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A COMPOUND POISSON LIMIT FOR STATIONARY SUMS, AND
SOJOURNS OF GAUSSIAN PROCESSES!

By SIMEON M. BERMAN.
New York University

Let {X, ;:j=1---,nn> 1} be an array of nonnegative random
variables in which each row forms a (finite) stationary sequence. The main
theorem states sufficient conditions for the convergence of the distribution of
the row sum 3 X, ; to a compound Poisson distribution for n — co. This is
applied to a stationary Gaussian process: it is shown that under certain general
conditions the time spent by the sample function X(s), 0 < s < ¢, above the
level u may be represented as a row sum in a stationary array, and so has, for ¢
and u — oo, a limiting compound Poisson distribution. A second result is an
extension to the case of a bivariate array. Sufficient conditions are given for the
asymptotic independence of the component row sums. This is applied to the
times spent by X(s) above u and below —u.

0. Introduction. The purpose of this paper is to present a limit theorem for
sums of nonnegative, stationary random variables, and apply it to the distribution
of the time spent by the sample function of a stationary Gaussian process above a
high level over a long time interval. The theorem states sufficient conditions for the
convergence of the distribution of the sum of stationary random variables to a
compound Poisson distribution. It is applied to the Gaussian process by showing
that the occupation time of the set above the high level can be decomposed into a
suitable sum of stationary random variables.

Limit theorems for the extreme values in a sequence of independent random
variables are based, in part, on the Poisson limit theorem for sums of independent,
Bernoulli random variables whose expected sum is relatively constant. Indeed, if
{X,} is a sequence of independent random variables with the common distribution
function F(x), and if {#,} is a nondecreasing sequence of real numbers such that
1 — F(u,) = 1/n, then the number of random variables X; such that X; > u,,
j=1,+++,n, has, for n > o, a limiting Poisson distribution with mean 1. The
limiting distributions of the extreme order statistics can then be derived from this

result. (See, for example, [13], page 371.)
In recent years there has been much research on the extension of the Poisson

limit theorem from independent to dependent Bernoulli random variables; see, for
example, [12], [16], [26], [38], [40]. This has been accompanied by, and stimulated
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by the corresponding extension of the theory of extreme values from independent
to dependent random variables [3], [4], [S], [14], [15], [19), [25], [31], [32], [37], [41],
[42], [43]. A recent comprehensive review is contained in the monograph by
Galambos [17].

The first result in our work is a generalization of the convergence to a Poisson
distribution to the more general compound Poisson distribution. The latter is one
whose Laplace-Stieltjes transform is of the form {(s) = exp{ (1 — e™**) dH(x)}
for some nonincreasing function H. Four conditions are put on the distributions of
the summands. The first involves only the marginal distributions, and is a neces-
sary and sufficient condition for convergence in the case of independent
summands. The other three conditions constitute the mixing hypothesis which
ensures the weakness of the dependence among terms which are mutually distant in
the time index set. The mixing hypothesis is slightly different from others which
have been used in the Poisson context. The first of the three mixing conditions is a
local mixing condition: it implies that significant contributions to the sum can arise
only from terms whose indices differ by a relatively large time quantity. It is a
generalization of the last condition in Meyer’s theorem [26] and of Leadbetter’s
condition D(u,) [19]. The last two conditions involve global mixing, placing an
asymptotic independence condition on the finite-dimensional distributions of the
random variables of the array whose indices are widely separated. It involves only
the k-dimensional distributions for fixed but arbitrary k£ > 1. This mixing condi-
tion is slightly different from others of recent use, but appears to be easier to check
when the process is specified by its finite-dimensional distributions (compare to
Meyer’s mixing condition [26] or Leadbetter’s conditions D(u,) [20], [21]; recent
work in this area has also been done by Serfozo [39].)

The main application of the Poisson limit theorem for dependent random
variables has been to the distribution of the number of crossings of high level 4 by
the sample function of a stochastic process X(¢), 0 < # < T, where v and T both
become infinite. This has been done in much detail for stationary Gaussian
processes e.g., [2], [8]; however, it has been observed (see, for example, Leadbetter
[19]) that the limiting Poisson distribution of the number of crossings holds for a
general class of stationary stochastic processes, and not only Gaussian processes.
The crossings theorem is based on the following considerations. It is customary to
deal with the upcrossings alone. As u increases with the length T of the time
interval, the upcrossings tend to become widely separated in time provided that
there is a finite expected number in each interval. If X(¢) has a suitable mixing
property, then the occurrences of upcrossings in widely separated intervals are
asymptotically independent events. Then the Poisson theorem for dependent ran-
dom variables implies that the number of upcrossings has a limiting Poisson
distribution. The result has also been extended to “epsilon-upcrossings” for certain
nondifferentiable processes where there is an infinite number of expected ordinary
upcrossings in every interval (see Pickands [33]).
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The main application of our theorem is to the limiting distribution of the time
spent by the sample function in the set (u, o). We say that a sojourn above u
begins at time ¢ if X(s) < # for all s in some nondegenerate interval with right
endpoint ¢, and the set {s : X(s) > u} has an intersection of positive measure with
every nondegenerate interval with left endpoint ¢. An upcrossing of the level u
marks the beginning of a sojourn. If there is a finite number of expected upcross-
ings in each interval, then the number of sojourns above u is the same as the
number of upcrossings. As the level # increases, the duration of the sojourn tends
to be small; however, when properly normalized, the duration has a limiting
distribution, which is defined as a conditional limiting distribution. (The various
definitions of this conditioning are discussed by Kac and Slepian [18], Cramer and
Leadbetter [14], Chapter 11, and Berman [6).) It follows from the reasoning used in
the proof of the Poisson limit for the distribution of upcrossings, that the time
spent above u is the sum of a random number of nearly independent random
variables (the durations of the sojourns) and where the random number is nearly
Poisson distributed. This leads to the compound Poisson limit distribution.

The first result of this type is due to Volkonskii and Rozanov [41], who proved it
under strong conditions on the local behavior of the covariance function, and
under a strong mixing condition. These hypotheses were weakened by Cramér and
Leadbetter [14] page 278; however, they still maintained the assumption of a finite
expected number of upcrossings in each interval. The first step away from the
identification of the sojourns with the upcrossings was taken by Berman [7], who
considered a larger class of processes, with sample functions which were not
necessarily differentiable, and with a possibly infinite expected number of upcross-
ings in each finite interval.

The purpose of this work is to extend the latter in several directions:

1. We show that the limit theorem for the sojourn time is a special case of a
general compound Poisson convergence theorem for stationary sequences. This
opens up the possibility of proving sojourn time theorems not only for Gaussian
processes, but also for more general stationary processes, just as Leadbetter [18] has
done for the Poisson limit for upcrossings.

2. In the last section we present a limit theorem for the bivariate sums taken
from a bivariate stationary array, and apply it to the distribution of the times spent
by the sample function of a stationary Gaussian process above a high level and
below a low (negative) level, respectively. The theorem states sufficient conditions
for the asymptotic independence of the two sums and with compound Poisson
marginal distributions. The application to Gaussian processes represents an exten-
sion of Berman’s [8] earlier result for the upcrossings and downcrossings of high
and low levels. Later work in this area has also been done by Lindgren [22] and
Lindgren, de Mare, and Rootzen [23].

3. The major application of the compound Poisson limit theorem in this paper is
in the stationary Gaussian case, and so we wish to indicate how the results
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obtained here are not only different from those obtained earlier, but are also more
satisfactory. The mixing condition which is assumed here is that the covariance
function r(¢) satisfies r(¢) log ¢ -0 for ¢ — co. This is one of two conditions
introduced by Berman [5] in the case of Gaussian sequences, and which has also
been used in the continuous time case by many authors; for example, [5], [21], [22),
(23], [27], [28), [30], [33], [34], [35], [36), [44]. However the method used in [7] was
based on a mixing condition stated in terms of the mean smoothness of the spectral
density function. It has not been used in subsequent work in this area, and we have
not been able to directly compare this condition with the one mentioned above.
For this reason, the earlier result on the sojourn time in [7] was mathematically
isolated from other work in this area, and the current effort returns it to the context
of naturally related theorems.

Finally we comment on the other condition of the mixing type which was
introduced by the author in [5] in the discrete time case, namely, 3r? < oo, and
used by him in [7] and in the continuous time case in the form r(¢) € Ly(— o0, o).
Mittal kindly indicated to me that the argument used in [8], page 935, and again in
[7), page 77, was incorrect, so that there was a gap in the derivation of the resulting
limit theorems based on the above condition on r, including the sojourn time
theorem. However, Mittal [29] and also Leadbetter, Lindgren and Rootzen [21]
have fortunately reestablished and even improved the condition on 7, so that the
sojourn time theorem in [7] is valid under this mixing condition, and the additional
condition on the spectral density mentioned there.

1. Assumptions for the limit theorem. Let {X, ;:j=1,---,nn>1}bea
triangular array of nonnegative random variables. We assume that the n random
variables X, ;,j =1, - - -, n, form a stationary (though finite) sequence for each n.
We make the following four assumptions about the array:

AssUMPTION (I). There is a nonincreasing function H(x) such that

(L.1) lim,_, H(x) = 0

(1.2) fox dH(x) > — oo,

and such that

(1.3) lim, ,  nf}x dP(X, | > x) = [}x dH(x)

at every point y of continuity of the limiting function. We also assume that [¥x dH(x)
> — o0, and that (1.3) holds for y = o, that is,

(1.4) lim, nEX, | = —[Fx dH(x) < oo.

Condition (1.3) is necessary and sufficient for the convergence of the distribution
of the sum to the compound Poisson distribution with H satisfying (1.1) and (1.2)
when the summands are mutually independent [24], page 311. Later we will show
that the theorem can be modified not to require (1.4) or even the finiteness of
EX

n, 1°
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In the following assumption we require the finiteness of EX, ,X, ; for i #j; and
in the assumption (IV) below we also require the finiteness of EX, ; - - - X, , for

iy < -+ <i. These requirements will be dropped in a later version of the
theorem.

AsSUMPTION (II).
(1.5) lim, _,  lim sup, . [ k= ¢;cicin/mEX,, X, ;] = 0.

The latter is a “local mixing” condition and is satisfied in the case where the
summands are independent, because, by (1.4), EX, ,X, , = E*X, | = 0(n~?).
AssuMPTION (III). For each k > 2, and positive number q,

(1.6) lim, | SUP; ¢ <. .. <ji<n, minGinsr =i 1 <h<k)>qn

P(X, ;> x5 X > %) leo

P(Xn,j, >xp) - P(Xn,jk > x;)
for every k-tuple of x’s such that H(x;) >0 and x, is a point of continuity of
H,i=1,- -, k. The latter is the first of our two “global mixing” conditions. It

states that k random variables whose indices differ mutually by at least a positive
multiple of n have a joint distribution which, for n — oo, is asymptotic to the
product of the marginal distributions.

AssUMPTION (IV). For each k > 2, and positive number q, and each integer h,
1 <h<k,

(1.7) W, oSUP g i< - <oy >an
By " X —1]=0
EX"J] e Xn’jh—lEX"»jh Y WA

The latter is the second of the two global mixing conditions. On the one hand (1.7)
requires the existence of moments and is a condition on the moments but not on
the finite-dimensional distributions, as in (1.6). On the other hand the factorization
in (1.7) is stronger than that in (1.6): In the latter we require factorization only if all
k indices are sufficiently separated, but in the former we require factorization of
the product moments even when subsets of the indices are separated.

There are several immediate consequences of these four assumptions. First of all,
it follows directly from (1.3) by means of the weak compactness argument in the
proof of Theorem 6.1 of [11] that

(1.8) lim,_, ,nP(X, ; > x) = H(x)
on the continuity set of H. Since, by stationarity, the indices of the random
variables in the denominator in (1.6) may be all replaced by (n, 1), (1.8) implies
that (1.6) is equivalent to
(1'9) lim"—’wsupl SHL ** + <jie <y min, (a1 —Jn) >qn

|n*P(X, ; >xp -, X, >x)— H(x) - -+ H(x)| =0.

,J1 n, ji
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Assumption (IV) has an extension which is formally stronger than itself. If

Cy, -, C, are sets of indices of fixed finite sizes which are mutually separated by
at least gn time units, then assumption (IV) implies
(1.10) limn—>oosuPc, G

E{l,ccXns " LiecXni)
E{llyecXn) )} E{lliecXn s}
This is obtained by the successive application of (1.7) to the separated index sets.

1{=0.

2. Statement and proof of the compound Poisson limit theorem.

THEOREM 2.1.  Under assumptions (I) — (IV) above, the distribution of 27X, ;
converges for n — o to the distribution with the Laplace-Stieltjes transform

2.1) Q(s) = exp[ [§&(1 — e™**) dH(x)].

The proof of the theorem will begin with several lemmas which demonstrate that
the distribution of the sum can be approximated by that of the sum of certain
random variables forming a stationary array but which assume only finiu/aly many
values. Let x; < - - - < x,, be an arbitrary finite set of points of continuity of
H(x) in (0, o). For each X in the array we define the function of X,

(2.2) Y= 27__11)91[&<X<&”] + xml[x,,,<X]’
where [ is the indicator random variable, and put X¢ = min(X, c).

LeMMA 2.1. If ¢ > 0 is a point of continuity of H, then
(23) lim supn—»oolE(exp(_SE;—lX:,j)) - E(exp(_szf-lxn,j))l < H(c).

ProoF. Since X°¢ < X, the absolute difference between the exponentials is at
most

1 — exp(—s27_ (X, — X;))).
This is at most equal to 1, and is positive only if some X, ; exceeds c; hence, the
-expected value of the expression displayed above is at most equal to
S1.1P(X, ; >c) = nP(X, , > c)—> H(c).

Let H* be the distribution function tail obtained from H by the operation which

is parallel to the transformation from X to Y:
H*(x) = H(x,), 0<x<x
(2.4) = H(x), X_1 <x <X
=0, X, < Xx.

LEMMA 2.2. Let the array {Y, ;} be obtained from the array {X, ;} by means of
the transformation (2.2); and put ¢ = x,,; then

(25) lim, , E|3}_\X;; — 37,7, ;| = — fox d(H(x) — H*(x)).
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PrROOF. According to (2.2) we have X, ; > Y, ;, so that the absolute value signs
may be removed from the left hand expressnon in (2.5), and then the expectation
may be taken term by term. The relation (2.5) follows from assumption (I), formula
(1.7), and the fact that the x’s are points of continuity.

LEMMA 2.3. Let the array (Y, ;} be obtained from the array {X, w,j} by means of
(2.2). If assumptions (1), (II), or (III) hold for the latter array, then the corresponding
assumptions hold also for the former array with H* in place of H. Furthermore, the
limit relation (1.6) remains valid if the ratio of the probabilities for the X’s is replaced
by the ratio for the Y’s with = in place of > :

P(Y,, x,,i=1,--',k)
H"‘_IP( n, j; xl,)

Proor. This is a consequence of (1.9), and the facts that Y defined in (2.2) is a
nonincreasing function of X, that X > Y, and that the x’s are points of continuity

of H.

The proof of the theorem depends on the decomposition of the sum into nearly
independent subsums, as is customary in proofs of limit theorems for strongly
mixing sequences of random variables. For an arbitrary but fixed integer k > 2,
decompose the variable index set (1, - - -, n) into consecutive ordered subsets
Cp, - -+, C: C, consists of the first [n/k] integers, C, consists of the remaining
integers up to index [2n/k], etc. Let p and g be arbitrary positive numbers such
that p + g = 1. For each j, decompose C; into two subsets: 4;, consisting of the
first [pn/ k] integers in C;, and its complement B; (which contains roughly [gn / k]
members). This yields the decomposition of the index set into 2k consecutive
subsets 4, By, - - - , Ay, B,, where each A, has [pn/k] members, and each B; has
approximately [gn/k].

In the following calculations we consider the partial sums of the arrays {X, ;}
and {7, ;} over the subsets 4,, s =1, - -, k of indices. For simplicity we write

2,Yand T, X

to represent
2. jeaYn;and 2. je 4, X, j» respectively.

Put

W,, = Indicator of the event { Y, ; > 0 for at most one index j in 4,, }.
By (2.2) the event Y, ; > 0 is equivalent to the event X, ; > x,. Therefore,

E(1 - T, W) < zﬁ-lzx,,eA,,,:;e,P( mi 2 X0 X, ; > xp)
< (k/x,)E,,JEA”,#EX X o

which, by (1.5), converges to 0 for n — co and then k — oo; thus,

(2.6) lim,_,  lim sup,_,  E(1 — I ., W,) = 0.
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We prove the theorem first for the partial sums of the Y-array over A-sets of
indices; a preliminary result is:

LEMMA 2.4.  Under assumptions (1) through (IV):
27) lim, lim, , ET_ {1+ 5, [exp(-sY, ) — 1]}

= exp[ p[5°(1 — e™*) dH*(x)]
Jor every s > 0, where H* is defined by (2.4).

PrOOF. The aim of the proof is to show that in passing to the limit over n we
may take the expectation on the left hand side of (2.7) under the product sign, and
then evaluate the product of the expected values of the factors.

The product in (2.7) may be expanded as a sum whose first term is 1, and whose
typical subsequent term is of the form

Zjea zj,EAaHz-l[exP(_SYn,,;,) - 1]’

where a is an integer, 1 < a < k. Take the expectation:
(2'8) szEAI ctt zj,EA,,EHZ-I[exp(_SYn,j,,) - 1].
The expectation of the product is a linear combination of probabilities P(Y,, ;
=X, ", %Y, , = x) with coefficients II,[exp( —sx;) — 1]. By assumption (III)
and Lemma 2.3 the probabilities above are uniformly (inj, € 4,,h=1,- -, a)
asymptotic to the products of the marginal probabilities of the Y’s. Therefore (2.8)
is unchanged in the limit over » if the expectation is carried under the product sign.
Therefore the same is true of the expected product in (2.7).

The proof is completed by computing the expected values of the factors in (2.7).
By assumption (I) and Lemma 2.3:

E{l + EAh[exp(—sYn,j) - 1]}
=1+3, 37 (e - l)P(Yn,j = x,)
-1+ (p/k)f(1 — e™) dH*(x), for n — co.

The limit is the same for all k factors, and so the product of the factors is simply
the kth power. The latter converges to the expression on the right-hand side of (2.7)

as k — oo.
In the next lemma we consider the square of the random variable appearing

under the expectation sign in (2.7).
LeEmMMA 2.5. For every s > 0,
(29)  lim sup, ,  lim sup, , ET_,{1 + =, [exp(—sY, ;) — 1]}2 < oo0.

Proor. By virtue of the inequality |e ™ — 1| < x, for x > 0, it suffices to

consider
El_ {1+s2,Y)
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in the place of the expectation in (2.9). Expand the square under the product sign:
Ei_ {1422, Y+ 522, V> + 5°3, ey 1V Yo )

Since the Y’s are uniformly bounded by their largest value x,, = ¢, the expectation
above cannot decrease if Y2 is replaced by cY. Furthermore, the expectation
cannot decrease if each Y, ; is replaced by X, ;. Therefore it suffices to estimate
(2.10) El. {1+ (2s +5%0)S, X + s 2,., ey ingXn, iXn s }-

Assumption (IV) (on the X’s) permits us to take the expectation under the
product sign in (2.10) before passing to the limit over n. The reasoning is the same
as that permitting the interchange of product and expectation in (2.7); however,
here we use the mixing condition (1.10) on the moments of X,, ; in the place of the
mixing condition (III) on the finite dimensional distributions of Y, ;. To show how
(1.10) is applied to (2.10) we consider the particular case k = 2 and note that the
argument is directly extendable to k > 2. In the former case we note that (2.10) is
equal to

E{1+ 25 + S)(E X + 2 0X) + 72213, e nin X i Ko s
+(2s+s c)zzA X2, X+ S4Hk-12UEAkt#=JX iXn,j
+ (25 + 5%)5%2 4 X3, e g iei X 1 X

+ (2s + s c)sZEA XE,'JeAIp;eJXn ;Xn,_]}

Upon the taking of expectation under the signs of summations, we find that
condition (1.10) permits the asymptotic factorization of the expectation of the
products of random variables into products of expectations of random variables
from the index sets 4, and A4,, respectively; for example, if i and j(i # ) belong to
A,, and k belongs to A4,, then EX, ,X, ;X, ; ~ EX, X, ,EX, .. This implies that
(2.10) is asymptotic to the product of expectations for k = 2 The calculations

above are directly extendable to k > 2.
To complete the proof of the lemma we compute the expected values of the

factors in (2.10):
lim sup,_,E{1 + (25 + s 20)2 4 X + 72, e 4 iniXn, i X, }
=1+ (25 + s%)(p/K)[ — /&x dH(x)]
+s%lim sup, .=, ;e 4 i EX, i X, 5 by (I).
By stationarity these k expressions are identical, and their kth powers are, by
-assumption (II), of the form
(1 + k~'constant + o(k~")"

and this converges to exp(constant) for k — oo.
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Having completed the preliminary calculations we turn to the main ideas of the
proof of the theorem for the array {Y, ;}. The Laplace-Stieltjes transform of the
distribution of 2,2 , Y,

Eexp(—s2,2,7Y), s >0,
has the decomposition
(2.11) E(1 — ., W) exp(—sZ,2,Y)

+ET_\[ W, exp(—s2,Y)].

According to (2.6) the first term in (2.11) has the limit 0. The second term in’(2.11)
is representable as

2.12) ET_ W,(1 + =, [exp(—sY, ) — 1]).
Indeed, by the definition of W):
W, exP(_szA,, Y) = W,z ,y=0 + thA,, exP(_~"Y;.,J')I[Y,,,,>0]
= W,{1 + =, [exp(—sY, ) - 1]}.

Here we have used the fact that the intersections of {Y, ; >0} with {W, =1},
Jj € A, are disjoint.

The expression (2.12) is representable as the difference of two terms: the first is
the expectation appearing in (2.7), and the second is
(2.13) E(1 - Tk Wk {1 + 2, [exp(—sY, ) — 1]}.

By Lemma 2.4, the former term has the limit given by (2.7). We will show that the
second term, the expression (2.13), has the limit 0, and this will complete the proof
that

(2.14) lim,_, lim, , E exp(—sZ,2,Y) = exp[ p[3°(1 — e™*) dH*(x)].

By the Cauchy-Schwarz inequality, the expectation (2.13) is at most equal to the
product of the square roots of E(1 — II§ _, W,) and of

ET_ {1+ 2, [exp(—sY,)) - 1)

By (2.6) the former has the limit 0, and, by Lemma 2.5, the latter is bounded. This
completes the proof of (2.14).

Let 2,2, Y represent the sum of the Y’s taken over the index sets B, - - -, By;
then assumption (I) and Lemma 2.3 imply

(2'15) limk—molinlneooEzth,, Y=—- 4f3°x dH*(X).

(The integral is finite because it is actually taken over the domain [x;, x,,].)

Finally we combine our result for the limiting distribution of X,2 , Y with
several other estimates to obtain the limiting distribution of the sum of the X’s. The
difference

(2.16) E[exp(—sZ7.,X, ;)] — exp[f§(1 — e™) dH(x)]
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is equal to the sum of the intermediate differences,

(2.17) E[exp(—s27.,X,, ;)] — E[exp(—sZj-.1X; )],
(2.18) E[exp(—sZ2_,X; ;)] — E[exp(—sZ].,Y,,))],
(2.19) E[exp(—s21.,Y, ;)] — E[exp(—s2,2,Y)],
(2.20) E[exp(—sE,,EAhY)] — exp[ pf&(1 — e™) dH(x)],
(2.21) exp[ pf&(1 — ™) dH(x)] — exp[ [§(1 — e™*) dH(x) ].

Pass to the limit over » and then over k. By Lemma 2.1, the limit of (2.17) is at
most equal to H(c). By Lemma 2.2 the limit of (2.18) is at most

— sfex d(H(x) — H¥(x)).
By (2.15), the limit of (2.19) is at most
— 5qf&x dH*(x).
By (2.14) the limit of (2.20) is equal to
exp[ pf&(1 — e™%) dH*(x)] — exp[ p/3°(1 — e™) dH(x)].

We infer from these estimates that the lim sup (» — oo and then k£ — oo) of the
difference (2.16) is at most equal to

H(c) — sfox d(H(x) — H*(x)) — sqf§x dH*(x)
+exp[ pf5(1 — e™™) dH*(x)] — exp[[§(1 = e™™) dH(x)].

Since p and g are arbitrary positive numbers such that p + ¢ = 1, we may let ¢
tend to 0 and p tend to 1 in the expression displayed above:

H(c) — sfex d(H(x) — H*(x)) + exp[ [§°(1 — e ™) dH*(x)]
—exp[ f&(1 — ™) dH(x)].

Since x,, - - - , X,, is an arbitrary set of points of continuity of H in the interval
(0, c], we may take H* arbitrarily close to H in the sense of weak convergence over
(0, c]; hence, all the terms except the first in the expression displayed above may be
replaced by 0, so that we obtain the estimate H(c). Since ¢ may be taken arbitrarily
large, we may pass to the limit ¢ — oo, and apply (1.1) to get the limit 0. This
completes the proof of Theorem 2.1.

Now we show that the theorem has a version not requiring the finiteness of
moments.

COROLLARY 2.1. Suppose there is a set C of positive real numbers with sup(c:c €
C) = 0. If (1) holds but not necessarily with (1.4), and if (II), (III) and (IV) hold for
the array {X,. ;}, for all ¢ € C, then the conclusion of Theorem 2.1 remains valid. (As
before, X ¢ = min(X, c)).
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PrOOF. All moments of X,; ; are finite, and Theorem 2.1 holds for the partial
sums of the array {X, ;}. By Lemma 2.1, (1.1), and the fact that ¢ may be taken
arbitrarily large, the partial sum of the X’s has the same limiting distribution.

Another variation is:

COROLLARY 2.2. If assumption (I), but not necessarily including (1.4) holds for
{X,, ;}; and if (1) and (IV) hold for the array {X, ;} for every c in the continuity set
of H such that H(c) > 0, then the conclusion of Theorem 2.1 remains valid.

Proor. If (IV) holds for each indicated ¢, then (III) necessarily holds, and the
result follows from Corollary 2.1.

In the special case where the random variables are indicators of events 4, ; the
compound Poisson limit becomes a simple Poisson limit. Assumptions (I) and (II)
become

(i) nP(A, ;) — A for some A > 0,

(ll) limk—»oolim supn—»ookzl<i<j<[n/k]P(An,i n An,j) =0,
respectively. The hypotheses of assumptions (III) and (IV) are implied by the single
condition

(i) Lim,,_,oSUP ¢ jy< -+ <<y —shmr>am

P(An,j, ne--: r']An,j,‘)
P(4,,) - P(4,;)
foreach k > 2,and each i, 1 < h <k.

These conditions are similar to those of Meyer [26] and Leadbetter [19] except
that (iii) is different from their global mixing condition, and is formally similar to
that of Sevastyinov [39].

—1|=0,

3. Preliminary results on stationary Gaussian processes. In this section we
introduce some results about the distributions of Gaussian random variables and
functionals of Gaussian processes. We use the standard notation for the Gaussian
density and distribution function:

8(x) = @) 2T, 0(x) = [2.9(0) &
We recall the well-known relations
(B.1) 1—®(u) < ¢(u)/u,foru >0, 1— &(u)~ ¢(u)/uforu— oo.
Let X and Y be random variables with a standard bivariate Gaussian density

with correlation r. Since %(X + Y) has a Gaussian density with mean 0 and
variance %(l + r), we have, for every ¥ > 0and b > 1,

P(u< X <ub,u <Y < ub) <P(u <;(Xx+7) <ub);
therefore,
u2%

ub2:
(1 + r)?

(32) Plu<X<ub,u<Y<ub)<® :
: (1+r:?

-®
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The right-hand side can be estimated by means of (3.1); it is at most equal to

@w/w) [ _#-1
@/ (1 +n): 21+
and the two sides above are asymptotically equal for u — oo.

Let X(f), —0 <t < 0, be a stationary Gaussian process with mean 0, variance
1, and continuous covariance function r(f). We assume that there exists a, 0 < a <
2, such that 1 — r(¢) is regularly varying of index a for ¢t — 0:

(33) 1— o(u(2/ (1 + 1)) <

b

3.4) lim,w%(g%) =x* for x>0.

For u > 0 define v = v(u) as the largest solution of the equation
(3.5) (1 —r(1/v)) = 1.

As a consequence of (3.4) and (3.5) we obtain (see [10] page 369):
(3.6) lim,_, 0%/u>=0, foreverya’ <a.

We also note the following property of regularly varying functions: There exists

& > 0 such that

1 — r(sh)

1 —r(h)

The proof, given in the appendix, is based on the Karamata representation.
Let U(¢), t > 0, be a Gaussian process with stationary increments such that

(3.8) EU(t) =0, EU*(0) = 0, E(U(?) — U(s))? = 2|t — s|~
We state two lemmas which are extensions of results in previous work.

LemMA 3.1. For fixed y and T > 0, the process u(X(_s/ ) —u),0<s<T,
conditioned by u(X(0) — u) = y, converges in distribution to the process U(s) — s® +
y,0 < s < T, for u— 0. More generally, for fixed y,,- - - , y;, the k-dimensional
conditional vector process on [0, TT.,

3.7 >1s%/2  forall0<h <8,1<s<8/h

3.9) {u(X(t;, + 5;/0) —u),0<s5,<T,i=1,---,k}

conditioned by u(X(t) — u) = y,,i=1,-- -, k, where t, < - - - <, are arbitrary
real numbers, converges in distribution as

(3.10) u — 00 and max, u’r(t;, — 1) >0

to the vector process with independent components distributed as the processes
(3.11) UGs) — s +y, O0<s<T, i=1---,k

PrOOF. The first statement of the lemma is proved in [7].
Let us calculate the conditional expectation

(3.12) E[“(X(ti + 5,/0) — wu(X(%) — u) =y, “(X(fi + Sj/v) - u) = J’j]

for i #j. The three random variables in the expression above have the covariance
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matrix
(3.13)
1 r(s;/v) r(t + s,/0— 4 — 5/0)
2| r(s/0) 1 Mt~ 4~ 3/0)

r(t +5,/v—t,—s5/0) r(t;,—t,—s/0) 1

Using the formula for the conditional expectation (see [1], page 28) and passing to
the limit under the hypothesis (3.10), we find that (3.12) is asymptotic to — u*(1 —
r(s,/v)) + y;, which by (3.4) and (3.5), converges to —s;* + y,. But according to the
first statement of the lemma, the latter is also equal to the limit of the conditional
expectation (3.12) when the second conditioning variable is dropped.

Next we calculate the limit of

(3.14) Var[ u(X(t, + 5,/0) — w)|X(1), X(; + 5,/0) ]
According to the formula for the conditional variance, the expression (3.14) is
equal to the ratio of the determinant of the matrix (3.13) to the determinant of the
submatrix obtained by deleting the first row and the first column (see [1], page 28
and 42). By expansion of the determinant of the matrix (3.13) by minors of the last
row, and passing to the limit under (3.10), we find that the ratio of the determi-
nants is asymptotic by u*(1 — r%(s;/v)), which, by (3.4) and (3.5), converges to
2|s;|*. But the latter is also the limit of (3.14) when the second conditioning variable
is dropped.

We conclude that the conditional expectation (3.12) and the conditional variance
(3.14) are asymptotically unchanged by the removal of the second conditioning
variable X(# + s;/v). Therefore, u(X(f; + 5;/v) — u) is conditionally asymptoti-
cally independent of each u(X(; + 5;/v) — u) for j #i. By a direct extension of
the calculations above we also find thatifa, , h=1,---,k,j=1---, k' is an
arbitrary set of real numbers, and s,, - - - , 5, are arbitrary distinct points in [0, T'],
then u(X(¢, + s5;/v) — u) is conditionally (given u(X(2,) — u) = y,) asymptotically
independent of the linear combination

S0 i, (X (% + 5;/0) — u)

under the limiting operation (3.10). This implies the second statement of the
lemma.

LemMA 3.2. For fixedy, b > 1, and T > 0, the conditional distribution of
ST <x(s)0) <bu) 955

(where 1 is the indicator) given u(X(0) — u) = y, converges to the distribution of the
" random variable

(3.15) ST iu(s)—se+y>0) 5.

More generally, for fixed y,,- - -,y the conditional joint distribution of the k
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random variables

fgI[u<X(l,+:/v)<W] dg’ i= la Y ka
given u(X(t) —u) =y, i =1,- - - , k, converges under the limiting operation (3.10)
to the joint distribution which is a product of the marginal distributions of the random
variables (3.15) withy = y,,+ + + , v, respectively.

Proor. This follows from Lemma 3.1 by computing the conditional joint
moments of the random variables, and invoking the moment convergence theorem.

We present a new inequality comparing the probabilities of certain rectangles
computed from two multivariate Gaussian distributions.

LemMma 3.3. Let (X, - - -, X;) be a k-dimensional Gaussian random vector with
means 0 and nonsingular covariance matrix R. Let (Y,,- - -, Y,) be a similar
random vector with nonsingular covariance matrix S. Let m be the largest of the
absolute values of the elements of the matrix R™' — 8™, Then, for every u > 0 and
b>1,

(3.16) (det S/det R)%exp(—%bzuzkzm)< Pu<X<bwi=1---,k

Pu<Y,<bui=1---,k)

< (det S/det R)iexp(Lbu%m).

PROOF. Let (g;;) be the elements of R™', and let (b, ) be those of S~'; then, the
probability in the numerator in (3.16) is

@m) " /(det R)" 38 . . . (o exp(— 13, a, xx) dx, - - - dx,.
Write the quadratic form in the exponent as

On the domain of integration the first term above is of magnitude at most b%u%?m;
therefore, the multiple integral displayed above is at most equal to

(27) "%/ *(det R)'%exp(%bzuzkzm)fﬁ“ o fbexp(— 42, b)) dxy - - dx
which is equal to the product of the last member in (3.16) and the probability in the
denominator of the middle member. This proves the second inequality in (3.16).
The proof of the first is similar.

Now we establish an elementary result relating the convergence of matrices to
that of their inverses.

LEMMA 3.4. Let R be the class of covariance matrices R of order k having the
Jollowing properties:

(i) The absolute values of the entries are bounded by 1.

(ii) For any h, 1 < h <k, let R have the partitioned form

R= l‘ll R12‘
Ry Ry
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where R,, and R,, are square submatrices of orders h and k — h, respectively. There
exists w, 0 <w < 1, such that

(3.17) infg det R;; > w, infg det Ry, > w.

Let p be the maximum modulus of the entries of R,,, and define LIM as the limiting
operation

(3'18) LIM( v ) = lime—»O lim SUp, o SUPg ; u2p<e( v )'
Then
(3.19) LIM{u*[det R — det R}, detR,,]} = 0
and
R 0
(3.20) LIM| «*R™! - = 0 (matrix of 0s).
0 u’R5'

Proor. (3.19) follows from (3.17), (3.18) and the formula
det R = det Ry, det(R,, — R;;R;'R;,)

(see [1], page 42).
Let R™! be partitioned in the same manner as R, with submatrices A, jt

R-! = Ay Ap
Ay Ay

Under the assumptions of the lemma, the adjoint matrix of R differs from the

adjoint matrix of

by a matrix J whose entries are all of magnitude 0(p). Therefore, from the formula

adjoint = inverse - determinant,
we infer that
R;' 0

_1] + J;
Ry

A, A
det R[ " 12 ] = det R, det R,
J

Ay Ay
hence, (3.20) follows from (3.19).

COROLLARY 3.4. For given w, 0 <w < 1, let X be the family of all k-dimen-
sional Gaussian random vectors (X,, - - - , X)) with 0 means and such that w < EX?
<1/w,i=1,---, k. Then, for every b > 1,
Plu<X,<bui=1---,k)

I\ P(u < X, < bu)

im]

-1

11mz—>0 lim SUPy o0 SUP : 42 max i i EXiX|<e

=0.
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Proor. For simplicity suppose that EX? =1 for all i, and let R be the
covariance matrix of the X’s. By successive application of Lemma 3.4 to R and its
principal submatrices, we find that

LIM(detR — 1) = 0, and LIM{#*(R™' —I)} = 0.

The conclusion of the corollary follows from Lemma 3.3.
For ¢t > 0, define

L= tOI[u<X(s)<bu] ds.
We state and prove a variation of [11], Lemma 6.2:
LeEMMA 3.5. For each sufficiently small t > 0, each d > 1, and each b > 1,
(3.21) lim sup, , o E(vL,_,/,|u < X(2) < bu) < [T exp(—=s°/4) ds.

ProoFr. By Fubini’s theorem, the definition of conditional probability, and the
stationarity of the process, the conditional expectation in (3.21) is equal to

P(u < X(t — 5) < bu, u < X(0) < bu)
P(u < X(0) < bu)

Upon transformation of the variable of integration from s to v(¢ — ), this may be
written as

ds.

ofo

o P(u < X(s/v) <bu, u < X(0) < bu) .

4 P(u < X(0) < bu)
By (3.1), (3.2) and (3.3), this is at most asymptotically equal to
1—r(s/v)
ot 1,2
4P| T T /0y |

By virtue of (3.5) and (3.7), and the inequality r < 1, the integrand above is
dominated by the integrable function exp(—s*/2/16) as long as ¢ < §, and con-
verges everywhere to the function exp(—s®/4). Therefore, the integral converges to
the expression on the right hand side of (3.21).

Next we extend the result in Lemma 3.5 to a more general conditioning

operation:

LeMMA 3.6. For each sufficiently small t > 0, each d > 1, each b > 1, and each
integer k > 1,

(322) limsup E(vL,_g/ |u < X(f) <bu,u <X(t+ ) <bu,i=1,---,k—1)
< JT exp(—s°/4),

where the lim sup operation is taken as in (3.10), with t = ¢,.

ProOF. Since the processes {X(s)} and {X(¢ — s)} are, for fixed ¢, identical in
distribution, the conditional expectation in (3.22) is, after the change of variable



528 SIMEON M. BERMAN
s — v(t — s), equal to
(3.23)
s .
f};’P(u <X(;) <bu,u<X(0) <buu<X(—t)<bui=1--, k- l)ds'
Plu<X0) <bu,u<X(—t)<bui=1,---,k—1)
By (3.10) and Corollary 3.4, the denominator is asymptotic to

(3.24) (P(u < X(0) < ub))~.
The probability in the numerator is at most equal to

P(u<-¥—(ﬁ-)—;—)—(£9-)-<bu,u <X(-t)<bui=1,---,k—- l).
By (3.10) and Corollary 3.4, this is asymptotic to
(3.25) P(u <3(X(s) + X(0)) < bu)P*~'(u < X(0) < bu),

uniformly in s, d <s < vt. Therefore, by (3.24) and (3.25), the ratio (3.23) is at
most asymptotically equal to

L Pl <3(X(s) + X(0)) < bu)

4 P(u < X(0) < bu)

which, by the reasoning in the proof of Lemma 3.5, has a lim sup not exceeding
the right-hand side of (3.22).
As a preliminary to the next result, we recall the identity used in [10] and [11]:
For any measurable stochastic process Y(t),

(326) [EP(SiTiu<v(sy<tw ds > x) dx
= [TP(4 < [olpu<v(s)<tu @5 < B, u < Y({) < bu) dt.

The following lemma is a version of one of the main results of [11]. Here we give
a proof which is simpler than the one given there; the method will be used in the
proof of the verification of assumption (III) for the occupation time of stationary
Gaussian processes in Section 4.

LemMA 3.7.  For every sufficiently small T > 0, and almost all x > 0,

i P(oLy > x) ,
where ‘
(3.28) F(x) = [CP(J§iu(s)—s=+y>0) ds > x)e™ dy.

PROOF. According to the reasoning in [11], page 1010, it suffices to show that

JZP(oLy > y) dy

E(oLy) - F(x), x>0,

(3.29)
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where, by (3.26), the left-hand side is identical with
T~ TP(vL, > x)|u < X(¢) < bu) dt.
According to Lemma 3.5, in passing to the limit in the expression above, we may

neglect the portion of the occupation time integral L, over the domain s < ¢ — d/v
if d is fixed but sufficiently large:

T §P(0f— 4 oTiucxcsy<su d5 > x|u < X(1) < bu) dt.
Ry stationarity the integrand above is equal to

P(fgl[u<x(s/o)<bu] ds > x,u < X(O) < bu)
P(u < X(0) < bu)
which, by application of Lemma 3.2 and conditioning by u(X(0) — u) = y, con-
verges to

b

fSOP(fgI[U(s)-—s"+y>0] ds > x)e—y dy’

which is independent of ¢. Letting d — 00, we obtain the expression F(x) in (3.28).

Equation (3.5) defined a functional relationship between u and v. Now we
introduce a parameter ¢, and define # and v as functions of ¢, consistent with (3.5).
For ¢ > 1, let v = v(¢) be the largest solution of

(3.30) QRlog)(1—r(1/v)) =1;
then define u in terms of ¢ as

(3.31) u =[2 1ogmr

(3.6) implies that v /2 log t — 0 for every a’ < a so that

(3.32) u~(2log t)%, t— 0.
Therefore, the relation (3.5) between u and v holds asymptotically for ¢ — oo, and
this is equivalent to (3.5) in the proofs of the limit theorems based on (3.4) and (3.5)
(see [7], page 75).

As a consequence of (3.1), (3.31) and (3.32) we deduce
(3.33) P(u < X(0) < bu) ~ P(X(0) > u) ~ ¢(u)/u~1/tv,
for t —» oo.

4. Application of the limit theorem to the time spent by a Gaussian process above a
high level. Let X(?) be a stationary Gaussian process satisfying the conditions up
to and including (3.4). The object of this section is to apply the compound Poisson
limit theorem to the limiting distribution of the random variable

4.1) of 61 [X(s)>u] ds
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for ¢ - oo, where # and v are defined by (3.30) and (3.31). This is v times the time
spent by X above the level u. It is asymptotically equal to the random variable
oL, = 0fol1u < x(s)<bu) 95,
considered in Section 3. Indeed, the latter is not greater than the former, and the
expected difference between the two random variables is, by Fubini’s theorem,
[ P(X(0) > u) — P(u < X(0) < bu)] = toP(X(0) > bu)

~ top(bu)/bu by (3.1)

~ (bu)/bp(u) by (3.33),
and the latter, by (3.32), converges to 0 for + — oo for each » > 1. We have
introduced the random variable oL, in order to apply Lemma 3.3 to it.

THEOREM 4.1. Under the stated conditions on r(t), and under the additional
condition

4.2) lim, , r(¢) log ¢t = 0,
the random variable (4.1), or equivalently, vL,, has a limiting distribution for t — oo
with a Laplace-Stieltjes transform of the form (2.1), where H(x) = — F'(x), where

the latter is defined by (3.27) and (3.28).

The proof consists of showing that vL, is representable as the sum of nonnegative
random variables forming a stationary array, and that the conditions in the
hypothesis of Theorem 2.1 hold.

Put n = [¢] for ¢t > 1; then vL, and vL, have the same limiting distribution for
t — oo. For, on the one hand, vL, — vL, is nonnegative; and, on the other hand, its
expectation converges to 0 for 1 — co:

E(vL, — oL,) = o(t —[¢])P(u < X(0) < bu),
and the latter, by (3.33), is asymptotically at most ¢! for ¢ — 0.

Put
(4°3) Xn,j = O(L/ - Lj—l)’ J=L---,n
so that

oL, = 37X, ;.
We will verify that the array { X, ;} satisfies the conditions of Theorem 2.1.

It is clear from the stationarity of X that the array (4.3) is stationary. We
will now show that the array satisfies the conditions in assumptions (I)-(IV) in
Section 1.

AsSUMPTION (I). According to the relation
E(vLy) = [§P(vL, >y) dy
the relation (3.29) is equivalent to

xP(”Ll >y) dy

(4.4) =Fery !~ F®. x> 0.
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In order to justify (4.4) we would like to invoke Lemma 3.7 for T = 1. However,
this lemma is stated for “all sufficiently small T > 0.” The reason for this is that in
proving Lemma 3.5, we had to invoke the inequality (3.7), which holds only for
sufficiently small 8. However, the definition of the array {X, ;} in (4.3) can be
modified so that the intervals of unit length are replaced by intervals of length T’
sufficiently small so that T < §. The random variable vL, is then expressed as a
sum of approximately n/ T random variables, and the proof of the limit theorem is
carried out exactly as when T = 1. We will continue to use the interval of length 1
in the course of the proof in order to make it as simple as possible.

We are now free to use (3.27) and (3.29) with T = 1. By integration by parts, the
numerator in (4.4) is equal to xP(vL, > x) — [gy dP(vL, > y), and the denomina-
tor is equal to o(®(bu) — ®(u)) which, by (3.33), is asymptotic to 1/n for n — .
Therefore, the left-hand side of (4.4) is asymptotic to

(4.5) xP(vL, > x)/E(vL,) — nf§y dP(vL, > y).
Put H(x) = — F’'(x); then we may write
1 = F(x) = [gH(y) &
because F(x) -1 for x -0 (see (3.28)). (4.4) implies that the expression (4.5)
converges to [gH(y) dy for n — oo.
Lemma 3.7 implies that the first term in (4.5) converges to xH(x). Therefore, it

follows from what was proved above about (4.5) that the second term in (4.5)
converges to a limit which satisfies

(4.6) xH(x) — lim,_,onfgy dP(vL, >y) = [sH(y) dy.
By integration by parts we find that

oy dH(y) = xH(x) — [5H(y) dy
and from (4.6) it follows that

lim, , nfgy dP(vL, >y) = [5y dH(y),

which establishes (1.3). It has been shown (preceding (4.5)) that nE(vL;) — 1, so
that (1.4) also holds. Thus, the conditions in assumption (I) are verified.

Next we verify the assumptions which state the mixing conditions for the array.
{X,,;} was defined in (4.3) as the occupation times for successive intervals of unit
length. Under the hypothesis (4.2) on r, the latter is necessarily bounded away from
1 for ¢ bounded away from 0; therefore, there exists w, 0 <w < 1, such that if s
and ¢ belong to nonadjacent intervals of unit length, then r(s — ) < w. In the
calculations below we would like to extend this inequality on r to hold for any
distinct intervals, even those which appear consecutively. We do this by modifying
the definition of the array (4.3), and then showing that the modification hardly
changes the limiting distribution of the sum. For arbitrary e > 0, define X} ; as
o(L;_, — L;_)); this is the occupation time for the interval reduced by a subinter-

j—e
val of length e. The distributions of =1X, ; and 27Xy ; differ by at most a small
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quantity tending to 0 with e:
EZN(X, ; — X¥;) = enoP(u < X(0) < bu) > ¢, for n — oo.

Therefore, it suffices to verify the mixing conditions for the modified X’s. These
have the desired property that if s and ¢ are points of any two distinct time
intervals over which the occupation times are defined, then
4.7 r(s—H)<w<1l
For simplicity we write X, ; in place of X, ;, but will be able to use the property
@.7).

AssuMpPTION (II). Let u and v be defined by (3.30) and (3.31), respectively. By
the definition of X, ; in (4.3), the sum in (1.5) is, by stationarity, at most equal to

(4.8) no?/ k[ [OSITIP(u < X(s) < bu, u < X(t + j) < bu) dt ds.
For arbitrary ¢, 0 < ¢ < 1, split the sum in (4.8) into two subsums, one over
indices j < n€ and the other over indicesj > n¢, where n is so large that n° < n/k;

then, by (3.32),
u? Sup, .| r(s)| ~ 2 log n sup,,,c|r(s)| < c¢™" sup,, (2 log s|r(s)]),
which, by (4.2), converges to 0. Therefore, by Corollary 3.4, with k = 2,
. P(u < X(s) <bu, u <X(t +j) <bu)
lim,,_,  SUp;< < ocs -
= SUPs>n, 055, 1<t P*(u < X(0) < bu)
Hence, the subsum of (4.8) over indices j > n° is at most asymptotic to 2n%*P*(u
< X(0) < bu)/k?, which, by (3.33), is asymptotic to
4.9 2/k%
Next we consider the portion of (4.8) contributed by terms of index j < n°. It is
at most equal to
no? /KL fA A P(u < 3(X(s) + X(2)) < bu) dt ds,
which, by (3.3) and (4.7), is at most equal to
1+ 0%~ g(w)/u) exp[ ~$u(1 = w)/ (1 + W]
which, by (3.33), is asymptotic to
nok ™! exp[—%uz(l -w)/(1+ w)]
Since c is arbitrary, we may take ¢ < (1 — w)/(1 + w); then, by (3.6) and (3.32),
the expression displayed above converges to 0 for n — co.
We conclude that the lim sup of (4.8) for n— co is at most equal to the
expression (4.9); therefore, (1.5) holds, and the condition for assumption (II) is
verified.

If=0.

AssumpTiON (III). Let J,, - - -, J, be intervals of unit length on [0, n] which
are separated by at least gn units, where ¢ is fixed, 0 < ¢ < 1. Put
Xn,j,« = vf.l,I[u<X(s)<bu] dS', l= 1, oty k.
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The relation (1.6) is implied by
Hm n*[2 -« [RP(X, ;, >y,i=1---,k)dy - dy, =1 [TH(Y) dy,

where the limiting operation is the same as that in (1.6). Indeed, under (1.8), the
relation (1.6) follows from the relation above by the extension from 1 to k variables
of the argument used in Section 1 to show that (1.3) implies (1.8). According to our -
definition of H as — F’, the limit relation above is equivalent to

(4.10) limnkf;‘: c ( g = Vs i=1---, k) R H’f-lF(xi)'
Let ¢ be a point in J,., and put
Ly = [5n00 au<x(s)<bu) 95.

By a direct extension of the identity (3.26) to k intervals the multiple integral in
(4.10) is equal to

off, « - [LP(OLF > x,u <X(t) <bu,i=1,---,k)dy - -dr,

or, equivalently,

off, « o [, P(u <X(t) <bui=1,---,k)

~P(vL,"_" >x,i=1"--,k
u< X(t) <bu,i=1,---,k)ydy - - dn.
Multiply this by the factor n* appearing in (4.10), and then introduce the factor
P*(u < X(0) < bu) outside the integral, and the reciprocal of the factor inside the
integral. According to (3.33):
im,_, (nvo)*P*(u < X(0) < bu) =

and according to (3.32) and (4.2), and Corollary 3.4,

, P(u<X(t) <bui=1---,k)
D0 SUPY 1. 1>na P*(u < X(0) < bu) N

therefore, (4.10) is equivalent to
(4.11) lim f, - -« [, P(oL} >x,i=1,-- - klu <X(t) < bu,

= H’:=1F(xi). l= 1, ey, k)dtk e dtl

Since the integrand in (4.11) is bounded (by 1), it suffices, for proving (4.11), to
evaluate the limit of the integrand. Let us replace the occupation times over unit
intervals by those over intervals of length of order 1/v. We assert that if each L* in
(4.11) is replaced by the occupation time of the subinterval J, N [f, — d/v, t] of
length at most d/v, then the limit in (4.11) is changed by at most o(1) for d — .
This is a consequence of Lemma 3.6, which states that the limiting conditional
expectation of the occupation time of J; N [0, #;, — d/v], given u < X(¢) < bu, i =
1,- - -, k, is small relative to the latter event for large d. Thus, in verifying (4.11),
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we will suppose that the occupation times L} are now taken over J; N[t —
d/v, t;). Furthermore, since v — oo for n — o0, and d is fixed, we may restrict
ourselves to points ¢ for which [#, — d/v, ;] C J,, so that

oL = ofi_1/oliu<x(s)<su) 95

= f(d)l[u <X(t;—s/v)<bu] ds.

According to Lemma 3.2 (with —s in place of s in the integral) the random

variables vL,:‘, i=1,---,k, displayed above are conditionally, given

u(X(4) — u) =y, i=1--,k,
asymptotically independent and marginally distributed as
(4.12) 8T u(s) - 5= 45,501 95, i=1---,k

The integrand in (4.11) may be written as
[EPTD L A DP(oLX S X i =1, - k|u(X(5) — u) =y, i=1- k)

det(a, ) 13
_k[_:%:, exP[_;211=1 l.l(u +yx/u)(u +y1/u)] ' aj/k

4.13
(413) Plu<X(t)<bu,i=1,---,k)

where A = (g;;) is the inverse of the covariance matrix R = (EX(#,)X (4))- By 3.32)
and (4.2) we have u’(R — I) - 0 (matrix of 0’s); hence, by premultiplying this limit
relation by A, we obtain u*(A — I) — 0; therefore, the matrix A in (4.13) may be
replaced by the identity before passing to the limit for u — co; therefore the
coefficient of the probability in the numerator in (4.13) may be replaced by

(@(u)/u)* exp(— k., y, — 13 2/ u?).

It follows from this and the discussion leading to (4.12) that the expression (4.13) is
asymptotically equal to

(¢(“)/“)kﬂx-1 0 P(foI[U(s) —se4y>0] 45 > x)e I dy
P(u<X(t)<bu,i=1,---,k)

It follows from the discussion preceding (4.11) that this converges to
H’f-lf8°P(f‘31w(s)_,a+y>o, ds > x,.)e'y ay.

Sinée d is arbitrary, we may let d — oo; then the expression above converges to
IT%_ ,F(x;). This completes the proof of (4.11), and so the condition for assumption
(I1I) is verified.
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AssuMPTION (IV). The ratio in (1.7) is equal to
(4.14) [0 Lo P(u <X(s) <buyi=1,---,k)ds - ds
o J Pu<X(s) <bui=1,---,h—1)
P(u<X(s))<bu,i=h,---,k)ds, - ds,
We apply Lemma 3.4 to the probability in the numerator. Let R be the covariance
matrix of X(s,), - - - , X(s;), and let S be the covariance matrix obtained from R
by replacing the covariances EX(s)X(s), 1 <i <h —1,h <j <k, by O’s. Let R,
be the submatrix of covariances of X(s;), 1 <i < h—1; and let Ry, be the
submatrix of covariances of X(s;), # < i < k. According to the discussion preced-
ing the verification of the conditions of assumption (II), we may treat the time
intervals corresponding to the various occupation times X, ; as if they were
separated by at least some ¢ > 0. Under the hypothesis (4.2), every finite dimen-
sional distribution of the process has a nonsingular covariance matrix; therefore,
the determinant of the covariance matrix of any finite collection X(s,), - - - , X(s)
is bounded away from O on the set {5, - -, 5 : |5, — 5;| > ¢ for every i and j}. It
follows that det R,, and det R,, are both bounded away from O uniformly in
S+ * + » S Condition (4.2) implies that w?EX(s) X\ (s) = O uniformly in5; < h — 1
and s5; > h; therefore, u’R,, — 0 uniformly. We apply Lemma 3.4 to the covariance
submatrices, and then invoke Lemma 3.3 to conclude that the probability in the
numerator may be asymptotically factored into the product of probabilities appear-
ing in the denominator. This concludes the proof that the conditions for assump-
tion (IV) are valid.
The proof of Theorem 4.1 is complete.

5. A bivariate convergence theorem with asymptotic independence. In this
section we consider a bivariate generalization of the stationary array: {(X,, ;
Y, ):j=1"--+,nn>1} where the pairs form a stationary sequence within
each row. We state the conditions under which the pair of sums 2X, ;and 27, ;
has a limiting distribution which is a product of compound Poisson distributions.

THEOREM 5.1. Suppose that there exist monotone functions H, and H, satisfying
the same conditions as does H in (1.1) and (1.2); and that (1.3) holds with X, | and
H, and with Y, | and H, respectively. Suppose also that the statements of assumptions
(D), (III) and (IV) remain valid whenever any set of X's in their statements is
replaced by the set of Y’s with the same indices. Then 2}_,X, ; and 2}_,Y, ; are
asymptotically independent with compound Poisson distributions with functions H, and
H, in (2.1).

In order to illustrate the conditions of the theorem, we state the expanded form
of assumption (II):

limy_, [ & lim sup, 2 cicicin/k EXy, iXp ;=0

limk—>oo[k lim supn—»oo21<i<i<[”/k]EX",i nj = 0

limk—ybo[k lim supn—»oo21<i<i<["/k]EY"»i nj = 0.
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The proof of the bivariate theorem is a direct extension of that for the univariate
theorem, and is omitted here. The proof, as in the univariate case, is based on the
estimate of the Laplace-Stieltjes transform. It can be shown that the bivariate
transform of the sums factors, in the limit, into the product of the transforms of the
component sums. This is based on the fact that, according to assumption (II) in its
expanded form, significant contributions to the X and Y sums can arise only from
terms which are widely separated in time. According to the mixing conditions, such
terms are asymptotically independent, and so the joint transform factors.

Let X(¢) be a stationary Gaussian process satisfying the conditions (3.4) and
(4.2). For ¢t > 0, define the pair of random variables

L, = [olix(sy>u 95 M, = [olix(s)< - 95
the times spent above u and below —u, respectively. Then, as in Section 4,
(vL,, vM,) may be represented as the sum of a bivariate stationary array {(X,,
Y, )}. It can be shown, by extensions and modifications of the arguments in the
proof of Theorem 4.1, that the array satisfies the conditions in the hypothesis of
Theorem 5.1. The major changes required in the proof involve replacing the
inequality —bu < X(¢) < — u by u < — X(¢) < bu, and changing the sign of the
covariance.
APPENDIX

ProoF OF (3.7). Karamata’s representation of 1 — r(f) is
1= r(t) = c(r) exp(—fla(y)y~' &), 0<r<1,
where lim,_yc(#) = ¢,, for some 0 < ¢, < o0, and lim,_a(#) = a (see, for example,
[10]). Thus there exists a sufficiently small 8 > 0 such that ¢y/2 < ¢(f) < 2¢,, and
a(t) > a/2, for all ¢, 0 < ¢ < 4. Then, for the values of s and 4 in (3.7),
1 = r(sh) > 3¢, exp(— [a(y)y~' &)
and
1 = r(h) < 2¢, exp(— [ra(y)y ~' &),
so that
1 — r(sh)
1— r(h)
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> jexp(fila(y)y =" &) > 3s°/2.
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