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STABILITY OF RANDOM VARIABLES AND ITERATED
LOGARITHM LAWS
FOR MARTINGALES AND QUADRATIC FORMS

By Luisa TURRIN FERNHOLZ AND HENRY TEICHER!
Rutgers University

Strong laws of large numbers, obtained for positive, independent random
variables, are utilized to prove iterated logarithm laws (with a nonrandom
normalizing sequence) for a class of martingales. A law of the iterated loga-
rithm is also established for certain random quadratic forms.

1. Introduction. Prokhorov [6] used an exponential inequality (see [6], [8] or
Lemma 2.1 below) to give necessary and sufficient conditions for the classical
strong law of large numbers for suitably bounded independent random variables.
In this paper Prokhorov’s inequality is exploited to give conditions under which
S,/®(b,) >0 as., where S, = 21X, {X;, j > 1} are independent random varia-
bles with EX; = 0, 0 < b,10c0 is a sequence of real numbers, and ¢ is a function of
polynomial order. As a consequence (Corollary 2.3) =7X?/s2—1 as., where
s2 = STEX? under the hypotheses of Kolmogorov’s law of the iterated logarithm
(LIL) [4] and this is extended to certain unbounded random variables. Under
similar conditions 27X ?/s?2 log, s — 0 a.s., where log, x = log log x.

Using different techniques, stability results are shown to hold for weighted
independent identically distributed (i.i.d.) random variables in Section 3. In Section
4, the results of the previous sections are utilized to obtain a LIL for a class of
martingales (U-statistics). Finally, in Section 5 a LIL is proved for a class of
random quadratic forms.

2. Stability results for sums of independent random variables. Throughout this
section {X,, n > 1} will be a sequence of independent random variables with
EX,=0, EX? =02 < o and s? = 2Jo? —>o0. Let S, = Z{X,. The following
lemma is due to Prokhorov [6].

LemMA 2.1. Let ¢ > 0 and suppose that for all n, |X;| < cs, as. for all i,
1<i<n.Thenife >0

P(S,/s, > ¢} < exp[(—e&/2c) arcsinh(ec/2)].

ProOOF. See Prokhorov [6] or Stout [8, page 262]. []
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766 LUISA TURRIN FERNHOLZ AND HENRY TEICHER

THEOREM 2.2. Let ¢ be a function defined for positive x such that @(x)/x is
nondecreasing and @(x)/x? is decreasing for some B > 1; let 0 <b .10 be a
sequence of numbers satisfying +1/ b, — 1. Suppose that | X,| < ¢(b,)/log, b, as.
for all n > 1 and that s? = o(¢*(b,)/log, b,). Then

S,/¢(b,) - Oas.

ProOF. Letp > 1 and for each k > 1, set n, = inf{n: b, > p*}. Since b,, /b,
— 1 it follows that b, ~p for all large k whence (p + 1)/2 < ®(b,,, )/ e(b,,) <
2p# for all large k. Hence ®(b,,) satisfies the hypotheses of Corollary 1, Loeve [5
page 253] and so it suffices to prove that

(2.1 Tk/(p(bnk) — 0 as. ask > o
where
T, = 23¢_ a1X;.
Let V2 = ET?. Then forn,_, <i < n,,
| X:|/Vi < @(b,,)/Vilog, b, as.,
so if ¢ > 0, Lemma 2.1 ensures
v = P{|Te| > e9(b,,)}

< 2exp (— %log2 b,,k) arcsinh

ep?(b,,) H

2V2log, b,

Now, since V2 < s? = o(¢*(b,,)/log, b,,), it follows that for all large k,

e<p2(bnk)
2V2 log, b,

Ny

arcsinh

J>4/£

s0
Pr < 2exp(—2log, b, )

< 2(klog p)~?

and the Borel-Cantelli lemma implies (2.1). []
Theorem 2.2 can be applied to find norming constants for the stabilization of
DI &
COROLLARY 2.3. If
(i) X2 < K s2/log, s? as. for all n > 1 and some K > 0 and
7., Var X? = o(s,/log, s7)
or

(i) X? < k,s2/log, s? a.s. for positive constants k, such that k,— 0 as n— oo
then

" X2/sE > 1 as.
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ProoF. Under the hypothesis of (i), apply Theorem 2.2 to the sequence {X? —
02} with b, =52 and ¢(x) = x. Then ¢? = o(s?) implying s2,,/s>— 1 and the
conclusion follows.

Under (ii), clearly 6 = o(s2) and

71 Var X? < (53/1082 53)2?=1ki0i2
= o(s,/log, s7)
so the portion already proved yields the result. []

COROLLARY 2.4. Let X2 < K s? as. for all n > 1 and some K > 0 and suppose
that s2,,/s%— 1. Then

n o2/ (2 2
X2/ (stlogy s2) > 0 as.

PrOOF. We can apply Theorem 2.2 to {X?2 — o2} with b, = 52 and @(x) =
x log, x in view of 7 Var X? = o(s? log, s2). []

Similar results can also be obtained for certain sequences of unbounded indepen-
dent random variables.

THEOREM 2.5. Let {b,} and ¢ be as in Theorem 2.2. Suppose s> = O(@(b,)) and
(23) 2?—1 f[x2>cp(b,)]x2 dE(X) = 0(‘p(bn))’
(24) 2;‘.°=1(1/‘1’(17,.)f[eqp(b,,)/log2 b,,<x2<¢p(b,,)]x2 dF,(x) < oo foralle > 0
where F, is the distribution function of X,,. Then
(25) (X —6?)/e(b,) - 0 as.

PROOF. As in Theorem 1 of [10], there exists a sequence &, — 0 such that (2.4)
holds with e replaced by ¢,. Let

an = 8"(p(b")/10g2 bn
and set
X2

Xilixi<an + Xola,<xi<om + Xalixisom,
=Z,+ Y, + W,(say).
Now, for all large n
|2, — EZ,| < 2a, < ¢(b,)/log, b,
and
2 VarZ, < de,(9(b,)/log, b,)Z]_ 07
= 0(<P2(bn)/1082bn)-

Hence by Theorem 2.2,
S1.(Z, — EZ)/9(b,) - 0 a.s.
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The ¢, version of (2.4) implies that
w1(Var Y,)/¢*(b,) <

so by Kolmogorov’s strong law of large numbers

Sr(Y, - EY)/p(b,) - 0 as.
Finally, 27W, = 0(1) a.s. via (2.2) and, moreover, (2.3) implies that

S EW, = o(9(b,))

so

(W, — EW,)/e(b,) > 0 as.
and (2.5) follows. [

COROLLARY 2.6. If for some § > 0

(2.6) S P{X2> 852} < oo,

(2.7) 7=1EXi21[x3>ss,2] = 0(33)’

(2.8) 2;,“’,1s—leX,,zlm’g/log2 s2exicsst) < 00, foralle > 0
then

(29) —12-2?=1X12 — 1 aus.

n

PrOOF. Seta, = es?/log, s? > 0 and
4, = {X}<a,}, 4, = {a,<X?<8s2}, 4, = {X}>8s2}.
Since, via (2.7) and (2.8),
es?

o = 2]\ EX.I, < log nsz +o(sy) = o(s7),
2

n

necessarily s2,,/s2 — 1 and Theorem 2.5 applies with b, = 852, p(x) = x. []

COROLLARY 2.7. Ifs2,,/s2— 1 and for some y > 0
(2.10) o P{X? > ys?log, st} < oo,
(2.11) =% ,(s2log, s:)_lf[es,z,<xz<ys,z,logz ;X% dF(x) < oo foralle > 0
then

" X?/ (stlog, s2) - 0 as.

PrROOF. Apply Theorem 2.5 with b, = s2 and ¢(x) = yx log, x, noting that

(2.3) is automatically satisfied. []
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3. The weighted i.i.d. case. Conditions under which normed weighted averages
(1/4,)25-,a,Y; (where a, > 0, 4, = 2!_,a — o0) of i.i.d. random variables con-
verge almost surely to zero have been given by various authors [3), [1] and [2]
(Theorem 5.2.3(ii)). A simple criterion is provided by the next theorem when 8 = 0.

THEOREM 3.1. Let {Y, Y,, n > 1} be ii.d. random variables with EY = 0 and
{a,, n > 1} a sequence of positive constants. If for some B > 0

3.1) na,/A, = O((log, 4,)), 4, - =
then
3.2) ! 2i.1a;Y, > 0 as.

An(IOgZ An )B

PrROOF. Let B, = {n—1<|Y| < n} and

a,

= Yolyy,i<m:
An(l°g2 An)ﬂ
Then for some positive constants C, C’
) 2 a'zl 1 n 2
2n-l"’z < Zn-lWEY I[]Y|<n] < Czn-l j-l fBJY

< CZ,_, fBY2 < C ,-1f3,|Y| = C'E|Y| < co.
By the Khintchine-Kolmogorov theorem and Kronecker’s lemma

1
—_— 3" a.(Y,] . — EYI 1) — 0 as.
A,,(logz An)p Jj=1 1( JHY <41 [|Y|<Jl)

Since E|Y| < oo, the sequences {Y,} and {Y, I}y ..} are equivalent in the sense
of Khintchine and so

1
A,(log, A4 )B
In view of EY = 0,

2i.a,(Y, — EYly ;1) > 0 as.

1 n
2510, EY ) = o(1)

|
- 'Z:zj-lajEYI[Iijl =1

and (3.2) follows. []

CoroOLLARY 3.1. If {Y, Y,, n > 1} are ii.d. random variables and {a,, n > 1}
are positive constants satisfying (3.1) with 8 = 0, then

1
(3.3) 72;-1‘1;)’;2 — EY? as.
n
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Proor. If EY? < oo, Theorem 3.1 with 8 = 0 yields
1
ZE;=,a,()’,2 - EY?) -0 as,

which is tantamount to (3.3). Hence, the case EY? = oo follows by truncation and
monotonicity. [

COROLLARY 3.2. If (Y, Y,, n > 1} are iid. random variables with EY? < o0

and {a,, n > 1} are positive constants satisfying (3.1) for some > O, then
1
(34 anj2 — 0 as.

—_— 23
An(IOgZ An)}3 =t

4. A LIL for a class of martingales. In contradistinction to the case of
independent random variables, the formulation of an LIL for martingales [7]
involves a sequence of positive random variables in the denominator as opposed to
positive constants. Here, an LIL with constant denominator will be proved for a
class of martingales despite the randomness of their conditional variances. The
tools are an identity of [9] and the results of Sections 2 and 3.

For any sequence of random variables {X,, n > 1} and any positive integer k,
define

(4.1) U n=3X, - X, n>k U ,=0

where the sum is over 1 < i; < -+ <iy<n If § =o0(X, -, X,) and
{X,, n> 1} are independent with EX, =0, EX?=o?, the identity U ,—
Ug, po1 = X,U_y, o teveals that for k > 2, {Uy ,, ¥,, n > k} is a martingale
with

E{(Uk,n - Uk,n—l)zlg;—l} = oank2—l,n—1‘
It will be shown under the same conditions as those of Theorem 1 of [10] for k > 2,
s2=3%}?— 0 and U, , as in (4.1) that

Uk n

4.2) lim sup,_, ., P log; s:)kﬂ = % a.s.
Under the natural condition (*) 62 = o(s?),

EUZ, = 21<i,<---<ik<n"i?"i§' o 0,-:: ~ sk,f:‘
and so, under (*), (4.2) may be transcribed as
4.2y limsup,_,., Yen = (%})% a.s.

( EUZ ,(log, EUZ, )k )%;



STABILITY AND ITERATED LOGARITHM LAWS 771

LemMa 4.1. If {X,,n > 1} are random variables and {b,,n > 1} are constants
such that 0 < b,1o0 and

4.3) limsup, b, 'S" X, = 1 = —liminf, b 'S" X, as.,
(44) b2 S X} > 0 as.

then

(4.5) limsup, b, *U, , = 1/k! as.

PrROOF. According to the identity (4) of [9],
(4.6) (E1X)" = kU, + Ry,
with R, , a finite linear combination (with coefficients independent of n) of terms
om, (=2, xl), 1 < h; < k, 2% b, =k,
where 1 < m < k, and so, in view of (4.6) and (4.3), it suffices to show for
1 < m < k that, with probability one,
4.7) I, (252, X)) = o(BY).
Now, if h; = 1 then (4.3) guarantees that
limsup, . b, |27, X} = 1 as,
whereas if 4; > 2,
0 < by MEn_ XM| < (22" XH)"/? 5 0 as.
Since m < k ensures that some h; > 2, (4.7) follows. []

THEOREM 4.2. Let {X,,n > 1} be independent random variables with EX, = 0,
EX? =02 < o0 and s? = 262 — 0. If, for some 8 > 0 and all ¢ > 0

(4.8) S P{X} > 8s) log,y 57} < oo,
(4.9) I EXH x50 j10g,sn = 0(52),
1
(410) 2:0_! 210g EX I[esz/logzs,,<X2<532108233] < ®©
2

then (4.2) holds for every positive integer k.

Proor. The hypotheses imply the LIL for {X,,} and {—X,} (see Theorem 1 of
Teicher [10]) and so (4.3) holds with b, = (252log, sf)%. Thus, it may and will be
supposed that k > 2. Via (4.9), 62 = o(s?2), that is, s2, ,/s2 — 1. Since (4.10) clearly
guarantees (2.11), Corollary 2.7 ensures (4.4) with b, as above whence the conclu-
sion (4.2) follows from Lemma 4.1. []

As usual, the conditions simplify greatly in the case of weighted i.i.d. random
variables X, = ¢,Y, where {Y,,n > 1} are ii.d. and {o,,n > 1} are constants.
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THEOREM 4.3. Let {Y, Y,,n > 1} be i.i.d. random variables with EY = 0, EY? =
0® € (0, ) and {o,,n > 1} constants with s} = 26? - 0. If (i)y, = no?/s? =
O(1) or more generally (ii) o2 = o(s2/log,s?), v, = O((log,s2)?), some B in (0,1)
then (4.2) holds with X, = ¢,Y,/0o,n > 1.

Proor. The proof follows in the same fashion as that of the prior theorem once
it is noted that (4.3) obtains via Theorem 3 of [10] or its corollary while Corollary
3.2 with a, = ¢} yields

1
3"_02Y2 50 as.
silogzs?)”
and a fortiori (4.4) with b2 = 2s2log, s2. []

It should be noted that the behavior of U, , for k > 2 is markedly different from
that of U, , = 2}X;. In fact, via 2U, , = (£}X;)* — £}X} it follows that under the
conditions of Corollary 2.7, with probability one,

lim infn—»ooljZ,n/st% lOgZ's: > % lim lnfn—mo(_z?x}z/s: 10g2 S:) = 0.

In the ii.d. case, as is well known, with probability 1 every point of [—o0,0] is a
limit point of U, ,/s, (2 log, sn)% and so again via the prior identity
Us,n

lll'l'lllfl.fn_mo—;‘,l—2 = 0, a.s.
sn OgZSn

This also extends to the non-i.i.d. case.

5. Quadratic forms in i.i.d. random variables. Let {a,;,i > 1,j > 1} be a real
symmetric matrix of infinite order and {Y, Y,,n > 1} a sequence of ii.d. random
variables with EY = 0, EY? = 1. Then

(5.1 Q, = 2},.1a,;YY;, n>1

constitute random quadratic forms. Varberg [11] has studied the limiting behavior
of 0, showing for square summable matrices {a,;,i > 1,j > 1} that 9, — EQ,—0
a.s. and that Q, converges in quadratic mean if, in addition, 4, = 27_,a;;,—> 4.
When q;; = 0,0, and 4, = 52 — oo, Theorem 3 of [10] furnishes conditions under
which

2
>"_0Y,
limsup, . Q,/s2log,s? = limsup, ———J#—} =2, as.

s5,(10g,52)?

The same conclusion holds for more general matrices according to

THEOREM 5.1. Let Q, as defined by (5.1) be a sequence of quadratic forms in the
iid. random variables {Y,Y,,n > 1} with EY =0, EY? = 1 where the constants
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{a;;;i > 1,j > 1} form a real, symmetric matrix whose diagonal elements are non-
negative. If A, = Z!_,a;;, > »,

52 oo T S «i=1\%in Q;i8un
2 (Along) 20z = ) < e

and either (5.3) na,,/A, = O(1) or

A
(5.3 a,, = o(-————"——), 2o 0((log,4,)"), some B in (0,1)

log, A A,
then
(5.4) limsup, . —2" =1, as,
"—>%24,log, 4, ’
Proor. If U, =Z,_,_; .c;,;YY; and &, =o(Y),---,Y,) then {U,,%,n > 2}
and {8, = 27,67 '(U, — U;_,), F,,n > 2} are martingales where U; = 0 and {b,,n

> 1} are constants. In view of independence, S, is an £, bounded martingale and
hence a.s. convergent provided

2n-2 2:l-llcxzn < oo.
Hence, setting b, = 4,log, 4, and ¢;;=a;; — (a; ”) , (5.2) and Kronecker’s
lemma ensure that
U, 1
= 2l<t<1<n( 1
A,log,A, A,log,A,

- (a; ”)) Y, > 0 a.s.

Now, with the prior choice of ¢,

0 1 ’
(5:5) . = ( .2,-10,,)’,) +
24,log, A, (24,lo0g,4,)} A,log, A4,

and so, in view of (5.3)’ or (5.3), the upper limit of the first term on the right of (5.5)
is almost surely one according to Theorem 3 and Corollary 1 of [10]. [
Clearly, symmetry of {a,;} can be dispensed with if, in addition to (5.2),

_ _ 132
32.(4,l0g,4,) 52 a,; - (a,,a;)}) < co.

It should be noted that the hypotheses of Theorem 5.1 preclude {a,;} being a
diagonal matrix. In fact, (5.3) or (5.3)’ entails a,,,/4,, = o(1) and hence 4, ~ 4,_,
whence diagonality ensures that for some C in (0, )

1
2°°_ ——2,: u nn)
e U
_ ) annAn 1 ) Qnn —
= _2_—-———— —y—————————— =
! (AnlogZAn) i An(logZAn)2

since the partial sum of N terms of the last series exceeds log4,/(log, A N
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