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BLOCK SYNCHRONIZATION, SLIDING-BLOCK CODING,
INVULNERABLE SOURCES AND ZERO ERROR CODES
FOR DISCRETE NOISY CHANNELS'

By R. M. Gray, D. S. ORNSTEIN AND R. L. DOBRUSHIN

Stanford University and Institute for Problems of Information Transmission,
Moscow

Results are obtained on synchronizing block codes for discrete stationary
totally ergodic d-continuous noisy channels (which may have infinite memory
and anticipation) and used to prove sliding-block joint source and channel
coding theorems. The coding theorems are used to demonstrate the existence of
invulnerable sources—ergodic sources which can be input directly to the
channel without encoding and decoded at the receiver with zero error—at all
entropy rates below channel capacity. Combining the invulnerable source
theorem with the isomorphism theorem of ergodic theory shows that, if the
source is a B-process with entropy below capacity, then infinite length codes
with zero error exist, proving that the zero-error capacity equals the usual
channel capacity.

1. Introduction. The vast majority of block coding theorems for noisy chan-
nels assume synchronous channels, that is, channels for which the receiver knows a
priori the block location and hence how to segment the received data blocks for
decoding. Exceptions are the works of Nedoma (1957, 1964) Dobrushin (1967),
Vajda (1965), and Ahlswede and Wolfowitz (1971) who studied the problem of
synchronizing block codes for asynchronous discrete stationary channels that are
memoryless or have finite input memory and are totally ergodic (block ergodic
inputs yield block ergodic outputs).

An intimately related problem is the development of source and channel coding
theorems for stationary sliding-block codes (time-invariant possibly nonlinear
digital filters). Gray and Ornstein (1976) proved that, for memoryless discrete noisy
channels, the operational channel capacity for sliding-block coding is the same as
that using block codes. The proof used good block codes to construct good
sliding-block codes using a synchronization (synch) sequence to locate the blocks
and occasional random spacing between blocks to make the coding operation
stationary—yielding a time-invariant sliding-block code. The most difficult part of
the proof was the demonstration that the synch sequence could with high probabil-
ity be distinguished from an overlap of itself and a code word, and the proof
strongly depended on the memoryless channel assumption.
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Kieffer (1977) subsequently generalized the techniques and results of Gray and
Ornstein (1976) to discrete channels having zero input memory and anticipation, a
class of channels introduced by Nedoma (1957). Kieffer’s adaptation of these
techniques also depends on the absence of channel input memory and anticipation.

In this paper, the techniques of Dobrushin (1967) and Nedoma (1964) are
combined and adapted to obtain block synchronization theorems and sliding-block
joint source and channel coding theorems for a class of discrete stationary channels
having possibly infinite input memory and anticipation—the class of stationary
totally ergodic d-continuous channels (Gray and Ornstein (1979)). Roughly speak-
ing, these are channels such that, (1) if one knows the channel input for a
sufficiently long time, then the output probability measure during the same time is
known within a d or average Hamming sense, and (2) if an input process has
ergodic N-tuples, then so does the output process. Condition (1) yields the most
general class of stationary discrete channels possessing synchronous block coding
theorems (Gray and Ornstein (1979)). Condition (2) ensures that relative frequen-
cies of output N-tuples will converge to the appropriate expectation if those of the
input do. Condition (2) holds, for example, if the channel is asymptotically output
memoryless in the sense of Kadota and Wyner (1972) or Pfaffelhuber (1971) or
output weakly mixing as in Adler (1961).

The theoretical approach adopted here resembles the ad hoc engineering ap-
proach as described, e.g., by Stiffler (1971), Chapter 14. One prefixes each code
block by a synch sequence which is rarely decoded erroneously within a code
block, and one then observes several successive output code blocks to resolve
possible confusion of a synch sequence with an overlap of itself and a code word.
As noted by Dobrushin (1967), it is this possible confusion of a synch with an
overlap of itself that causes the most difficulty. The elegant techniques of synchro-
nizing noiseless channels (e.g., see Stiffler (1971) or Scholtz (1966)) do not suffice
because the noise may not be small and the channel filtering can destroy the
structure of such codes.

Since sliding-block coding a stationary ergodic source yields a stationary ergodic
encoded process (unlike block codes), a slight modification of the sliding-block
coding theorem proves that there exist stationary ergodic sources that can be
directly connected to the channel without encoding, yet can be reliably recovered
to within ¢ by decoding the channel output—an “e-invulnerable source.” We
develop a convergent sequence of codes and processes that yields in the limit an
0O-invulnerable or, simply, invulnerable source having any specified entropy rate
below channel capacity. Thus, for such channels, there exist stationary ergodic
sources at all entropy rates below capacity that can be communicated across the
channel with zero error using a possibly infinite-length sliding-block decoder. This
result is coupled with the isomorphism theorem of ergodic theory to show that,
given any source that is a B-process (Ornstein (1973), (1974), Shields (1973)) with
entropy rate below capacity, then there exist an infinite-length sliding-block en-
coder and a decoder yielding zero error. Shannon (1956) observed that traditional
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coding theorems promised that ever longer codes could yield ever smaller error, but
that this did not guarantee the existence of codes having exactly zero error
probability. This led him to loosely define the zero-error capacity of a channel C,
as the supremum of all rates at which zero error communication is possible.
Shannon then developed several properties of C, under the assumption that only
finite length block codes were allowed—a natural restriction on block codes as
general infinite length block codes are not well defined, e.g., how are they to be
used? If we consider the weaker definition that C is the supremum of all entropy
rates of sources which can be communicated across the channel with zero error
(without restrictions on the coding structure and hence allowing infinite-length
sliding-block codes), then the zero error result proves that C, = C; that is, there are
sources with rates arbitrarily near capacity that can be communicated with zero
error, and hence the channel noise can be completely defeated by infinite codes.
This means that, not only can ever longer codes be made to have ever smaller
error, they can be made to converge in a precise sense to a limiting infinite code
with no error. :

D. Blackwell (1959) also developed a sequence of codes asymptotically yielding a
zero error relative frequency on a memoryless channel. His codes are not time
invariant (are nonstationary) and are effectively a sequential decision scheme for
guessing the nth input symbol after viewing about Rn output symbols. His system
of producing a sequence of decoders that with probability one make only a finite
number of errors is analogous to the construction used in Section 6 to obtain a
perfect decoder, but the codes here are stationary.

In addition to providing a new characterization of channel capacity, the zero
error result also provides a new interpretation of joint source and channel coding:
An invulnerable source provides a natural “language” for a noisy channel that
converts it into a perfectly noiseless channel, and hence the goal of joint source and
channel coding is to map the given source into this language in an invertible or
noiseless manner. This goal is achievable for infinite length codes but only
approximately achievable for finite codes—yielding the usual e-type coding theo-
rems. Hence, finite codes can be viewed as the best possible approximation to ideal
infinite codes.

2. Sources, channels, and codes. Let G be a nonempty finite set called the
alphabet and G” the set of all G-valued n-tuples u” = (ugy, * - - , u,_;), u; € G for
i=0,---,n—1 Let G® denote the space of all doubly-infinite G-valued se-
quences u = (- - -, U_y, Uy, Uy, -+ ), 4; € G alli. Let B, denote the class of all
subsets of G. Define a thin cylinder in G* as any set of the form ¢, (a") = {u:
Uy =U,, ", U,,,—1) = a"} (the subscript m is omitted when m = 0), and let
the event space BF be the smallest o-field containing all the thin cylinders. Define
the coordinate functions U, on G* by U,(u) = u,. For any F C G", define the
cylinder ¢,,(F) = U repcm(a™). Given a measure p on the measurable space
(G%, Bg), the sequence of random variables {U,}7_ _, defined on the probability
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space (G®, Bg, ) is called a (discrete) random process or a source and is denoted
by [G, p, U}, {U,}, or u, as convenient.

For u € G®, define U,;(u) = u,,; the subscript m is omitted if m = 0, and the
superscript » is omitted if n = 1. Denote by p” the restriction of p to (G”, BZ), that
is, p"(a”) = p(c(a”)).

Let T denote the shift operator on G* defined by U,(Tu) = U, (u). A source
[G, u, U] is n-stationary if u(T"F) = p(F) for all F € BZ. A 1-stationary source
is called stationary. A source that is n-stationary for some n is called block
stationary. A source is n-ergodic if T"F = F, F € B, implies u(F) =0or 1. A
1-ergodic source is termed ergodic. If a source is n-ergodic for all integers n, it is
said to be totally ergodic.

Given a block stationary source [G, u, U], the entropy rate H(p) or H(U) is
defined by

H(p) = HU) = lim,_,, — n7'Zneep"(u") logp™(u").
The limit is well known to exist (e.g., Jacobs (1959), (1962)).
A channel » with input alphabet 4 and output alphabet B (both finite and
nonempty) is a list of probability measures {v,, x € A*} on (B>, B%), such that
v (F) is measurable for each F € B . “Connecting” an input process [4, 7, X] to

a channel » yields a joint input/output pair process [4 X B, v, (X, Y)], where v
is the measure on (4®° X B>, BT X By) specified by

(D X F) = [pv (D) dr(x),

D € By, F € BT, and (X, Y),(x,») = (X, (x), Y, (»)) = (x,,y,)- The induced
output process [B, 7, Y] is described by the measure T/(F) = o(F X A®), F €
By. We employ the common abuse of notation that X, is also a coordinate
function on 4* X B%, i.e., X,: A X B® — 4 is defined by X,(x, y) = x,.

A channel » is stationary if v, (TF) = »(F) for all x € 4, F € By. A
channel » is n-ergodic if, for every n-ergodic input process [4, 7, X], the induced
input/output process [4 X B, 1, (X, Y)] is n-ergodic. A l-ergodic channel is
called ergodic. If a channel is n-ergodic for all n, it is said to be totally ergodic.

Let a” and B” be probability measures on (B”, %%) and let ?(a”, ") denote
the class of all joint probability measures on (B” X B”, ®’% . 5) having a” and 8"
as marginals, that is, if p € ? (a”, 8"), then p(B" X F) = B*(F) and p(F X B")
= a"(F), all F € 9%. Define for i =0, - ,n — 1 the coordinate functions
Y,: B" X B"— B and ¥, : B" X B"— B by Y,(y,,5") = y, and ¥(y",5") = y;

~

y",y" € B". Let d, denote the normalized Hamming distance

dn(y n, }’;n) = n_lz?:(;dl(yi, );1)
where

d(a,b) = 1

a#hb
0 a=

b.
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The nth order d distance between a” and B” is
dy(a", ") = inf,coqn, gm E,d,(Y", ¥")
= inf,cgean pryn~ 'S124 Pr(Y, # 7).

A channel » is d-continuous (Gray and Ornstein (1979)) if given & > 0 there is an

integer n, such that for n > n,

d(ve, %) < €
whenever x; = x/, i =0, - - - , n — 1. Equivalently, a channel » is d-continuous if
(21) lim SUP,_,o MAX ne 4n Supx, x' Ec(a”) CZ'(V:, V:’) = 0.

Given a stationary input/output process [4 X B, v, (X, Y)], the average mutual
information rate I(X; Y) or I(7v) between input and output is defined by I(7v) =
H(7) + H(1v) — H(7v). The information rate or Shannon capacity of a stationary
channel is defined by C = sup I(7v), where the supremum is over all stationary
input processes [4, T, X].

A sequence encoder f: G® — A% is a measurable mapping from source
sequence space to channel input sequence space and a sequence decoder g : B® —
G * is likewise a measurable mapping from the channel output sequence space into
t_he original source sequence space. A sequence coder, say f, is N-stationary if
A(T™u) = T™f(u). A 1-stationary sequence coder is said to be stationary. A source
[G, u, U], sequence encoder f, channel [4, », B], and sequence decoder g together

yield a communications system process [G X 4 X B X G, ¢, (U, X, Y, U )] where
the measure q is specified by

g(Fy X Fy X F; X F,) = fF,nf“(Fz)Vf(u)(F:i N g71(Fy)) du(u),
F, € L, F, € DY, F; € B, F, € BE.
We consider two forms of coding structures yielding sequence coders with

different properties: block codes and sliding-block codes. A block code of length n
is a pair of mappings v, : G" — A" (encoder) and v, : B” — G" (decoder) which

induce_sequence codes y(u) = (= = =, Y, (_pp s v s U_ ), Y(Ug* - s Uy_1)y " - )
and ‘l/(y) = ( T, lpn(y—n’ tee ’y-l), 1l/n(yo, ct e ,yn—1)> st )~ Deﬁne also
Yrn(#™) = (¥ (#"™)s ¥, (4,)s = = = s Ya(#(m—1y))- The sequence coders induced by

length n block codes are n-stationary. Given a block code (y,, ¥,,), a source yu, and a
channel », the block-error probability is defined by

Py(s ¥, Yoo ) = Pr(y,(Y") # U") = [v70)(¥ '(u™)) du(u).
A sliding-block code is a pair of mappings f: G® — A (encoder) and g : B® —» G
(decoder) which induce sequence coders fw)y = (-, AT ), fu), (Tu), - - )
and g(») = (- - -, g(T~Y), g(»), g(Ty), - - - ). The sliding-block encoder f is said
to have (finite) length n’, memory m’, and delay n’ — m’ — 1 if there is a mapping
f, : G - A such that f= f(U",), that is, f(u) = f,(U” (w) =
Jo(U s s =t sl " " s U_ e w—y)- A finite length sliding block code will be
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denoted by f or f,. as convenient, that is, it can be considered either as a mapping
on G* or on G". A sliding-block decoder g is likewise said to have finite length n,
memory m, and delay n — m — 1 if there is a mapping g, : B” — G such that
g = g,(Y",). Sliding-block codes induce stationary sequence coders. Given a
stationary source [G, u, U], sliding-block code (f, g) (finite or infinite length), and
a stationary channel », the symbol probability of error is defined by

P v, f,8) = Pr(Uy# Up) = [y : 8(¥) # ) du(u).

If g has finite length n and memory m, then

P, v, £, 8) = [vPuw(¥": 8, (»") #u,) du(u).
A particular case of interest is the identity sliding-block encoder i: 4*° — A4
defined by i(x) = x,. If for a source [4, u, X] there exists a sliding block decoder g
such that P,(u, », i, 8) < &, the source is said to be e-invulnerable.

A source [G, p, U] is said to be block admissible (for the channel ») if given
e > 0 there exists for sufficiently large n a block code (y,,4,) for which
Py(p, v, Yo ¥,) < &. A source [G, p, U] is sliding-block admissible if given ¢ > 0
there exists a finite length sliding-block (f, g) for which P (u, », f, g) <e.

It is known that if u and » are stationary, and if H(u) > C, then u is not block
admissible (negative or converse coding theorem) and that if p is stationary and
ergodic and » is stationary, ergodic, and d-continuous, and H(p) < C, then p is
block admissible (positive coding theorem) (Gray and Ornstein (1979)). General
converse coding theorems exist for sliding-block codes, that is, if p and » are
stationary and H(p) > C, then p is not sliding-block admissible (Gray and Orn-
stein (1976)). Positive sliding-block coding theorems exist, however, only for
channels without memory and anticipation (Gray and Ornstein (1976), Kieffer
(1978)). We here generalize these positive theorems to stationary, totally ergodic
d-continuous channels.

Both block and sliding-block codes can be constructed from codebooks. A
block-length n codebook C= {w,W; i=1,---,M} is a collection of |C|=
cardinality of C = M codewords w, € A" and disjoint (but not necessarily exhaus-
tive) decoding sets W, € ®j. The rate of the codebook is defined as n~'In M. A
codebook Cis called an (M, n, &) codebook for » if

n (4
max1<j<MsquEc(wj)"x(W/j) < e

A codebook is said to be d-robust if the expanded decoding sets (W); =
{y":d,(y", W;) < &} are disjoint, where d,(y", W;) = min ,.c . d,(»", 0").

One can treat a channel » as if it had no memory and anticipation by “averaging
out” the effect of past and future input symbols using some channel input source
measure 7, that is, given » and a channel input source 7, define for each n and
a” € A" for which p"(a") # 0 the measure #"(-|a”) on (B",®3) by

(22) &"(Fla") = 7"(a")" feeotany?i(F) dr(x).
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A codebook C= {w,W;;i=1,---,M} is called a (7, M, n, ¢) Feinstein code for »
if max, _;cp?"(W:|W;) < &. Good §-robust Feinstein codes can be used to con-
struct good codebooks and good block codes for d-continuous channels. The
principal result in this construction is the following lemma which is quoted for

reference (Gray and Ornstein (1979), Lemma 4).

Lemma 2.1. If
(2.3) max ,ne 4n supx,x,ec(a,.)tin(v;‘,v;',) < 82,
then if T"(x") > 0 and G € B,
(24) vI((G)s) > »"(G|x™) — 8.

Thus if v is d-continuous, given 8 > 0 there is an ny such that (2.3) and hence (2.4)
hold for n > n,,.

The lemma means, for example, that if {w, W,; i=1,---,M} is a §-robust
(7, M, n, ¢) Feinstein code and n > ng, then {w; (W,)s; i=1,--- ,M}isan (M,n,e
+ §) codebook.

We here will construct good sliding-block codes from good robust Feinstein
codes.

Sliding-block codes can be constructed from block codes via the Rohlin-
Kakutani (R-K) theorem of ergodic theory. A proof of the R-K theorem may be
found in Shields’ (1973) and a tutorial description of its use in constructing
sliding-block codes in Gray and Ornstein (1976). The R-K theorem states that,
given an ergodic source [G, u, U], an ¢ > 0, and a positive integer n, there exists an

event F € BE (called the base) such that F, TF, - - -, T"~'F are disjoint,
(2.5) p(ULZST*F) > 1 — ¢

and

(2.6) p(c(u™)|F) = p(c(u”) N F)/u(F) = p(c(u"))

= u"(u”), allu” € G*.
We note also that the above implies that
2.7 (1—e)n™' < p(F) <n L.

The above structure is called a (n, ¢)-gadget. A block code v, : G” - C is im-
bedded in the gadget to form an infinite-length sliding-block code f: G® — 4 by

labeling the columns {T'c(u") N F;i=0,- - -, n — 1} by the code words v,(«"),
that is, for a* an arbitrary reference letter

a u€T(c(a") N F), (vu(u")); = a
28) fw) = :

a* u¢ UIZ,TF.
A useful property of this imbedding procedure is given by the following lemma.

Roughly, it states that the entropy rate of the sliding-block encoded process cannot
be much larger than the block code rate n~!log|C|.



646 R. M. GRAY, D. S. ORNSTEIN, AND R. L. DOBRUSHIN

LeEMMA 2.2. Iff: G — A is an infinite-length sliding-block code constructed by
imbedding a block code v, : G"— C in an (n, €)-gadget for an ergodic source
[G, p, U], then
(2.9 H(pf™") < n™'log|C| + h(1/n)
where h(a) = — aloga — (1 — a) log(l — a) is the binary entropy function and fis

the induced sequence coder. :

PrROOF. Define the random variable Z,(u) = 1.(T'u), where 1 is the indicator
function for F (Z; “marks” the base). Note that whenever Z; = 1, then Z,,
=...=2Z = 0. We have for X,(v) = f(T"u) that

(2.10) H(wf™") = H(X) < H(X,Z) = H(X|Z) + H(Z)
and
H(Z) < H(Z') = h(p(F)).

From the R-K theorem, u(F) < 1/n, and hence

(2.11) H(Z) < h(1/n).

We have also

(2.12) H(X|Z) = lim,_, m 'H(X™Z™),
where

H(X™|Z™) = 3,.H(X™|z™) Pr(Z™ = z™).

Each time Z; = 1, there are |C| choices of the next n output symbols. Define the
Hamming weight of z™ as wg(z™) = 27 'z; = number of ones in zy, - - -, z,,_;.
The m-tuple x™ has at least w,(z™) — 1 complete n-blocks from C (the final one
may be cut off) and at most wy(z™) n-blocks and their location is specified by z™.
Prior to the appearance of the first 1 in z™, there can be at most one piece of an
n-block and the remaining symbols must be a* and this means at most |C| - n
possibilities (since the tail end of the n-block starting before ¢ = 0 must end in one
of the first n — 1 positions). Thus given z™ there are at most 7 - |C[*#@™*! possible
x™’s and therefore

H(X™z™) = =3 meqn Pr(X™ = a™|z™) log Pr(X™ = a™|z™)
< log|C ™M+ = (wu(z™) + 1) log|C|
and hence from (2.7)
H(X™Z™) = 3, .H(X™z™) Pr(Z" = z™)
{E(E',-";O‘Z,.) + 1} log|C|
< (mp(F) + 1) log|C|
(mn~! + 1) log|C|

N

N
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so that
H(X|Z) < n~!'log|C|
which with (2.10) and (2.11) completes the proof.

3. Statement and discussion of results. The results developed herein are ob-
tained using straightforward techniques from information theory and ergodic
theory. Unfortunately, however, the bookkeeping details are often long and unin-
formative and can obscure the basic ideas. Hence in this section we state the results
and describe in an intuitive manner the method of proof. The actual proofs are
presented in terse form in the next section.

Synchronization words. The first step in constructing a good sliding-block code
from a codebook is to construct a synchronization or synch word for the codebook.
A synch word serves as a “punctuation mark” or prefix to locate the beginning of a
codeword. It should have a length only a small fraction of the codeword length so
that only a small percentage of the time spent transmitting information is devoted
to punctuation, and the synch word should rarely be falsely detected within a time
frame occupied by a code word, that is, the synch word decoding set should not
look like a segment of any word in a codeword decoding set. As the channel is
assumed to be d-continuous, good robust Feinstein codes can be used to obtain
good codebooks and hence we begin with such Feinstein codes. The following
lemma states that given a sequence of good robust Feinstein codes, if the code
length is sufficiently large we can find a synch word such that the codebook is only
slightly modified, the synch word length is a specified fraction of the codeword
length, and synch decoding words never appear as a segment of codeword
decoding words. The technique is due to Dobrushin (1967) and is an application of
the random coding technique of Shannon (1949, 1957) and Wolfowitz (1964). One
selects a short good robust Feinstein code (from which the synch word will be
selected) and then performs the following “thought experiment:” A word from the
short code and a word from the long code are selected independently and at
random and the probability that the short decoding word appears in the long
decoding word is shown to be small. Since this average is small, there must be at
least one short word such that the probability of its decoding word appearing in the
decoding word of a randomly selected long code word is small. This in turn implies
that if all long decoding words containing the short decoding word are removed
from the long code decoding sets, the decoding sets of most of the original long
code words will not be changed by much. In fact, one must remove a bit more from
the long word decoding sets in order to ensure the desired properties are preserved
when passing from a Feinstein code to a channel codebook.

LeMMA 3.1. Assume that € < 1/4 and i@n; n > ny} is a sequence of e-robust
{r, M(n), n, ¢/2} Feinstein codes for a d-continuous channel v having capacity
C > 0. Assume also that h(2e) + 2¢elog(|| B|| — 1) < C. For each n > n let { p,(i),
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i=1,---, M(n))} be an arbitrary probability mass function and choose § € (0, 1/4).
Then there exists an n,, such that for each n > n, the following statements are true:

A) IfC,={v, T;;i=1,-- -, M(n)}, then there is a modified codebook WS, =
(w; Wy i=1,---, K(n)} and a set of K(n) indices X, = {ky,- - -, kgn} C
{1, -+, M(n)} such that w, = v, , W, C (I'y ),2, i=1,- - -, K(n), and
3.1 max; ¢ ;¢ k(n) SWPxecww) Vf(ch) < &

(B) There is a synch word @ € A”, r = r(n) = [ 8n| = smallest integer larger than
dn and a synch decoding set S € By such that

(32) SUPxec(o) vi(8°) < e

and such that no r-tuple in S appears in any n-tuple in any W,, that is, if G(b") =

{(y":y/ =b",somei=0,1,---,n~— r} and G(S) = U,-csG(b"), then

(3.3) G(S) N W, = ¢ i=1,---, K(n).
(C) We have that

(3.9 Siexk, Pa(k) < €d.

The modified code AUf, has fewer words than the original code C,, but (3.4)
ensures that U, cannot be much smaller since, for example, if p,(i) = 1/M(n),
i=1,---, M(n), then (3.4) becomes
(3.5) K(n) > (1 — &8)M(n).

Given a codebook U, = {w,, W;;i=1,---,K(n)},asynchworde € 4", and a
synch decoding set S, we shall call the length n + r codebook, {o X w,, § X W;
i=1,---,K(n)} a prefixed (or punctuated) codebook.

Comment. To prove the basic coding theorems we need only consider the case
p,() =1/M(n),i =1, - -, M(n). The more general result is required, however to
prove the invulnerable source theorem.

By combining the preceeding lemma with the existence of robust Feinstein codes
at rates less than capacity (Gray and Ornstein (1979)) we have the following.

COROLLARY 3.1. Let v be a stationary ergodic d-continuous channel and fix ¢ > 0
and R € (0, C). Then there exists for sufficiently large blocklength N a length N
codebook {6 X w, S X Wsi=1,--+ , M}, M >2"e € A", w,EA", r+n=
N, such that

N

Supxec(a) V;(Sc) €
max; ¢ cm V:( Wf)

W, 0 G(S)

N

€

¢, j=1,-..’M.

SLIDING-BLOCK CODING: TOTALLY ERGODIC SOURCES. The synch word can be
used to mark the beginning of a codeword and it will rarely be falsely detected
during a codeword. Unfortunately, however, an r-tuple consisting of a segment of a



BLOCK SYNCHRONIZATION, CODING 649

synch and a segment of a codeword may be falsely detected as a synch with
nonnegligible probability. To resolve this confusion we look at the relative frequency
of synch-detects over a sequence of blocks instead of simply trying to find a single
synch. The idea is that if we look at enough blocks, the relative frequency of the
synch-detects in each position should be nearly the probability of occurrence in
that position and these quantities taken together give a pattern that can be used to
determine the true synch location. For the ergodic theorem to apply, however, we
require that blocks be ergodic and hence we first consider totally ergodic sources
and channels.

LEMMA 3.2. Let v be a totally ergodic stationary d-continuous channel, fix e, 8 >

0, and assume that Cy = {6 X W;; S X W;; i=1,- -, K} is a prefixed codebook
satisfying (3.1)~(3.3). Let yy : G" — C,, assign an N-tuple in the prefixed codebook to
each N-tuple in GV and let [G, w, U] be an N-stationary, N-ergodic source. There
exists for sufficiently large L (which depends on the source) a synch locating function
o: BN 5(0,1,-- -, N—1} and a set ® € BE, m = (L + )N, such that, if
u™ € ® and yy(uly) = o X w, then )

(36) il']'fxE(:(y,,,(u"')) px(y : o(yLN) =0,

0=0,--- , N—Ly/NESXW,) >1-3¢
and
3.7 p(®) > 1 —e.

The lemma can be interpreted as follows. The source is block encoded using v,,.
The decoder observes a possible synch word and then looks “back” in time at
previous channel outputs and calculates o(y ") to obtain the exact synch location
which is correct with high probability.

The synch locator function is constructed roughly as follows: since u and v are
N-stationary and N-ergodic, if ¥ : A® — B is the sequence encoder induced by
the length N-block code vy, then the encoded source py~' and the induced
channel output process n are all N-stationary and N-ergodic. The sequence s; =
n(T%(S)),j=---,—1,0,1,- - is therefore periodic with period N. Further-
more, s; can have no smaller period than N since from (3.1)-(3.3) n(T’c(S)) < e,
j=r+1,---, N—r,and n(c(S)) > 1 — e. Thus if we define the synch pattern
{s;;J=0,--, N — 1}, the synch pattern is distinct from any cyclic shift of itself
of the form {s;, -, Sy_y, 5> * * 5 Sk_1}> where 1 < k < N — 1. The synch
locator computes the relative frequencies of the occurrence of S at intervals of
length N for each of N possible starting points to obtain, say, a vector § =
(89> * +» Sn—1). The ergodic theorem implies the §; will be near their expectation
and hence with high probability (§, -+, Sy_1) = (Sg, - * * 5, Sy_15
Sg>* * * » Sg_1), determining §. Another way of looking at the result is to observe
that the sources n77,j =0, 1,- - -, N — 1 are each N-ergodic and hence any two
are either identical or orthogonal in the sense that they place all of these measures
on disjoint N-invariant sets. No two can be identical, however, since if n7° = nT’
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fori+#j,0<i,j < N — 1, then n would be periodic with period 0 < |i — j| < N,
yielding a contradiction. Since membership in any set can be determined with high
probability by observing the sequence for a long enough time, the synch locator
attempts to determine which of the N distinct sources 7" is being observed. In
fact, synchronizing the output is exactly equivalent to forcing the N-sources 077,
j=0,---,N—1, to be distinct N-ergodic sources. After this is accomplished, the
remainder of the proof is devoted to using the properties of d-continuous channels
to show that synchronization of the output source when driven by u implies that
with high probability the channel output can be synchronized for all fixed input
sequences in a set of high u probability.

Lemma 3.2 is stronger (and more general) than the similar results of Nedoma
(1964) and Vajda (1965), but the extra structure is required for application to
sliding-block decoding.

The next lemma uses the prefixed block code and the synch locator function
combined with the R-K theorem to construct a good sliding-block code for a
totally ergodic source with entropy less than capacity. The encoder has infinite
length and the decoder finite length. The subsequent corollary removes the require-
ment of infinite encoder length and thereby proves that a stationary totally ergodic
source u is sliding-block admissible for a stationary totally ergodic d-continuous
channel if H(p) < C. The lemma is proved by assigning prefixed code words to the
set of roughly 2¥#(® “typical” source sequences (from the Shannon-McMillan
theorem) and then “stationarizing” the block code by imbedding it in a gadget.
The gadget height is chosen large enough to ensure that the synch locator function
will perform correctly most of the time.

LEMMA 3.3. Given a d-continuous totally ergodic stationary channel v with Shan-
non capacity C, a stationary totally ergodic source [G, u, U] with entropy rate
H(p) < C, and & > 0, there exists for sufficiently large m a sliding-block decoder
8, :B™— G and an infinite length sliding-block encoder f: G* — A such that

P(ps v, f, 8m) < 9.

COROLLARY 3.2. If v is a stationary d-continuous totally ergodic channel with
Shannon capacity C, then any totally ergodic source [G, p, U] with H(p) < C is
admissible.

Ergodic sources. 1f a prefixed blocklength N block code of Corollary 3.1 is used
to block encode a general ergodic source [G, i, U], then successive N-tuples from p.
may not be ergodic, and hence the previous analysis does not apply. From the
Nedoma decomposition (Nedoma (1963)), however, any ergodic source p can be
represented as a mixture of N-ergodic sources, all of which are simply shifted
versions of each other. Given an ergodic measure p and an integer N, then there
exists a decomposition of p into M N-ergodic, N-stationary components where M
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divides N, that is, there is a set I € B such that

(3.8) T™II = II

(3.9 wW(T'INT'II) =0, 0<i,j< Mi+j
M-1_.

(3.10) p(U, 7) = 1

(3.11) p(II) = 1/M,

the sources (G,m;, U), where 7(F):= u(F|T'II) = u(F N T'II)/u(II) = Mu(F
N T'II) are N-ergodic and N-stationary and

(3.12) p(F) = M~ fiT)' (F)
= =M I-‘(FIT'H) X W(F n T').

This decomposition provides a method of generalizing the results for totally ergodic
sources to ergodic sources: since u(-|II) is N-ergodic, Lemma 3.2 is valid if u is
replaced by u(-|II). The infinite sliding-block code f can ensure that the ap-
propriate mode occurs at the output by testing for 77 II at the gadget base and, if
the base is in T7'II, insert i dummy symbols, and then encode using the length N
prefixed block code. This means that the code is “lined up” with the N-ergodic
design mode, say II, and the relative frequencies converge to an appropriate
expectation, yielding the desired code. A finite length encoder is then obtained as
previously.

THEOREM 3.1. If v is stationary d-continuous totally ergodic channel with Shannon
capacity C, then any ergodic source [G, p, U] with H(p) < C is admissible.

Invulnerable sources. The following lemma is a slight variation of Lemma 3.3.
Roughly speaking, it is an observation that, given the assumptions and properties
of Lemma 3.2 and the sliding-block encoder f constructed from a block encoder v,,,
as in Lemma 3.3, then the receiver can reliably construct the N-ergodic channel
input process instead of the original source. This means that there exist ergodic
sources that can be connected directly to the noisy channel and recovered to within
¢ by the decoder—an e-invulnerable source. This provides a new characterization
of channel capacity as given by the corollary.

Lemma 34. Let 8, e, v, Cy, N>23, r, yy, L, m= (L + )N, ®, and
[G, u, U] be as in Lemma 3.2. Choose K so large that m < ¢KN, and let f be the
infinite-length sliding-block code obtained by imbedding v, in a (KN, e)-gadget with
base F as in (2.5)—(2.8). There is a length m decoder h,, such that, with i(x) = x,,

Pe(,u,f-_l, v, i, hm) < 3e,

that is, (A, pf~', X) is 3e-invulnerable.

COROLLARY 3.3. Let v be a stationary totally ergodic d-continuous channel. Given
A8 >0 and H < C, there exists a 6-invulnerable source [A, T, X] such that
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H(r) > H — A, and

infé‘ SUPs.invulnerable [4, 7, X ] H (T) = C.

Corollary 3.3 raises a further question: do there exist 0-invulnerable or, simply,
invulnerable sources with entropy rates near capacity. An affirmative answer to
this question is provided by combining the preceeding result with an iteration that
allows us to take an e-invulnerable source of a given entropy rate and construct an
¢’-invulnerable source with ¢’ < € such that the entropy rate of the ¢-invulnerable
source is only slightly less than that of the e-invulnerable source and such that the
¢'-invulnerable source is close (in a d-sense) to the e-invulnerable source. This
closeness is necessary in order to get a converging sequence of codes which in the
limit give the desired invulnerable source. The basic technique used here can be
described as follows: Given the e-invulnerable source, say { X}, and the decoder,
say g, if we let the source run for a long enough time n, then the ergodic theorem
says that the probability that more than 2en errors occur between {X,} and the
decoded process, say { X, «}» will be very small, say less than 82. This in turn implies
that with probability at least 1 — & the channel output y” will yield a reproduction
%" differing from x" in fewer than 2en places (neglecting the “edge effects” due to
the finite decoder length which are negligible for large enough »). Using d-continu-
ity, these good channel output n-blocks can be decoded using the old decoder to
within 2en errors with high probability regardless of past or future channel input
symbols. Of this collection of good decoder output n-blocks, we then form a
reduced set of n-blocks by going through the list and removing all n-blocks having
Hamming distance less than 6¢ from a previous member of the list. This provides a
collection of codewords € and we form a codebook by taking as a channel output
decoding set all y” that decode (using g) into a reproduction X" within 2en of the
codeword. Note that by construction this codebook is e-robust. We next synchro-
nize the codebook with a synch of length r and use it to form an infinite length
sliding-block encoding f’ of the e-invulnerable source by building a long gadget
and then encoding each nonoverlapping (n + r)K-tuple in each gadget column into
the closest (in the Hamming sense) prefixed codeword. This encoded e-invulnerable
source, say {X;} is now an ¢-invulnerable source with the following decoder: As
most of the new source consists of long sequences from the e-invulnerable source
(the remainder being a small amount of synchronization and the gadget garbage),
the receiver first decodes using the old decoder g and also finds the new synch
word. Following a synch word g will produce a tentative reproduction %". If
%" € C, then the new decoder prints out %" as the next n symbols. If " & C,
however, the decoder knows that g has produced a word not in the codebook and
hence finds the closest word in € to X", say X", and then prints X”. The probability
that %" will be within 2en of x" is at least 1 — § for x” € (©, but this means that y”"
is within the decoding set for x”. Thus the blocks will be decoded correctly with
probability roughly 1 — 8 which in turn implies that if & is small enough, the new
source is decoded within ¢’. This can be depicted as below with [ ] denoting the
(n + r)K-block synch and ( ) denoting the n-block synch.
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Lastly, since { X} is close to {X, }, the entropy rates are nearly equal.

To construct an invulnerable source one chooses a sequence ¢, — 0 and then
constructs a sequence of g_-invulnerable sources by applying the above iteration,
beginning with the e;-invulnerable source of Corollary 3.3. These can all be
considered as codings f™ of the original ¢,-invulnerable source and these codes can
be shown to converge to a limit code f using a result of Shields (1973) and by
appropriate choice of the ¢, the resulting source will have the desired entropy. The
source is shown to be invulnerable by using an infinite length decoder g which
decodes the received sequence y using all of the decoders g, for all the g.-invulner-
able sources and then sets g(y) = a if all but a finite number of the g, decode y as
a.

Making these arguments precise yields the following results. The unfortunately
tedious proofs are presented in the next section.

THEOREM 3.2. Let v be a stationary totally ergodic channel with Shannon capacity
C, and let H* € (0, C). There exists a totally ergodic invulnerable source [A, T*, X*]
with entropy rate H(7*) = H¥*, and hence

*) —
Supinvulnerable [4, T, X*] H(T ) = C.

Theorem 3.2 has an immediate corollary in terms of B-processes. A B-process is
any process obtainable by finite or infinite length sliding-block coding an i.i.d.
process (Ornstein (1973)). An alternate characterization is that B-processes are
those processes which can be approximated arbitrarily closely in the d-distance by
a mixing multi-step Markov process. Since 7* was constructed by sliding-block
coding an i.i.d. source, we immediately have the following.

COROLLARY 3.4. Given v, C, and H* as in Theorem 3.2 there exists an invulner-
able B-process [ A, 7*, X*]| with H(7*) = H*.
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Zero-error codes and zero-error capacity. Combining Corollary 3.4 with the
isomorphism theorem of ergodic theory (Ornstein (1974)) as stated in terms of
sliding block codes (Gray (1975)) yields the following.

THEOREM 3.3. If (G,u,U) is a B-process and v is a stationary totally ergodic
d-continuous channel with capacity C > H(u), then there is an infinite-length sliding-
block encoder f: G*® — A and an infinite-length sliding-block decoder g : B* — A such
that

P(u,v.f,8) = 0,

that is, the source can be communicated with zero error across the noisy channel.

Define the weak zero-error capacity C, of a channel as the supremum of the
entropy rates of all stationary processes that can be communicated across the
channel with zero error using any block stationary coding (such as block codes or
sliding-block codes). This is in contrast to the “strong” zero error capacity intro-
duced by Shannon (1956) which refers to zero-error capacity in a difficult combina-
torial problem and it can differ from the usual capacity. The following corollary
shows, however, that under quite general conditions the weak zero error capacity is
simply C.

COROLLARY 3.5. Given a stationary totally ergodic d-continuous channel with
Shannon capacity C and weak zero-error capacity C,, then

C = C,

DiscussioN. The Shannon capacity defined by C = sup I(7v), where the
supremum is over all stationary (or ergodic or block-stationary) input processes is
often achievable, that is, the supremum is actually a maximum. For example, let
A= B ={0,1} and let » be a binary symmetric channel (BSC) with parameter
p <3, that is,

n n X; - x,®y,
Vx(y ) = H:"=1p 16}’1(1 _P)l x ,V,

where @ denotes modulo two addition. For this channel, an i.i.d. equiprobable
source [4, 7, X] yields I(v) = C = 1 — h(p). A natural question is whether the
supremum of Theorem 3.2 or that defining C, is also a maximum, that is, does
there exist an invulnerable process [4, 7, X ] with entropy rate H(r) = C? We show
that in general this cannot be true by showing that no invulnerable source with
H(7) = C exists for the BSC.

Assume that [4, 7, X] is invulnerable and has H(X) = C. The BSC can be
represented by

Y, = N, ® X,
where {N,} are ii.d. with Pr(N, = 1) = p. We assumed that

H(X) = C=1- h(p) = 1 — H(N') = 1 — H(N).
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Since [4, 7, X] is invulnerable, we have as previously that H(X|Y) = 0, and hence,
since H(Y|X) = H(N),
I(X; Y) = H(X) — H(X|Y) = C = H(Y) — H(Y|X) = H(Y) — H(N),
and hence
H(Y) =1
From Shields (1973), pages 51-52, however, if H(Y) = 1, then { ¥, } must be i.i.d.

with Pr(Y; = 1) =3. Thus, for all n, the probability mass function for X" must
satisfy

(3.13) py(y") = (%)n = Ex"PY"|X"(yn|x")PX"(x”)
= Zpxe(x"Zgp7 (1 = p) 77O
This can be expressed in vector form by defining the column vector p{” =
(Pyn(x™), x™ € {0, 1)}, P = {py-(¥™); " € {0, 1}"}, and the matrix
P, = { pymun(y"|x"); x" y" € {0, 1}"} = PP,
where P["! is the nth Kronekker product (Bellman (1960), pages 227-229) of the

matrix
_|1=-p b
h _[ P 1 ~P}’
so that (3.13) becomes

Py = Pp?,
and hence, if P, has an inverse for all n,

P = p, 'Y
uniquely defines the pJ» and hence [4, 7, X]. For p € (0, 1), P, has an inverse
_ 1 1—-p -p
1 =
P 1—2p( -p l—p)’
and hence (Bellman (1960)) P,! = (P, )", and

pP = (PP,
in particular, since the inverse exists, p% has a unique solution. It is easily shown
that py.(x") =(§)" is a solution to (3.13), and therefore {X;} is an i.i.d. equiprob-
able source with Pr(X; = 1) =3. This implies, however, that H(X)=1>C, a
contradiction.

Intuitively, an invulnerable source (or any good code) for this channel prints
long sequences of symbols that look ii.d. for a long time, but eventually the
memory and dependency show up and the entropy drops, allowing the receiver to
discern different input sequences by viewing the channel output. If one signals at
capacity, however, the source must actually be ii.d., the entropy can therefore
never drop, and hence the redundancy required to distinguish sequences at the
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output can never be inserted, preventing a good code. This provides a channel
version of Berger and Lau’s (1977) source coding result that Shannon’s rate-distor-
tion function cannot be achieved with equality using sliding-block codes.

Some open problems are (1) generalizing the output memory assumptions by
removing the totally ergodic requirement; (2) generalizing the results to other
distance measures, and other notions of continuity hopefully allowing results for
input-constrained continuous alphabet (and continuous time?) channels, and (3)
the development of a structural theory for the infinite codes yielding zero error. A
simple construction for nonstationary sources yielding zero error in the limit is
implicit in Cover, McEliece, and Posner (1979).

As a final comment, the results here immediately generalize the sliding-block
code information transmission theorem of Gray and Ornstein (1976) from memory-
less channels to those considered here by coupling sliding-block source coding with
a fidelity criterion with Theorem 3.1.

4. Proofs.

PROOF OF LEMMA 3.1. Since » is d-continuous, we can choose 7, so large that
for n > n, we have that for

(4.1) MaX,nc 4n SUP, e c(a™) d,(v?, vt) < (8e/2)%

From Corollaries 2-3 of Gray and Ornstein (1979) there is an n; such that for each
r > n, there exists an &/2-robust (7, J, r, ¢/2)-Feinstein code C; = {s s S5 J
L,---,J}, J >2"® where R, € (0, C — h(2e) — 2¢ log(|| B|| — 1)). Assume that
n, is large enough to ensure that 8n, > n,, én, > n; and n; > n,. Let 1, denote the
indicator function of the set F and define A, as

(42) A, = TS SH0p, (057(G((S),) N Tv)
= J 'S E P, (D2 c(s) Zyrer (0" V) Lo (¥™)
= J—lz Eﬁ(l P,,(’)Ey"er,”"(}’"|vi){2j=12b'e(5}),lc(b')(yn)}~

Since the (S§)), are disjoint and a fixed y” can belong to at most n — r < n sets
G(b"), the bracketed term above is bound above by n, whence

}\n < —le(l Pn(l)ﬁ"ril"i) < nJ—l < 2R n2—nR, _>n_m0

so that choosing n, also so that 7,2 7%"% < (8¢)? we have that A, < (8¢)? if n > n,.
From (4.2) this implies that for n > n, there must exist at least one j such that

SHPp()2"(G((S),) N Tilv,) < (8e)*

which in turn implies there must exist a set of indices K, C {1, - - , M(n)} such
that
(4.3) »"(G((S),) N Tilv;) < 8,i € K,

(4.4) Ziegpa(i) <
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Define o =s;, S = (S))./2, W =V, and W, = (I} N G(S)e))es> i=1,-- -,
K(n). We have from Lemma 2.1 and (4.1) that if x € c(o), then since ¢§ < ¢/2,

vi(S) = V;((Sj)e/z) > #(Sjlo) —e/2 > 1 -,
proving (3.2). If x C c¢(w;), then using (4.3)
vi(w) = v2((Te, 0 G((5)),)°).,) > 7" (T, 0 G((S)),) vi,) — €8
= "(Te lvi) — »"(Te, N G((S)),)vi,) — €8 > 1 —e/2—2e8 > 1 — ¢,

proving (3.1). Next note that if y" € (G((S;),))ed, then there is a b” € G((S)).)°
such that d,(y", b") < €8 and thus for i=0,1,---, n—r we have that
d.(y!, b") < (n/r)(€8/2) < /2. Since b" € G((S;),)°, it has no r-tuple within &
of an r-tuple in S; and hence the r-tuples y; are at least ¢/2 distant from S; and

hence y" € G((S),/,)°. We have therefore that (G((S)).)).s C G((S;),)° and
hence

G(S) n W, = G((S;),) n (T, n G((5),)°),.
c G((8)),2) N (G((5).) )5, = ¢

completing the proof.

ProoF oF COROLLARY 3.1. Choose § € (0,¢/2) so small that C — h(28) —
28log(||Bl| — 1) > (1 + 8)R(1 — log(1 — 82)) and chose R € ((1 + &)R(1 —
log(1 — 82)), C — h(28) — 281log(|| B|| — 1). From Corollaries 3.1-3.2 of Gray and
Ornstein (1979) there exists an n, such that for n > n, there exist d-robust
(1,w,n,8) Feinstein codes with M’ > 2"®. From Lemma 3.1 there exists a
codebook {w,, W; i =1,---,1(n)}, a synch word o € A", and a synch decoding
S € By, r =[8n], such that

max; SUP,e.w) "(W;) < 28 <,
SUD,cc(oy VA(S) < 28 < ¢,
GS)NW,=9,j=1,---, K(n), and from (3.5),
M = K(n) > (1 —8*)M(n).
We therefore have that with N =n + r
N llog M > (n]'n(?])—1 log((1 — 82)2"%) = (nR’ + log(1 — 8%))/ (n + nd)
= (R +n 'log(1 — 8%))/ (1 + &)
> (R’ +log(1-8%)/(1+8) > R,

completing the proof.

ProOF OF LEMMA 3.2. Choose ¢ > 0 so that £ < ¢/2 and

(4.5) ‘g < %Injni,j: s,;r:sjlsi - sjl‘
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Fora >0and§=0,1,- - -, N — 1 define the sets Y(8, a) € B;" and
(0, ) €BY, m = (L+I)N,
Wb, @) = {2 ’——ZL () = souf < j=0, -, N-1]

(0, a) = B® x ¥(0, a) X BN,
From the ergodic theorem L can be chosen large enough so that

“6)  n(ndZT (8, £)) = (NY=3d(8, §) > 1 — £,

Assume also that L is large enough so that if x, = x/,i=0,- -+, m — 1 then
47 dy(v", v2) < (§/N).
From (4.6)

((ﬂ \,b(0 ﬁ)) ) = Ea"'ec"'fc(a'")dl-‘(“)”;('u)((ﬂétol‘p(o"f)c))
= Sameomt™(@™)((N554(8,6)) | 1,(a™))

and hence there must be a set ® € B such that
7((NY=39(8, ) [¥m(a™) < £, a
pm(®) < £
Define the synch locating function o : B*Y - {0, 1, - - — 1} by

Ny = 0y e (¥(8, £))ag/n —4/(0)
1 otherwise.

(4.8)

o(y

We show that ¢ is well defined by showing that Y(8) C (8, 4¢), which sets are
disjoint for § =0, 1,- - -, N — 1 from (4.5): if y*¥ € y(9), there is a bLV
¥(0, £) for which d, (™", b%) < 2¢/N and hence for any j € {0, 1,- - -,
N — 1} at most LN(2§/N) = 2¢§L of the consecutive nonoverlapping N-tuples
yj’i N> E=0,-++, L—2,can differ from the corresponding 5% i+in and therefore

SEAs(b]yin) — sg4| + 26 < 3¢

L—EL 2ls(yerN) — Sg4) <’ I —

and hencey“’ € Y(0,4¢). If 15(0) = B% x y(0) X B¥~% € B, then we also have
that (N )= ¥(9, g))w c NY=(8) since if y™ € (NYZ (8, £))E/N, then there is a
b™ such that BEN € W(8,£), 8 =0, 1,--- ,N — 1 and d,(y™ b™) < £/N for 6 =
0,1,---,N — 1. This implies from Lemma 2.1, (4.7) and (4.8) that if x € y™(a™)
and a” € ®

4.9) V;”( ﬂ?:ol‘p(a))

r((ND=39(8,), w) > #(N550(8,8)|y™(a™)) — &/N
>1-¢(-¢/N>1-—e
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To complete the proof we use (3.1)-(3.2) and (4.9) to obtain for a™ € ® and
Ym(any) =0 X W,

v(y:0(yf)=0,0=0,1,--- , N-1L;y/yESX W)
> ”;"(ﬂév;ol‘l:(e)) — v (SX W) > 1 — e — 2e.

PrOOF OF LEMMA 3.3. Choose R, H() < R < C, and fix e > 0so thate <
8/3 and € < (R — H(p))/2. Choose N > 3 so large that the conditions and
conclusions of Corollary 3.1 hold. Construct a block encoder vy, as follows: From
the Shannon-McMillan theorem (e.g., Ash (1965), page 197), given the set
(4.102)  Sy(p, e) = (V1] = N"'log (™) — H(p)| < e},

there is an ng so large that for N > n,

(4.100) BN (Sy(n, &) > 1 —e.
Note also that if M’ = |Sy(u, €)|, then
(4.100) 2N(H(F»)—E) < M < 2N(H(p)+e) < 2N(R—e).

Index the members of & = Sy(u,€) as p, i=1,2,- -, M. If uV =, set
yn(u") = o X w, otherwise set yy(u") = & X W, . Since, for large N, 2V®~* +
1 < 2™y, is well defined. Define also the block decoder Yy(yV) = u, if y¥ € §
X W, i=1,---,M, otherwise set Yy(y”) = u*, an arbitrary reference vector.
Choose L so large that the conditions and conclusions of Lemma 3.2 hold for €
and vy. ’Ehe sliding-block decoder g,, : B” — G, m = (L + 1)N, yielding decoded

process U, = g,(Y y.), is defined as follows: If o(y,_yz, - * * , Ve—y) = 6, form
bY = Yy(Pi—g* * * s Vi—g+n) a0d set Up(¥) = 8,(Vk—wr>* * * > Vian) = by, the

appropriate symbol of the appropriate block. The encoder f will send very long
sequences of block words with random spacing (via the R-K theorem) to make the
code stationary. Let K be a large integer satisfying ¢K > (L + 1) so that
m<eKNand N >3 and L > 1

(4.11) (KN)™' < BK)™' < ¢/6.

Imbed the block code vy y in an (NK, €)-gadget to obtain an infinite length
sliding-block code as in (2.5)-(2.8). We have, defining the error event {y : Uy(y)
# Uy(u)} = b,

P> v, £, 8n) = Pr(Up # U) = [ dp(u)ryp(y : Up(u) # o))

< zf‘%’lfT’F dl"‘(u)vf(u)(gu) + Zfﬁ,_NIfT'F d#(“)"f(u)(gu)
+ Joxn-irpye dp(u)

< LNu(F) + 2N rr dp(u)vy,)(&,) + ¢

< 2e + IV E aveoslw eri(pecarry AR(u')

va(u’)(yl s Up(u') # 00()’/))’

(4.12)
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where we have used the fact that u(F) < (KN)~', and hence LNu(F) < L/K <
e. Fix i=kN +j, 0<j < N — 1, and define u = T-U+LMy/, y = T-U+LN)),
and the above integrals become

(4.13) Jw et (Frc(a®™y dﬂ(“’)"f(u')()’/ 2 Up(u') # gm(YTNL(y,)))
= Jre-vnpncakry) dﬂ(“)"f(rf+b”u)(y : Uo(Tj+LNu) # gm(YTNL(Tj+LNy)))
= [r¢-DN(FAcakNy) d#(“)”f(ri“”u)(y CUjrLN 7":gm()’jm ))
< fromimgeneavy du(w)vrmmn(y : uiy # dn(vin) oro(3") # 7).

If u)y =u;, € Sy(p, e) then uly = Yy(yMv) if yin ESX W, If ue
T*=DN (aKN ), then u™ =af;_,)y, and hence from Lemma 3.2 stationarity,
(2.5)-(2.8) and (4.11) we have for i = kN + j that

PO G"”fT'(c(a"N)nF) dH(“)Vf(u)( gu)

KN & GKN kLN X
< 3e2 :k v €@ N (GEY X Sn(n, c))'U'(T( ) (c(a N) n F))

akN € GKN

+2 afl—yn & ® N (GEV X Sy(p,e)) 1 T =DN(c(a*V) n F))

(4.14) KN(aKNyu(F)

KN & GKN
33 7 €C¢
afi_yn € ® N (GHY x 5N(I’n¢))”

a*N & GK™ KN( KN
zaa_,,we@n(c'-"xs”(p,z))l" (a®™M)u(F)

< 3e(KN) ™'+ pm(®)(KN) ™ + pM(Su(p, ) )KN)T
< 5¢(KN)™' < 5¢%/6 < e,
and hence from (4.14)
P(pv.f8,) <2e+e =3 <34,
as was to be proved.

PrOOF OF COROLLARY 3.2. Construct via Lemma 3.3 an infinite length encoder
f and a finite length decoder g,, such that P,(y, », f, g,) < 8. From Gray (1975),
given & > 0 there exists for sufficiently large ¢ a finite length sliding-block code
f, : G**'— A such that P,(f#f,) = | dp(uyd,(f (U, '(w)), f(u)) < e. By choos-
ing ¢ sufficiently small the corollary follows from Corollary A.l of the Appendix.

PrOOF OF THEOREM 3.1. Assume N is large enough for Corollary 3.1 and (4.10)
to hold. From the Nedoma decomposition, we have

ISMSWN(SITID) = pM(8) > 1 — &,
and hence there exists at least one i such that
pM(S|T'ID) > 1 — &,

that is, at least one N-ergodic mode must put high probability on the set S of
“typical” N-tuples of u. For convenience, relabel the indices so that the good mode
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is p(-|II) and call p(-|II) the design mode. Since pu(-|II) is N-ergodic and
N-stationary, Lemma 3.2 holds with p replaced by u(:|II), that is, there is a
source/channel block code (yy,¥y) and a synch locating function o: BN —
{0,1,- - -, N — 1} such that there is a set ® € BZ', m = (L + 1)N, for which (3.6)
holds and

p™(@II) > 1 — e

The sliding-block decoder g, is constructed exactly as in Lemma 3.2. The infinite
sliding-block encoder, however, is somewhat different. Instead of only carving up
the base F of the gadget according to KN-tuples, we also carve it up according to
T'II. Define the partition P of G® by P={P; i=0,---,M} by P, = T'II,
i=0,--+,M— 1, and Py, = (UM,'T'II) . We have p(P,,) = 0, but P,, must be
included in the code construction for the code to be well defined.

Again from the R-K theorem given KN and & > 0, there is a base F such that

(1) F,TF,- --,TXNF are disjoint,

@ mUT'TF) > 1 -,

3) w(c@®™)y N P|F) = p(c(u®™)n P), all u*¥ € G¥" and i = 0, - - , M.
In particular,
(4.15) p(c(u®™™) N TTI|F) = p(c(u*N) N T'II)

= p(c(u*) T IM(T'IT) = M~ 'z N(u*V).
The infinite sliding-block encoder f is defined as follows: If u & UYX;'T*F, set
f(wy=a* If uc UYES'TH(F N P,y,), set f(u)=a* If u€ T(FN c(u*¥) N
T~/x), then (1) if i < j, set f(u) = a* (these are spacing symbols to force the right
mode), (2) if j <i < KN — (M —j), then we can write i =j + kN + r, where
0<k<(K—DN,0<r<N-—1; form yy(u4)\,y) = a” and set f(u) = a,; this
is essentially the same as before, except that, if « € T/II, then we do not start
block encoding until the jth symbol, in which position we are in T/(TII) = II;
(3) if KN — (M —j) < i < KN — 1, then f(u) = a*. We have, as in the proof of
Lemma 3.3 that
(4.16) Pe(p"y?f7gm) = fdﬂ(u)”f(u)(y3 Up(u) 7":gm(YTLN()’)))
< 2+ 2,-’1"27\/‘ uETiFd“(u)Vf(u)(y: Up(u) = 00()’))~
Since u(P,) = 0, the sum is equal to
21'1:1\27\/12;1-_lzaK”EGK”fueT’(c(a"N)nFn T~II) dﬂ(“)”f(u)()” Uo(“) 7> 00()’))
< 2}”—31 il?i—zv(ﬁ_j)za"”ec"”fueT'(c(a"”)npnT-fn)dﬂ(“)vf(u)(y3 Uo(“) a 00()’))

+ Ej?f__f,lMu(Fn T/10),

where the second term is

MEMW(F)u(TVII) < M/ (KN) < 1/K < ¢
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whence from (4.16)
(4.17)  P(p,7.f.8m)
< 3e + zﬁ?)lzil{-NL_N(ﬁ_j)zak”eGk”fueT'(c(a""’)nFn7“11'1)dl"(“)
X V(¥ Up(u) # ﬁ(y)).
Analogous to (4.13) (except here i = j + kN + r, u = T-EN+1y)
Jw eTicc@@*™nFn T1I) dﬂ(“')”f(u')(y/: Up(u') = gm(Y'—nLN(yl)))
< ij*’(""‘)”(c(a"”)nFnT‘JH) dl-"(“)"f(r'“”u)()’ : “ivN # *PN()’II‘VN) or U(J’rLN) # ’)

and hence since u € T/**~D¥(c(a®¥) n F 0 T7/II) implies ™ = a7} 4—r)n>We
have analogous to (4.14) that fori =j + kN + r

Ea"”EG"”fT"(c(a"”)nFn T~1I) dﬂ(“)”f(u)(y3 Up(u) = gm(YTLN(y)))
= eSnian o vealt( T4 DN(e(a®N) 0 F 0 TIT))
(4.18) + Soongn ot T/FEDM(e(akN) A F 0 TID))
= EE“KN:”ﬁ(k—L)NE‘I’“(C(aKN) NnFEN T_jH)
+ Eam:aﬂ(k_’_weq,p(c(aKN) NnFN T_jH).
From the R-K theorem, we have p(c(a*V) N Fn T7II) = p(c(a®™) n T/1I)
X p(F) = p(c(a®™)| T/I)p(I1)u( F), and hence the above becomes
ep(T~ U+ *=DNe(@)| T/IL)u(T)p( F)
+ BT+ D@0 TV T Yu(m)(F)
= ep(c(@)Mp(Ip(F) + p(c(@°)|M)p(M)u(F) < 2eM~'(KN)™!,
which with (4.17) and (4.18) yields
(4.19) P(p,v,f,8,) < 3¢ + MKN2eM~'(KN)™' < 5e.
The theorem follows from (4.19) as in the proof of Corollary 3.2.

PrOOF OF LEMMA 3.4. Define a decoder #,, yielding decoded process X AY) =
b, (Y, n(p) as follows: if o(y_yz,- -, y_1) =0, and yY, €S X W, set
a"’ = o X w, and assign h,,(y" y.) = a,, otherwise set h,(y™y,) = a*, an arbi-
trary reference symbol. In other words, 4, operates like g,, in Lemma 3.3 except
that it prints the code symbol, not the original source symbol. Define the block
decoder Ay : BY 5 AV by Ay (»Y) = o X wif y¥ € § X W, and, say, A y(yV) =
a*" otherwise. Analogous to (4.12) and (4.13),

P(pf " v, i, h,) = Pr(Xy#X,)
(420) < 2¢ + sz=L2y=_olzaKNeGKNfT(k—L)(Fnc(aKN)) dp,(u)Vf(TjH.N“)

: (y : YN(uZN) #* AN(yLI,vN) or U(J’jLN) 7""j)~
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If yy(upy) =0 X w, then yy(uzy) =Ay(yin) if yiy ESX W, If u€
T*=BNe(a*N), then u™ = af} _,;,y. Thus, analogous to (4.14)

2 kv e Gxn [ 7= (A e(akMy) d#(”)”f(rﬁwu)
(4.21) (s n(uln) # M (ly) o o(5Y) #))
< 3eu(F) + p™(®)KN)™' < 4e(KN)™' < 4e2/m < ¢,
and hence

Pe( o Y, hm) < 3e.

PrOOF OF COROLLARY 3.3. Let [4, u, U] be an independent identically distrib-
uted (i.i.d.) process with H(p) = H < C (such a process always exists), and assume
that § is so small that

h(8) + &logld| < A.
This entails no loss of generality, as a §’-invulnerable source with §’ <8 is also
S-invulnerable. Repeat the proof of Lemma 3.4 using the y,, defined in the proof of
Lemma 3.3 and choosing ¢ < 8/3 as in the proof of Lemma 3.3. Construct both the
decoder g,, for the original source and the decoder A, for the encoded source.
From Lemma 3.4

P(pf v, h,) < 3e < 8,
and from Lemma 3.3
P(u,v.f.8,) < 8.
From the data processing theorem (Billingsley (1965), Theorem 17.3) if 7 = pf~!,
H(r) = H(X) > I(X, U) > I(U; U),
and from Shields’ (1973) Lemma 8.2
H(U|U) = H(U) = I(U; 0) < h(P(p 7, £, 8) + Pl 7. f, 8,) loglA|
< h(8) + &logld| < A,
and hence
H(r) > H(p) — A = H- A
This implies that
infy -0 SUPs.invuinerable (4, 7, x1 H(7) > C.

Again invoking Shields’ (1973) Lemma 8.2 and Billingsley’s (1965), Theorem 17.3,
we have

H(X) — I(X; X) = H(X|X) < h(8) + 8 logl4|
I(x;X) = HX) — HX|X) < I(X;Y) < C
and therefore
H(X) = H(r) < C + h(8) + 8logl4|.
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Since
SUPs.invulnerable [4, 7, X | H ( T)

is nonincreasing as 6 — 0,

infs < SUPg.invulnerable [4, 7, X ] H(t) = limg_¢ SUPginvumerable (4, 7, x] H ()
< limg_o{C + h(8) + b log|4|} =

which completes the proof.
The proof of Theorem 3.2 is based on the following iteration lemma.

LEMMA 4.1. Let v be a stationary totally ergodic d-continuous channel and
[G, p, U] an i.i.d. source. Assume we have for k > 1 an infinite-length sliding-block
encoder f® : G*® — A and a length my_ sliding-block decoder g* : B™ — A such
that

P(uf® Y, ig®) < g,

that is, the process [A, ®, X®) defined by v® = pf® —1 (or, equivalently, X(u)
= f®(T'u) is ¢ -invulnerable). Assume also we have for an integer n, a collection
S, € A™ called “good n,-blocks” such that the relative frequency of nonoverlapping
good n,-blocks in v® is greater than (1 — g)n; ', that is, 1f for any integer M,
Z$(xM) = the number of nonoverlapping good ny-blocks in x™, then with ®-prob-
ability one

limy, ., M T'Z@P(XPM) > (1 - &)/ n.
The lemma states that, given ¢, > 0, there is an encoder f**? : G* — 4 and

for sufficiently large m,,, a decoder g**V : B™+ — A such that, if
G+ D = (T D=1 (or X ®+D(y) = fE+D(T)) then

(4.22) P(r**D p i gk*D) < gy,

and hence [4, 7**D, X**D] s ¢ -invulnerable, and

(4.23) Pr(X® o X*+D) = | f4D — f0| < T,
and defining H, = H(t®),

and with 7**D-probability one

(4.25) limy, o M T'ZEP(XEDM) > (1 — & = git)/ My

In the proof a set §, , of good n, -tuples is constructed such that with rk+D.
probability one

(4.26) Hm L, M7'ZGHO(XEOMY > (1 = e41)/Miesrs

which sets up the induction used in the proof of Theorem 3.2.

Comment. Equation (4.22) alone is not sufficient to obtain a limiting code with
the required properties. Both (4.23) and (4.25) are to ensure that the new code will
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produce a new process looking much like the old process (but more invulnerable),
and (4.24) is necessary to obtain a limit process with entropy exactly H* rather
than simply close to H.

PROOF. Assume for simplicity that g*) is symmetric and m, = 2¢ + 1. Choose
€ so small that

e < g,/m; < g/3
(4.27) e < e40)7
e < e, H,/1 + log|A| + 6¢,
where H, = H(t®). Given [4, 7%, X®], we begin by constructing a set of

“good” input blocks called good n, . ,-blocks to be synchronized and imbedded in
a gadget. Define §,(7®, ¢), as in (4.10a) and choose ¢ so large that

rR(S,(1H), €)) > 1 —¢/2,
and recall
(4.28) 219 < [§,(1H), g)| < 21CHkHe),

Since the process is totally ergodic, we can choose n and hence s so large that, for
n=n,,,=st>nand

(4.29) 6™ = {x":s7'Zioxs (1 X, e)(xf) > 1 — ¢},
we have
(4.30) r®n(G®) > 1 — ¢/9.

Since 7™ is ergodic, we can also choose 7 so large that, for n = n, ., > n,
n 1
(431) (%) (X",y" : =12ddy(x, g (™)) > 2€k) < (e/9)

n-—2q
and hence defining #(y"|x") = (r®»)"(x", y")/7®(x") there must be a set @ €
" such that, for x" € §9,

(4.32) ﬁ(y" P __1 34 =n2ad(x;, g0 (ym,)) > Zeklx") < ¢/9,

where

(433) r®nGD) > 1 — ¢/9.

Finally, by assumption, we can choose 7 so large that, if n = n,, > 1 and if
(4.34) §Y = {x":n7'1ZEx") > n (1 - &)},

then

r®m(GP) > 1 - ¢/9,
for any n = n, ., > n. The set §, defined by
8, = ni_89

P41 LTS
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is called the set of good n,,,-blocks, and from (4.30), (4.33), and (4.35), for
n= nk+l > ﬁ,
(4.36) Gy > 1 — ¢/3,
and, if x" € §,, then (4.29), (4.31), and (4.34) all hold. Assume also that n is so
large that n, ., > n implies
(4.37) m /e, < &

Aset C={y,i=1,---,|C|} is called a full a-separating subset of &, if
v, €8, alliif

a4,(vi, v;) > a, i #J

and, if x” € §,, then there is a v; for which d,(v;, x") < a (such a set can always be

constructed by choosing and eliminating). Let C be a full 6¢,-separating subset of
§,. For x" = v, € C, define for 8 > 0 the set

I(B) = {7 25 Zed0s %) < B,

where £; = g®)(y/7+), and note that d,(x",£") < n"'[(n — 2¢)B + 2¢q] < B + =.
If X" € (T;(2¢,)), and X" € (I;(2¢,)),, then d, (v, £") < 2¢, + € and d,(v;, X") <
2g, + &, since d,(v;, ;) > 6g, > 2(2¢, + ¢), (I;(2€,)), N (I;(2¢,)), = @, and hence,
for ny,, > n, {v,T;2¢); i=1,---,|C|} is an erobust (¥, |C|,n,,,€/3)-
Feinstein code.

For v, € G, we have from (4.32) and Lemma 2.1 that

(438) inf)cEc(v,) Vx(ri(zek)) > in‘fxEc(v,-) vx((ri(zek))e)
> #(T,(2e)v) — e > 1 — 10e/9,

and hence for any x € ¢(v,)), v; € C,

1
V;'(y" Y 12%d(x, g (ym)) > 3ek) < 10¢/9,

that is, g® will do a good job during a good n, , ,-block regardless of past or future
inputs. This means that, for any x € 4%,
Ev {M~'S¥(x, gP(Y™))} < MY ZED(xM)n, (3¢, + 10e/9)
+ (M - Zﬁf*”(x“)nkﬂ)}.
Since by definition ZF*V(x™) < M/n,., ,,
(439) E, {M 'S5 d(x, g®(¥™,)))
< 3 + 2g,,/7+ 1 — M7 'n ZEYD(xM).

Letn = m,,andleta, : A” — C map x” into the v; € ©, minimizing d,(x", v;)
and hence by construction d,(x", a,(x")) < 6¢,. Define p{® = r®"(x" : o, (x") =
v,) = 7®"(a"'(v,)). From Lemma 3.1, given the previous and any 8, we can take

n = n,,, large enough so that there is a set of indices K such that there is an
(&, n, 8, r)-prefixed codebook {o X w;; S X W;;i=1,---,|U]|} for which w, =
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v, and W, € (I'(2¢)),, and
(4.40) St = Tyt ®(a;(n) < e.

Assume also that § < e is so small and n;,, so large that for r, ., = [n,,,8] we
have

(4.41) Nty = (ngy + "k+1)_1 > (1= epp)nisy
Define the reduced code word set {w; i=1,---,|¢|}=CcCcC §,, and let
a,: A" - e map x" into the w;, minimizing 4,(x", w;). Note that, if a,(x") =,
for i € K then a,(x") = a,(x"), and hence, if x” €6, then d,(x", a,(x")) <
6¢,.. Define the block encoder vy : 4¥ -0 X Cby yy(xV) = 6 X &,(x"), that is,
a synchronized good 7, ,-block from € c € c §,. We have that

E,r(k)dN(XN, 'YN(XN)) < r/N + E,r(k)dn(Xn, &n(Xn))
(4.42) < r/N+ "'(k)(grf) + zie‘xzx"eg,,x"Ea',,'(v,»)dn(xn’ vi)"'(k)n(xn)
+ ST ®(a;(v;)) < 8+ ¢/3 + 6¢, < g;,,/4 + b¢.

From Lemma 3.2 we can select L = Lk +1 sufficiently large so that there exists a

synch function ¢ : B*Y — {0, - - —1}andaset® € B, m=m,, = (L +
1)N, satisfying (4.1) and (4.2) for the above y,. Choose K = K, ,, so large that
(4.43) R((KN)7Y) < gH,

My < €K N
and imbed vy, in a (KN, ¢)-gadget [4, 7®, X ®)] to obtain a sliding-block code
p:A® > A of [4,7®, X®] and hence a sliding-block code f**D: 4% - 4 of
[G, u, U] defined as the cascade f**D(u) = p(f¥)(u)) of f® and p. Define the
encoded process [4, %+ D, X *+D] by +¢+D = 7*5-1 = 5 f*k+D=1 The proof of
Lemma 3.4 applies (with [G, u, U] replaced by [4, 7®, X ®]), and hence
P(**D y,i,g) < 3e < g4y,

and hence [4, 7 *D, X**+D] is ¢, _  -invulnerable, proving (4.22).

By construction and (2.7), (4.42) and (4.27),

|fED = fOL, =l = il = [y pptm dTO(x)

< 2{(50 lfx : xg#p(x)XxET'F dT(k)(x) + e

SEONE,w{dy(XN, va(XN))|x € F}'r(k)(F) + & < Tg
which proves (4.23) and hence with Lemma A.1 of the Appendix proves the
right-hand inequality of (4.24).

To prove the left-hand inequality of (4.24), we derive an upper bound for the
code size © and use it in conjunction with Lemma 2.2. Recall that @ c € and C is

a full 6g.-separating subset of §, c G". Thus, if €' D C is a full 6¢, -separating
subset of the larger set §{V, we must have that

(4.44) 18 < |€]| < |€.
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To upper bound |C’|, note that, since ' = {a;i =1, - -, |C’'|} 6¢.-separates §,
the spheres

Vi (a) = {x":x" € 8D, 4d,(x", a) < 3g,)

are disjoint and hence
9571

4.45 Cl « ———2——,
(4.45) I mlnilVZisk(ai)l

that is, @ can have no more elements than @ which can have no more elements
than the total number of disjoint spheres of radius 3¢, that can be packed into 9V
(which is larger than §,). Fix i. If x” = a,, then from (4.29) at least (1 — ¢)s of the
t-tuples x,i =0, - -, s — 1, are in §,(7%®, ¢), and hence we can obtain a distinct
n-tuple in GV if we change any of these -tuples to a different word in S,(7®, ¢).
Furthermore, we may change up to 3¢.s of these ¢-tuples and still remain inside
V3, (x™) since, if y" is so obtained, d,(x", y") < n~'3g.st = 3g,. Thus, for a fixed i
and a sufficiently large ¢
(4.46) Vi @)] > (I8,(rP, &)] — 1) > (2 H—e) — 1)
> 2t(Hk—2£)3eks'

We also have by construction that
(4.47) |Q'$l)| < |St(,r(k),£)|s(l—e)|A|set < 2!(Hk+e)s(l—e)+stelog|A|

< 2n(Hk+a+elog|A|),
and hence from (4.45)-(4.47) and (4.27)

|@/| < 2n(Hk+e+e log|A4| —3&, H; + 6eg, < 2nHk(1—25,‘)’
and hence from Lemma 2.2, (4.27), (4.43) and (4.44)

H(pf**D =1 = H(r®p=") < (KN)™" log|CX + A((KN)™")

proving the left-hand inequality of (4.24). By construction, each good n, , ,-block
has at least n,, ,n. '(1 — ¢,) good n,-tuples, and hence for any x

(4.48) Z@RP(xM) > ZGEO(xMn (1 - g)ny

Let X be a string produced by 7® and let x be p(¥), the resulting 7**V string. If
X € F, the following K = K ,; N, ,-tuples of x will be synchronized good
n, . -tuples, and hence

M7IZGETD(xM) > MK (S5 X(TR) — 1),
Thus, from (4.41) with 7® probability one,
(4.49) limy, o, M 7'ZH((3(%)Y) > Keyy7(F) > NG

> (1- ek+1)nk_+ll’
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proving (4.26). This, in turn, implies that with 7**D probability one
lim,,  , M7'ZP(XEOMY > lim,, M 'ZED(XEEOMY =Y (1g ),
> (1= g = gy
proving (4.25).
PrOOF OF THEOREM 3.2. To begin the induction, choose ¢ so small that
min(%, C — H*) > 2(h(7e,) + Te, logl4|) + h(e)) + &, log|A|.

Let [G,u, U] be an ii.d. source with entropy H(pu) = H* + 2(h(7¢,) + T¢, log| A))
+ h(g) + ¢ log|4| < C. From Corollary 3.3 and its proof there exist an encoder
f® and decoder g such that

Pe(”}m—l’v?hg(l)) < g,
H(r®V) > H(p) — h(e;) — ¢ log| 4|
H* + 2(h(7¢)) + Te, log| 4]).

H(p) > H,

The good n, blocks are the block code words used to construct f via Corollary
3.3. As in (4.49), with 7 probability one,

lim,, ,, M~'ZD(x) > (1 — e)n7!,
setting up an induction using Lemma 4.1. Define 8(¢) = h(7e) + 7e log| 4| and
define ¢, ., as the solution to
(4.50) 20(exy1) = H, — H* — 8(ep).
This assignment ensures that at the next stage H, ., > H* and, as we shall see, that
H, — H*. There will always be such a solution to (4.50) since §(¢) is continuous

and the right-hand side is in (0, %) for all £ > 1. Iterate Lemma 4.1 to construct
F&**D and g**D guch that

Pe(“f(k+l)—1’ v, i, g(k+1)) < eenrs
(4.51) | f = fO*D], < Tey,
Hk(l — &) > He, > H — 8(%):
and so that each good n,.,-block used to construct f**V has at least (1

— &,/2)ny; 'ny,, good n, blocks.
By construction and the triangle inequality, if m > n,
(n)y _ f(m m i) _ £+
(4'52) lf " f )Ip, < 2i=n f() f(+ Ip < 72;n=nei'
We also have by construction and (4.51) that
H, - H, = 2?:':'(1"1:_ H,y) > Er;—nlsiHi > H*E;';_nlei’

and hence since H, > H,

n

> H, > H*for allm > n,

Sile, < (H/H*) — 1,



670 R. M. GRAY, D. S. ORNSTEIN, AND R. L. DOBRUSHIN

and therefore

(4.53) 22,8 < (H/H*) -1,
so that from (4.52) and (4.53) we have
(4.54) im,, ,.|f® —=f™, =0

so that £ is a Cauchy sequence. From Shields (1973), page 38, there is a limit
code f * such that

(4.55) lim, | f™ — f*, =0
We also have from (4.53) that
(4.56) lim, ¢, =0,

and hence from (4.55), Lemma A.1, and the continuity of §(¢),

H(pf* ') = limy, H, = lim,_(H* + 8(e,) + 28(e,)) = H*.
Define 7* = uf*~!. We now prove that 7* (which has entropy H(7*) = H*) is
indeed invulnerable. Toward this end, first consider the performance of the kth
decoder g on the mth source 7™ for m > k. Recall that g® performed well
during good n, ;-blocks (by definition of good n,, ,-blocks), and hence the
performance of g on 7" can be measured by the percentage of time 7™ spends

producing good n, ,-blocks. From (4.39) we have that, for any M and the
= 2¢,,, length decoder g¥),

(4 57)  E,md(X§™, “"(Y'"k))
= M~'Z); Ef<"'>d1(Xi(m)’g(k)(Y:n§))
< 3g + 2¢,,,/7T+1 — M_'nk+1E,(m>Z$+l)(X(m)M)-
From iteration on (4.48),
ZEO(xM) > Zi(xM)n,, ne 175 (1 = €;)

> ZI(wm)(xM)”mnl:+l(1 - 1 k+18)
and hence

M 'y (EmZED(X™MY > M7 'n (1 — 2754 18, E,m ZSP (X (™M),
From (4.49) however,

lim,, o M 'n, (1 — 2750 &) E o Z{P (X (™M)

>(1—e, )1 —-2rtie) > 1 —-32m, e,

and hence from (4.57)
(4.58) E,md (X§™, g(Y™)) < 3e, + 26441/7 + Shir8; < 337,
and hence from Corollary A.1 of the Appendix
(4.59) E..d\(X,, g®(Y™)) < 332,¢,,

which by (4.53) goes to zero as k — 0. In words, the g% all work fairly well for
the limit process 7*. Denote the error event &, = {(x, »); g®(») # x,}. From
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(4.59) and (4.53),
™*r(&6,) < 3226, > 0ask — oo

and hence we can choose a subsequence k;, i = 1,2, - - - such that
(4.60) ERm*e(6y,) < 0.

Define the decoder g* : B® — A4 by g*(y) = a if, for all but a finite number of i,

gk )(Y”"w(y)) = q, otherw1se set g*(») = a*. In other words, g* sees if all but a
f1n1te number of good decoders yield the same symbol and, if so, prints that
symbol. Define & = {x, y : g*(y) # x,}, and we have for all n, &5 c U® b,»
and hence from (4.60)

5(6) < I

i=n

™r(&6,) > 0asn > oo

and hence
P(pf* ' v, i, g%) =
completing the proof.

ProOF oF THEOREM 3.3. Given » as above and H(u), there is from Corollary
3.4 an invulnerable B-process [A4, 7*, X*] with decoder g* : B® — 4. Since
[4, *, H*] and [G, u, U] are B-processes with equal entropy, they are isomor-
phic, and hence there exists an infinite length sliding-block encoder f: G® — 4
and decoder y : A® — G such that 7* = pf~' and

u(u: v(f(u)) #=u0) = 0.

Define the decoder g: B* — G by g(y) = v(g*(»)), the cascade of y and g*.
Since 7* = u f~!is invulnerable, from the union bound,

™p(x, y: g (y) # x) < R _m*v(x, y: gX(Ty) # x,)
= S _om*r(x, y i g*(y) # x) = 0,
and hence
P,(1,v.f,8) = [dp(u)vi (v : v(8F () # uo)
< fdp(u)rg(y : 8 (v) # f(w))
+ fdll'(“)”f(u)(y : y(f(u)) 7 "0) =0.

PrOOF OF COROLLARY 3.5. If a source [A4, 7, X] can be communicated with zero
error then it follows from the Fano inequality and data processing theorem
(Shields’ (1973) Lemma 8.2 and Billingsley (1965), Theorem 17.3) that H(X |Y) = 0
and hence

H(X) I(X Y) Supblock stationary (4, 7, X]I(TV)’

from Gray and Davisson (1977) page 102, the right-hand side is C, and hence
Cy < C. From Theorem 3.3, C, > C, proving the corollary.
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APPENDIX

Let £, denote the class of all infinite (and hence also finite) length sliding-block
codes f: G® — A. Given a stationary source [G, p, U], define a metric on £, by

'f_flln = u: fuyef ) du(u) = [ dp(u)d,(f(u), f'(u)),

that is, the average Hamming distance between the two differently encoded
versions of p.

LemMa A.l1. (Follows from Shields’ (1973) Lemma 8.2). For f, ¢ € F e
|H(uf™") — H(ug™ ") < h(f=ol,) + |f = o], log|4].

LEMMA A.2. Given a stationary channel v, a stationary source [G, p, U], a length
m sliding-block decoder, and two encoders f, f’, then for any r,

(Al) IPe(V" v, [, g) - Pe(.“', v, ', g)l
< m/r+r|f—f|,+ mmax,c, SUP, rec(ar) d (vl vl).

Furthermore, if i : A® — A is the identity sliding-block code i(x) = i;(xo) = X,
then

< . =1 .
(A2) |Pe(uf', v, i, g) — Pe(p,(f) , v, 0, g)]
< m/r + rlf - fllp. + m max ;re 4 supx, x'€c(a”) Jr(v;’ vxr’)‘

Proor. Define A = {u: f(u) = f'(v)} and A, = {u: f(T'u) = f(T'u); i =
0,---,r—1} = N/Z4T'A. From the union bound,
(A3) p(AS) < ru(A°) = r|f = f,
We have from stationarity that if g = g,,(Y”,) then
(A4) P(p, 7, f,g)

= [ dp(u)vp(r : 8n(¥7,) # o)
= rSZY du(u)vi (v : ga(Vy) #u;)
< mfr + r'SZY, du(u)vin(r7 8a(Png) #F u) + p(A).

Fix u € A, and let p, yield J,(vf—’(u), Yi)> that is, 2,000 ¥ = YY",
2,007 ¥'7) = iy, and

(A.5) P (v Y i #E ) = (Vs Yaw)-
We have that
r—lz;;gpj_((“)(y/r : gm(y,;n—q) 7& ui) = r-lz;-_—_qpu(yr’ y/r : gm(yl;n—q) # ui)
< rSZap (7 v (V) # 8m(K2y))
+ ' Zzip, (v v a0y # )
< rSIZip (v YTy F Y L) + Plps v, 5 8)
< P EZIsi At (v, v v #F )+ P v, f 8)
< md,(vf,» Vi) + Pp, v, g),
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which with (A.3)-(A.5) completes the proof of (A.1). Equation (A.2) follows almost
identically:

Pp, v, i, 8) = [ du(w)vpu(y i 8n(¥7,) # f(u))

< m/r+ p(AT) + r ' Ei2Yy dp(u)vi, (0 ga(0i_y) # A(T'u))

<Smfr+rlf=fly+ 722007 27 8a(PTy) # 8a(¥7,))

+ ' Z2Ep (7 v ga(iny) # A(THu))
< mfr+r|f = fl, + md (v}, vi) + Pe(,u(f_’)_l, v, i, g).
COROLLARY A.l. Given a stationary d-continuous channel v and a finite decoder
8m: B™ — A, then, if f € £,, f € £, are such that
lim, | /™ = f|, = 0,

then
limn—aoo Pe(p" V’f(n)’ gm) = Pe(uu" Il,f, gm)
and
lim,_, P(pf™ " v,ig,) = P(f ", vig,)

where i : A — A is the identity sliding-block encoder i(x) = x,.

Both results state that probability of error over a d-continuous channel is a
continuous function of the encoder as measured by the coder metric. In one case
the original source is reproduced in the other the channel input is reproduced.

Proor. Fix € > 0 and choose r so large that

max,, SUp,. v eca) 4(v5 7)) < &/ (3m)
m/r < ¢/3
and n, so great that n > n; implies

|/ = fl, <&/ @)

From Lemma A.1,
IPe(Au" V’f(”)’g) - Pe(.u‘, ”,f’g)l < &

|P(uf™ 1 v,08) — Pwf w0 g)l <&
completing the proof.
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