 in the dominating series and C(§) =2 — p, +
A~'lg @ in the dominated series. It follows that (3.2) converges for any 8 <
exp[A(p; — 2)] and diverges for any 8 > exp[A(p, — 2)] (as a by product we have
obtained fair upper and lower bounds for the lim inf in (4.4). For example, if A =3
the lim inf lies between .17 and 1.56.

REMARK 7. The k™7 in o, = k=2~ of the last example is merely a “con-

venience factor”; it greatly simplifies the computations, required by the results of
[2], leading to the bounds on P[|X(1)|, < ¢]. However, one is naturally more
curious about the behavior of (4.2) when o, = e ~**. With a little patience one can

1
show that in th1s case (4.4) holds with p =2 and A(r) = (g lg )+
exp[—(2A 1g g t) ]

ExAMPLE 3. When the sequence {g, } does not satisfy (4.3), the process (4.2) no
longer has support in /7 and indeed, |X(#)|, = oo w.p. 1. The next example shows
that such processes may have a very rapid growth rate in the /* norm. The
example is

_1
X(1) = 27_,(1g k) "2 By ().
For this process we have | X(7)|,, < oo w.p. 1, but
(4.6) lim inf|X(¢)| /¢ = 22 w.p. L.
In other words, y(¢) = 17 is the natural rate of escape for this process.

Proor. The finiteness of | X(¢)|,, follows from Example 3.2 and Theorem 3.1 of
[2]. It also follows from Example (3.2)

P[|x(1)], <s] =0for0<s <22, > 0fors > 21.
Let Q denote the positive rationals then
Pp = P[lX(t)loo < t%h(t) for some ¢ 6[2", 2"”)]
= P[IX(t)IOo < tilh(t) for some ¢ 6[2", 2"t n Q]
< 2 e rennoP| X0 < 24

But for ¢ € [2%, 2"*Y), P[|X()|,, < t3h(8)] = P[|X(D)|,, < k()] < P[IX(1),, <
h(2™)] = 0 as soon as h(2") < 21, Hence, on taking A(¢) = 2% we get Xp, =0 < ©
which entails P[|X(¢)|,, < 17 i.0. as t1oo] = 0 by the Borel-Cantelli lemma. From
this we get (4.6) with > instead of = . To get <, note that q = P[|X(®)|, < st2
i.o. as #foo] > lim, P[|X(¥)|, < stz for some ¢ > n] > lim P[|X(n)|, < sn2] =
P[IX'(I)L,o < 51> 0 for any s > 23. But q is either 0 or 1, hence ¢ = 1 for every
s > 23, We are done.

REMARK 8. The (stochastic) separability of the process {|X(#)|, ¢ > 0} needed
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in the preceeding proof follows from the sample path continuity, with respect to
| - | Of the process X. This fact is not exactly trivial to verify but we omit the
proof.

5. In this section we study the rate of escape of Brownian motion with respect
to various sup-norms. These results complement those of Section 4, and throughout
we let

B (1)e,

(5.1) X(1) = Z¢
@

where {{B(¢)}: k > 1,¢ > 0} and {e,} are as in Section 4, and {4} is a strictly
positive increasing sequence. We may view X as a Brownian motion (with continu-
ous sample paths) in the Hilbert space of real sequences

V= {x = {x) € R®: S Nx% < oo}
where ().} is a fixed sequence of strictly positive numbers such that XA, < oo

(which entails 3,A,/a? < oo since {a,} is increasing). The inner product on V is
given by

(%,5) = 2 MeXe
THEOREM 3. For {x,} in R* define

(52) H{ % }Heo = SUPgs 1|5
and let {X(?): t > 0} denote the sample continuous Brownian motion defined in (5.1).

Then the following hold.
@) If P(X(9)|y < 0) > 0 for any t > 0, then

(53) (log k)= O(a) as k— oo.
(i) If P(x(?¥) € co) > for any t > 0, then
(5.4) (log k): = o(a) as k—>oco.

Here c, is the subspace of R consisting of sequences which converge to zero.
(iii) If @, = k? for 0 <p < o0, then
X(t )Iao

2

(5.5) 0 < lim inf,_ _(log log 1)/ ——= | oo w.p. 1.

REMARK 9. Using simple comparison arguments with (iii) of Theorem 3, we get
many different results. For example, if @, < Mk?(a, > MkF) for all k sufficiently
large, then

()I
r

Proor. If P(|X()|,, < ®) > 0, then P(|X(1)|,, < o0) > 0 and hence P(|X(1)|,
< o) = 1 by the Kolmogorov zero-one law. Letting F(f) = P(|X(1)|,, <) we

lim inf,__ (log log ¢)f ——= | > 0(< o0) w.p. 1.
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have
F(t) = Ig_,P(|B,(1)| < 1a,)
= [I7.(1 — R(ta;))

where R(?) = (2/77)%f,°° exp(— x?/2) dx. Hence F(t) > 0 iff 3, R(ta,) < o0, and,
using the inequality

Crexp(—12/2)/ (1 + £) < R(t) < C, exp(—12/2)/ (1 + 1) t>0

for some infinite positive C,, C,, we see, as in Dudley, Hoffman-Jergensen, and
Shepp (1977), that F(¢) > 0 iff

(5.6) S exp(—1%a2/2)/ (1 + ta,) < .
Now (5.6) converges for all ¢+ > 8 iff

2., exp(—1%al/2) < oo for every t > 8.
Hence P(|X(1)| < o) = 1 implies there exists a #, < oo such that

(5.7 S2_, exp(—13ai/2) < oo.
Now {a,)} increasing implies {exp(— t2a?/2)} is decreasing and thus (5.7) implies
exp(— 13a2/2) = ¢/ k, k>1,

where ¢, -0 as kK — o0, ¢, > 0. Taking logarithms and noting that —log ¢, > 0
eventually, we see that
(5.8) lim sup,(log k)?/a, < 1,/21.

Thus (i) holds.

If P(X(t) € ¢y) > 0, then by the above argument we also have (5.8) holding.
Furthermore, it is easy to see that the number #, > 0 in (5.8) can be taken
arbitrarily small. Hence the lim sup in (5.8) is 0 and (iii) holds.

Part (iii) of Theorem 3 is established using Theorem 2 with b = e. That is, one
shows that the series

(5.9 3@ P[|1X(1)|,, < A(log n)~?](log n)*

converges for A sufficiently small, 4 > 0, and diverges for A sufficiently large,
A < oo. These facts are established on noting first the fact

(5.10) P[|X(1)|, < t] =g P[|V] < tk”]
where ¢ = A(log n)™?, and V is a Gaussian random variable with mean 0 and

variance 1.
To get convergence in (5.9) note that

1+ S%_,P[|Z| > k?] > E|Z|'?, Z = V(logn)f4~!,
hence
2 P[|V| < AkP(log n) "] < exp(—Z7_,P[|V| > Ak?(log n)™7])
< 3exp(—blogn) =3n"2
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where b = A~/PE|V|'/P. Consequently for 0 < 4 < (E|V|'/?)?, (5.9) does con-
verge.

The proof that (5.9) diverges for 4 < oo sufficiently large is somewhat more
involved. We break the product in (5.10) into two parts: II; ¢ ,, and II;~,,,, Where
r(n) is chosen to satisfy —1 < r(n) — A~?logn < 0 for all n > 1. The second
product dominates n~" where m, = 24 ~'/PE|V|"/?, Using Stirling’s approxima-
tion, we see that the first product dominates (log n)*/%2™ where m, =
A~Yr(tlog(2/7) — p — (1 + p)~'). Consequently, the series (5.9) dominates the
series =, (log n)*/%1®™~™) and by choosing A4 sufficiently large, we can make
m, — m; > — 1 forcing divergence. The details of these assertions are straightfor-
ward but lengthy and are therefore omitted.

6. Let X be a Brownian motion on the Banach space (V, || - ||) with support V,,.
1
Let y(¢) = t2h(¢) where h is any numerical function satisfying (1.2) or only (1.2a).
Put ‘
C(X, v, || - |I) = lim inf,_,, y() ™| X(2)]-
As noted before, C(X, v, || * ||) is a constant w.p. 1. The Erdés-Dvoretzky test (1.1)
shows that 0 and oo are the only possible values of C(X, v, || - ||) when X is finite
dimensional. (Replacing 2 by ek does not affect convergence or divergence of
Sh9=%(2%).) On the other hand, for some infinite dimensional Brownian motions,
1
there is a natural rate of escape; a function y = 24 such that

(6.1) 0<C(X, v, |- ) < oo.

See examples in Section 4. Note that in Example 3 4 = 1 which does not go to 0.

ConNJECTURE 1. If X is genuinely infinite dimensional and if

(6.2) P[|X(0)Il <e] >0 forall ¢>0, t>0,
then (6.1) holds for some y. As one may easily show, (6.2) holds for any process
@.2), || - || =] |,, with {0, } satisfying (4.3).

CoNJECTURE 2. If (6.1) holds, then y can be taken to the y(¢) = tzlh(t) where A
is the (asymptotic as ¢ — o0) solution to

PlIIX()I <h()] =1/1gt t>e.
Of course even if Conjecture 1 is false, the problem remains: find necessary and

sufficient conditions on (X, ¥, || - ||) so that (6.1) holds for some y. Particular
processes of the form (4.2) are of independent interest.

CONJECTURE 3. If Zj is the process
Zp(1) = 21k 2B ()¢, t>0,

notation as in Example 1, Section 4, then a natural rate of escape for Z; with
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respect to the /” norm | - |, is given by

Y,a(t) = 17/ (glg 1y ~"/7
provided Bp > 1.

Note that Conjecture 3 is true in the case p = 2 and p = oo; see Example 1,
Section 4, and Theorem 3 part (iii) in Section 5. A related problem is to compute
the exact value of C(Zg, v, g, | - |,). One value is C(Z,, v, 1, | - |,) = 77/8% found
in Remark 5. In [9] Mogulsky states a result (no proof given) which seems to unply

C(Zgs Va0 | - 1) = AP73, 8 >1 and A = (B — 1)m /(2B sin(m/2B))]F/#~

7. While writing up the results of this paper, Professor Kuelbs brought to my
attention item [9]. In [9], Mogulsky has stated a rate of escape type result for
Brownian motions satisfying the very strong assumption

log P[|IX(1)]| < 1]~ —t7°L(z), as 1|0,

for some a > 0 and some slowly varying function L. No proofs of his results have
appeared. Part (e) of his Theorem 1 and part (i) of his Theorem 2 seem to be
wrong. Parts (d) and (g) of his Theorems 1 and 2, respectively, follow easily, in the
case of Brownian motion, from our Theorem 2. I omit the details.

Added in proof. Dennis D. Cox has recently (1-80) established that Conjecture 1
is true in the /7 case, 1 < p < oo! Also, Conjecture 3 is true.
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