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SOME TRANSFORMATIONS OF DIFFUSIONS BY TIME REVERSAL'

By M. J. SHARPE
University of California, San Diego

The method of time reversal of a Markov process from a cooptional time,
introduced by Nagasawa, is used to show that certain occupation time and
last exit time problems for one linear diffusion are equivalent to first passage
time problems for certain other diffusions. Another proof of Nagasawa’s
theorem is given, based on the measures of Revuz.

1. Introduction. In some investigations [2] concerning Bessel diffusions on the line
it was found by explicit calculations that the distributions of the last exit time from a state
and occupation time of an interval for one Bessel diffusion are identical with first passage
time distributions for certain other Bessel diffusions. The object of this paper is to show
that these phenomena persist for a very general class of linear diffusions. The proofs are
free of explicit calculations and depend only on some theorems on transformations of
Markov processes by means of time change and reversal. At the end of the paper a new
proof, based on the measures of Revuz, is given for the principal tool—Nagasawa’s theorem
on time reversal.

The basic process will be a regular diffusion X with lifetime { on the interval (0, ),
satisfying the hypotheses

(1.1) The end point 0 is an entrance point but not an exit point.
(1.2) Xi—> oo as t /¢
Let T, = inf{¢ > 0: X; = a} denote the hitting time for the state a € (0, ). Let s be a
scale function for X. Thenif0<a=x=b < x,
s(b) — s(x)
s(b) — s(a)
In view of (1.1) and (1.2), as @ — 0, P*{T, < T} — 0 and consequently s(0+) = —o. For

fixed @ > 0, limy,.P*{T, < T} = P*{T, < {} < 1 otherwise X would be recurrent. It
follows that s() < . We may assume therefore that s satisfies.

(1.3) s(0+) = —oo, s(o0) = 0.

PHT,<Ty) =

Let I' denote the infinitesimal generator of X, with domain A, and let m be a speed measure
for X normalized so that I' = %(d/dm)(d/ds). Standard results in diffusion theory ([3],
page 130) show that, under (1.1),

(1.4) J (s(e) — s(8))m(dt) < o for every € > 0.
0

In fact, (1.3) and (1.4) are together equivalent to (1.1) and (1.2).

We now define two other diffusions in terms of the scale function s and speed measure
m for X. Let Y denote the diffusion on (0, ») having scale function § = —1/s and speed
measure m(dx) = s%(x)m(dx) with death occuring only as the process reaches 0. Let Y°
denote, for a fixed b > 0, the diffusion on (0, b] obtained from Y by placing a reflecting
barrier at b. More precisely, Y has speed measure 1 dri, scale function § |, and every
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function f in the domain of the generator of Y* satisfies f(b) — f(x) = o(s(b) — s(x)) as x
/7 b. It will be apparent from the proof of Theorem (1.5) that the endpoint 0 is an exit
point for Y and Y?. This could be shown directly from the forms of § and .

We now let A, = [§14(X;) ds, so that A denotes the total time spent in (0, b) by the
process X, and we let L = L, = sup{t: X; = b} denote the last exit time of X from the
interval [0, b). We set also T = inf{¢: Y, = 0} and 7° = inf{¢: Y?= 0}.

(1.5) THEOREM. (i) The distribution of Ly for the process X starting at 0 is identical to
the distribution of T for the process Y starting at b.

(ii) The distribution of A for the process X starting at 0 is identical to the distribution
of T? for the process Y* starting at b.

2. Proofs. The principal result needed for the proof of Theorem (1.5) is the theorem
of Nagasawa on time reversal for dual processes. The theorem is stated in [5] and a proof
can be found in [4], page 41. Another proof that seems simpler is given in Section 3.

The form needed here can be stated as follows.

(2.1) Let X and X be standard Markov processes in duality on their common state space
E relative to a o-finite reference measure ¢. (See [1], VI). Let u(x, y) denote the potential

kernel density relative to § so that Uf(x) = E* [§ f(X,) dt = [ u(x, y)f(y)&(dy). Let L be
a cooptional time fo_r X; that is, L is a positive random variable satisfying L < ¢ and L°8,
= (L — t)*. Define X by

X;=X(L_t)_ on {0<L<00},f07‘0<t<L
=A otherwise.

Fix an initial law X and let v(y) = [ A(dx)u(x, y). Then, under P?, the process (X,) >0 is
homogeneous Markov on E with transition semigroup (P,) given by

Pf(y) = P fo)(y)/v(y)  if 0<uv(y) <o
0 if v(y)=0or w.

In case A = €., we have v(y) = u.(y) = u(x, y).

For a diffusion X satisfying (1.1) and (1.2), we take £ = m, the speed measure. Let U
denote the potential operator for X. The potential kernel density u(x, y) for X is easy to
compute in this case. Firstly, for 0 < a < b < oo, let Ro, = inf {£: X, & (a, b)}. By elementary
results in diffusion theory, ifa <x < b

Rap
EXJ f(X) dt=J Uab(x, ¥) f(y)m(dy)
0 (a,b)

where uq(x, y) is symmetric in (x, y) and fora<x =<y < b,

(2.2) Uas(x, ¥) = (s(x) — s(a))(s(b) — 5(¥))/(s(b) — s(a)).
Because of (1.3), we obtain as @ \, 0 and b / « that for x > 0

(2.3) Uf(x) = E"f f(X) dt = f u(x, y)f(y) du(dy)
0 (0,00)

where

(2.4) u(x,y) = |s(y)| A |s(x)|.

This proves that X is self dual relative to the reference measure m, and in particular, when
x = 0, we obtain u(y) = | s(y)|. The random variable L = sup{¢: X, = b} (= 0 if {£: X, = b}
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is empty) is obviously a cooptional time. It follows then from (2.1) that the process X
reversed at L is, under P°, a diffusion with initial point » with transition function Q,f(x)
= Py(fs)(x)/s(x) for x > 0. The reversed process X dies only at 0, and its potential operator
V is given by

Vf(x) = U(fs)(x)/s(x) for f€ & and x>0.
Using (2.4), one sees that for f € & and x > 0,

Vf(x) = f |5()] A Is(y)lf(y)%m(dy)

=J§(x) A §(¥)f(y)si(y)m(dy)

where § = —1/s. It is, therefore, a simple matter to see that s is a scale function for the
reversed process and mi(dy) = s*(y)m(dy) is the corresponding speed measure. In effect,
Vleg < 0 if 0 < a < ¢ < », and the identity V1q(x) = V(@) P*{T, < {) for 0 < x
< a leads to P*{T, < {} = 5(x)/5(a) so 5 is a scale function for X. It is almost a matter of
definition then that 7 is the speed measure for X. We have proved, therefore, that X is
equivalent to the process Y described in the introduction, and so (1.5) (i) is proven.

The proof of (1.5) (ii) is quite similar. We shall prove that if the process X is time
changed via the additive functional A to give a process X* whose lifetime is A, then the
process X* obtained from X by reversal at its lifetime has, under P°, the same distribution
as the process Y starting at 5. From this will follow obviously (1.5) (ii).

The potential operator for the time-changed process is

Uasf(x) = E* f f(X:) dA; = E* f [on](X:) dt
0 0

= Ulflon)(x)

= f u(x, y) f(¥)lon(y)m(dy)

where u(x, y) is given by (2.4). From this we deduce that the process X*, which lives on
[0, b], is self dual relative to the reference measure 1 (y)m(dy) and the restriction of u(x,
y) to [0, ] X [0, b] is its potential kernel density. Applying (2.1) again, we see that under
P° X4 is continuous and strong Markov with potential operator U, given by

Uaf(x) = Ua( fuo) (x)/uo(x) = U(fslon)(x)/s(x), 0<x=<b.

Thus Uaf(x) = V(flowy)(x) for 0 < x < b, where V is the potential operator for the process
Y. Since Y dies only at 0, the process Y’ can be obtained from Y by time change based on
the additive functional [§ 1 (Y,) ds—see [2], (4.8), for example. It follows just as above
that the potential operator for Y is given by V(flws) and consequently Y° and X“ have
the same potential operator. As in the proof of (i), this shows that Y? and X are equivalent
processes. Since, under P°, the initial value of X* is b, the assertion (1.5) (ii) is now evident.

3. Nagasawa’s theorem. In this section we give a proof of (2.1). Recall that the
hypothesis of duality of X and X relative to £ gives us the existence, for each a = 0, of
functions u*(x, y) satisfying, for f € &4,

00

(3.1) Uf(x) =E‘J ‘e"“f(X,) dt=J u*(x, y) f(y)e(dy);

0
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3.2) Uf(y) = E'yf e™f(X,) dt = f £(dx) f(x)u*(x, y);
0
(3.3) for all y, x — u®(x, y) is a-excessive;
(3.4) for all x, y — u“(x, y) is a-coexcessive (i.e., a-excessive for X).

Under these hypotheses, one has the following important theorem of Revuz [6] connecting
additive functionals and measures on (E, &): let A be a natural additive functional of X
with, say, finite potential u4(x) = E*A.. Then there exists a o-finite measure »4 on (E, &)
satisfying

(3.5) E"J e *'f(X,) dA, = J u (%, ¥)f(y)valdy); fE€ &, a= 0.
0

We shall show that (X,)~o as defined in (2.1) is Markov relative to a filtration (%)
defined below. To begin with, let #denote the class of all real measurable processes (Z,):-o
on  having the property of homogeneity on (0, «):

(36) Zols=2Z,.s forall t> O, s=0.

For example, if f € &, the process Z; = f(X;-)1(0(t) is in # In addition, if Z € # and if r
= 0, the process t — Z;., is in /. A necessary and sufficient condition on a random variable
L = {in order that it be a cooptional time is that 1) € #or 1 €

One defines then, for any cooptional time L, the o-algebra

3.7 G ={ZLlocs<wy + Fly-q + cly-wp: ZEH, FE F ¢ scalar}.

From the examples quoted above, one sees that X;_1(<7<y is %, measurable and that if ¢
>0, (L — #)* is also a cooptional time and %y~ D %.. We now define

(3.8) Fi= Yy

Replacing L by (L — s)* in the inclusion noted above, we see that (%) is indeed a
filtration, and (X))o is adapted to (%) o.

In order to prove the theorem, it is enough to prove that if g € 8%, (E) and if 0 < s <
t + s, then with P, as defined in (2.1)

(3.9 E*{gXiro)| %) = Pg(X,).

One notes that one may assume s = 0 upon replacing L by (L — s)*. Having made this
change, (3.9) is equivalent to the equality of the Laplace transforms in ¢,

(3.10) E“{f e™g(X) dt| .%} = Ug(%).
0
Because of (3.7), (3.10) is equivalent to

L
(3.11) E"{ZL1{0<L<m) J' e 'g(X,) dt} = E"{ZLU“g(XL—)l(kkw)
0

for all bounded positive Z € i,
Note that since L was replaced by (L — s)*, we have L < { a.s. on {L < oo}.
Let B, denote the increasing process given by

(3.12) B: = Z11 p<1<o} L1 (2).

It is trivial to verify from propei'ties of #’that B, is an additive functional, not adapted
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to (%) in general. The potential of B, is up(x) = E*(Z11p<1<«)), an excessive function of X
which is a natural potential since L < {. There exists, therefore, a natural additive
functional A of X having this potential. One has then

(3.13) E* f e “f(X,-) dB; = E"J e f(X,-) dA:; fE€ &, a= 0,
©.8 )

because the integrand is predictable, and both B and A have the same dual pradictable
projection. We may then compute the left side of (3.11). Substituting L — ¢ for ¢ in the
integrand and then using the fact that Z;, = Z; <6, for 0 < ¢t < L, one has for a > 0

L

L
E“{ZL1(0<L<°°) J' e_“‘g(X't) dt} = E“{ZL1(0<L<°°) f
0

0

e *llig(X) dt}
= E"f 1iz-o>0Z1°0.e L% (X)) dt
0

= E'LJ h(X)g(X,) dt
o

where A(y) = E*{1z>0Zre "}
However,

E“J’ h(X)g(Xe) dt=J,u(dx)U(hg)(x)

=fu(dx)J'u(x,y)h(y)g(y)ﬁ(dy).

We obtain another expression for 2 making use of (3.13) and (3.5). Evidently, if » is the
Revuz measure for A,

0

h(y) =EyJ e dB,

o
=EyJ’ e " dA,
)

=Ju“(y, 2)v(dz).

Substituting above, we find after inverting the order of integration

L

EM{ZL1(0<L<00)J’ e “g(X) dty = f v(dz) j &(dy)u(y, 2) J wldx)u(x, y)g(y)

0

= f v(d2) U%(vg)(2).

On the other hand, the right side of (3.11) can be written as

0

E* f Ug(X.-) dB, = E* f U°g(X,-) dA,
0 0
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= J p(dx) J u(x, 2)v(dz) Ug (2)

using (3.12) and (3.13) again. The last expression is clearly equal to

f v(d2)v(2)Usg(z) = f 1(dz) U*(vg8) (2)1 p(1<cc} -

However, because

fv(dz)v(z) =f,u(dx)fu(x, 2)v(dz)
= f[.l,(dx)Eme = E"{ZLI((KL«Q)} < oo,

v is finite » a.e., and the equality (3.11) follows.
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