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AN EXTENSION OF KAZAMAKI’S RESULTS ON BMO DIFFERENTIALS?

By PHILIP PROTTER

Purdue University

Kazamaki has shown that if (M"),z;, M are BMO martingales with contin-
uous paths and lim M" = M in BMO, then &(M") converges in #" to &M),
where &(M) denotes the stochastic exponential of M. While Kazamaki’s result
does not extend to the right continuous case, it does extend “locally.” It is shown
here that if M", M are semimartingales and M" converges locally in #* (a
semimartingale BMO-type norm) to M then X" converges locally in #7 (1 = p
< o) to X, where X", X are resepctively solutions of stochastic integral equations
with Lipschitz-type coefficients and differentials dM", dM. (The coefficients are
also allowed to vary.) This is a stronger stability than usually holds for solutions
of stochastic integral equations, reflecting the strength of the #* norm.

1. Introduction. Recently Kazamaki [5] and Kazamaki and Sekiguchi [6] showed that if M
is a continuous martingale, in BMO then the stochastic exponential £(M) is in #", and if M"
converges in the BMO martingale norm to a martingale M in BMO then &(M™) converges to
&(M) in the #"' martingale norm: Simple examples show that these results do not extend to
the right continuous case: M € BMO does not necessarily imply that (M) € #" (cf. Remarks
(3.7), #3). One does have, of course, that M € BMO implies that &(M) is locally in #", but
this is not surprising since every local martingale is locally in #"!

A consequence of the results presented here is that if M € BMO then &(M) is locally in
A for all p, 1 = p < . Moreover we show that if M" converges locally in BMO to M then
&(M™) converges locally in #% to £(M) for all p(1 = p < »). We extend Kazamaki’s results
further, however, by working with semimartingales and general stochastic differential equa-
tions. Suppose X, X" are respectively solutions of

(1.1) Xt=Jt=J (FX),-dM,
0

t
(1.2) Xr=Jr+ f (F"X™)s-dM?
(1)

where M, M", J, J" are semimartingales and where F, F" € Lip (K). (Precise definitions are
given in Section 2.) Meyer [9] has extended the notion of BMO martingales to semimartingales.
Such a semimartingale is said to be in ™. We show that if M € 5™ and J € #” for some p(l
= p < ), then X is locally in #” for the same p. Moreover we show that if M" converges
locally in 5 to M, and if F" converges to F and J" converges to J in appropriate ways, then
X" converges locally in #” to X (1 = p < o with p depending on the convergence of F", J" to
F and J). This principal result is the content of Theorem (3.4).

By insisting that the differentials converge locally in 5™ we obtain local convergence of the
solutions: that is, we get (X")”* converging to X™ in #* for stopping times T} increasing to
o a.s. (X and X" are the solutions respectively of (1.1) and (1.2)). The previous best results
(Emery [3] and Protter [12]) obtained only the weak-local convergence of subsequences.

Section 2 consists of preliminaries including some recent developments not contained in
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Meyer [7]. One innovation is the generalization of Emery’s idea of “carving” a semimartingale
into small 5 slices; by requiring only that the slices be in #7, we show in Lemma (2.15) that
if M" converges to M in #7 then there exists an N such that for all » > N the same stopping
times that carve M are also carving times for M". The convergence theorem described above
(Theorem (3.4)) is the content of Section 3. In Section 4 we extend a result of Garcia, Maillard,
-and Peltraut [4] by constructing a local martingale with a given random “multiplicative jump”
at a given totally inaccessible stopping time. We then apply Theorem (3.4) to obtain a
continuity theorem for martingales with multiplicative jumps.

2. Preliminaries. We use the notation of and assume the reader is familiar with the theory
of the semimartingale calculus as given in Meyer [7]. Let (82, % P) be a complete probability
space and let ()20 be a right continuous filtration with %, = #and where % contains all P-
null sets.

Let % denote the adapted processes whose paths are right continuous with left limits
(cadlag). For J € ¥ let

179w = | Supecee | J | v (1=p=w).
For a stopping time T we say a process X € % is stopped at T— if
X, =X = Xelo, 70 + Xr-1p70f
where X, = lim,,;s.X;. We let
0Xr= Xr — Xr-,
the jump at 7, and we make the notational conventions that
1 XNl = [ X" lows | X oy = | X" |-

Emery [1] and Meyer [9] have proposed #” norms (1 = p = « and p = w) for
semimartingales. (Here w represents the first limit ordinal and is not a point in £.) Meyer has
shown that the #” norms for semimartingales are equivalent to the martingale #” norms
when the process in question is a martingale (1 = p = o or p = w; p = w corresponds to the
BMO martingales).

For a semimartingale M with a decomposition M = N + A4 where N is a local martingale
and A is a VF process, we define (1 = p = x)

Mmm=mmmw+flmmm
0_

For p = w, ju(N, A) is the smallest constant c such that for any stopping time T

o

E{(N,N]» =[N, N]r_)"? +J |dAs |7} = ¢ as.

T—

We let
| M|l = infar-najp(N, A4), lsSp=sworp=u,

where the infimum is taken over all possible decompositions of M. For notational convenience
we write

I X lerey = 1| X7 loews | X llmiroy = | X ||op.

We caution the reader, however, that Emery in [2] uses the notation || - || sz differently:
| X |l»»r-) denotes (in [2]) the infimum of the #* norms of all semimartingales L such that
L™ =Xx".
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The next proposition is elementary but it may give the reader some feeling for the || - ||
norm, which can be thought of as an extension to semimartingales of the BMO norm for
martingales.

(2.1). PROPOSITION. Let X and Y be semimartingales with || X || x. < % and || Y| . < %, and let
T be a stopping time. Then the following hold:

(22) 18X rliroot || e = || X [l

(2.3) | Xl opor—) = 2| X||spoem

(24 I XNy = 1| X]lpo

25) I X+ Yo = | Xllaoa— + | Yoo

ProOF. Let X = N + A be any decomposition of X. Then | X7 | =|dN7z| + |d4r|. For any
stopping time S we have

T
|8X7|ls=ry = ([N, Nlr— ([N, N]s-)'? +J | dAs|,

S—

and (2.2) follows upon conditioning with respect to .

To establish (2.3) note that || X || wur—) = || X = X117 || wory = 2|| X|| spwir) . Inequality
(2.4) is clear and (2.5) is merely the triangle inequality applied to the semimartingales X"~ and
Y™.O

We make repeated use of the following inequalities. A proof can be found in Meyer [9].

(2.6) EMERY-MEYER INEQUALITIES. Let |l S p =, 1 =g=o,0or | =p = and q = w, and
(1/p) + (1/q) = (1/r). Let X be predictable and M be a semimartingale such that the stochastic
integral X-M exists. Then

@7 I XMl = || Xllo | Mo
2.8 | X-Mller = hpll Xllooo || M .
Iflspswx,1=qg=00,(1/p)+ (1/q) = (1/r) but r < o, then
29) 1 XMl = el Xlon| M e
and if 1 = p < o, then

(2.10) | X-M|lor = spl| Xl | M| 5o

where hy, ¢, s, are universal constants.
We record here a trivial but useful observation.

(2.11). PROPOSITION. Let X be predictable, let M be a semimartingale and suppose the stochastic
integral X-M exists. For any stopping times S, T with S < T a.s. we have for | =p =0, 1 =¢q
=coand (1/p) + (1/9) = (1/r)
| X-M = X-M5| oy S || Xl ower) | M = M3 || ar-.

Ifl=p<o,

| X-M = X-M5||sor-) S bpl| X |l o) | M = M| iz
Ifl=spswl=g=o,(1/p)=(1/q) = (1/r) but r < o, then

| X-M— X'MS"j/*f(T—) S ol Xllwen | M = M || wars
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and if 1 = p oo, then
I X-M = X-M°||pnz-) = 5| X||nr) | M = M ||speiroy.
PROOF. Let N = (M — M®)"". The proposition then follows by an application of the Emery-
Meyer inequalities (2.6). O
We shall also use a technique developed by Doléans-Dade, Meyer, and Emery, the idea of
which is contained in the next definition, which was first given in Emery [1].

(2.11%). DEFINITION. Let € > 0 and M be a semimartingale. M is said to be carved in slices
smaller than e if there exists a finite sequence of stopping times (carving times) 0 = To < T1 <
... <T,suchthat M = MT~ M€ #and for l =i=k,

(2.12) [ M — M" | ppoiry < €

We write M € D*(e) if M is cut in slices smaller than e. We also write M € D*(g, k) to signify
the number k of nonzero carving times needed to cut M into slices smaller than e.

(2.13). DEFINITION. For € > 0 we say that M is in D”(¢, k), 1 = p = « or p = w if there exists
a finite sequence of stopping times 0 = To < T; < - - - < T} such that M = M™~, M°E€ #7”, and
forl =i=k,

(2.14) | M — M" || iz < e.

Note that M € DY(e, k) implies that M € DP(¢, k) forq = p,org=o and p = w.
The next lemma is due to Emery ([1] or [3]).

(2.15). LeMMA. Let M be a semimartingale. For each € > 0 there exists an arbitrarily large
stopping time T and a constant k depending on T and € such that M"~ € D”(e, k), | = p =  and
p=w

ProoF. It suffices to prove the result for the #™ norm since it is stronger than the #* norm,
l=p=oworp=uw Let M =N + 4 be a decomposition of M. By letting C; = Y.
8N.1(|sn, 2y2) and C, be its dual predictable projection (also called its “compensator”) we
have that N = N, + (C, — C,) is a martingale. It is a simple matter to check that C, has locally
integrable variation and that y is a bound for the jumps of N. (See Meyer [8] for the details).
So we assume that M = N + A with y bounding the jumps of N. Let Ry = 0 and inductively

define:

t
Ry =inf{t§Rk:f | dAs | zyorj |dAs| = k}.
0

1R, t]

For each k, A"~ € D*(y). Let So = 0 and inductively define:

Sk+1 = inf{t Z Si: [N, N]. — [N, Nlr, = y*or [N, N = k).

For each k, N5 is in s and since

(N = NS)7en™ = (NP1 — N — 8N, Lis, o1
we have
IN = N |eis, i S (AN, Ns,., = [N, N1s)"* + |8Ns,., | -
= (@®Ns,.,)* + [N, Nls,,,- =[N, N1s)""* + |8Ns,,, | |-

G+ )+ y=(1+2)"y.
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Thus taking y = €/2(1 + 2)"/%, we have N € D"(e/2) and A € D*(¢/2). But it is a simple matter
to check that the sum of two elements of D™(¢/2) is in D*(¢). 0

The next lemma will be used in the proof of Lemma (3.25), which in turn is crucial to the
proof of Theorem (3.4). It is important because we can have M™ € D”(a, k) for n = N where
the constant k does not depend on n. The case of interest for us is p = w.

(2.16). PROPOSITION. Fix ap, 1 = p = oo, or p = w and let M be a semimartingale such that
| M ||» < 0. Suppose M™ is a sequence of semimartingales such that lim, .« || M — M" ||» = 0.
Then for any € > 0 there exists an arbitrarily large stopping time T and constants N and k such
that M € D”(¢, k) and M"™ € DP(¢, k) for all n > N.

PrOOF. Lemma (2.15) assures us of the existence of an arbitrarily large T such that M €
D*(€/2, k). Choose y = €/8 and choose N so that n > N implies | M — M™||4» < y. Let 0 =
To< Ti < -+ < T = T be the stopping times that carve M into slices. Then

[ M" = (M) nzoy = | (M™ = M) — (M™ = M) + (M = M"Y | ner
S2|M" = M|wrr,_y = | (M — M) || griz-

SA|M" ~ M|+ ¢/2<e.

Thus the same times Ty, -- -, T} carve each M” into k slices, each smaller than ¢, for n > N.
ad

The most general coefficients used in scalar stochastic differential equations for which
unique solutions exist are those which satisfy the conditions described in the next definition.

(2.17). DEFINITION. Let K > 0 and let F be an operator mapping ¥ into itself. F is said to be
in Lip(K) if the following two conditions are satisfied:

(2.18)  For X, Y in % and each stopping time 7, X"~ = Y~ implies (FX)"~ = (FY)"";
(2.19) (FX — FY)* = K(X — Y)* as processes, where X* = sup,=, | X;|.

We state our results in terms of local convergences. Processes X" converge locally in a norm
[+ [l fo X if there exists a sequence of stopping time (T} )s=: increasing to o a.s. such that for
each fixed k, lim, . || (X" — X)™ || = 0.

We remark that in [12] we used a convergence designated “weak-local”, and Emery in [2]
uses simply the term “local” to denote weak-local convergence. The processes X" converge to
X weak-locally if lim, .. || (X" — X)™ || = 0 for each k. We will not need this type of
convergence, but see Remark (3.7), (4), in Section 3.

3. Stochastic differential equations. We consider the following type of equation:
t
3.0 X.=J.+3Y% J' (FiX)s—dM:,
0

where M" are semimartingales, F; are in Lip(K), and J is either a semimartingale or J € %(1
= i = k). For simplicity of notation, we assume k = 1. We are interested only in the case
| M|l < oo. We refer the reader to Emery [2, 3] for an account of recent results concerning
this equation. In particular, unique solutions exist.

Whether J € % or J is a semimartingale governs what norm we use for the solution X. The
semimartingale-norm || - ||x» is a stronger norm than the %-norm || - ||s»; however, the following
lemma allows us to work exclusively with || - |l,» and still deduce the results for | - [l», should
J be a semimartingale.

(3.2). LeMMA. Suppose M, J, M™, and J" are all semimartingales for n = 1. Let X and X" be
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solutions respectively of

t
X,=J+ f (FX),—dM,
0

t
Xr=Jr+ f (F"X™)s-dM™
0

where F and F" are in Lip(K), some K independent of n. Suppose that (1) J" tends to J locally
in A7, (2) F"X tends to FX locally in &%, and (3) | M |x. < o and M™ tends to M locally in
H*. Then X" tends to X locally in A7 if and only if X" tends to X locally in #° (1 = p < ).

ProoF. Necessity is simply a consequence of the fact that the #* norm is stronger than the
&* norm. Without loss of generality we may assume that the convergence hypothesized in
conditions (1), (2), and (3) above is global, not local. Further, by stopping at an arbitrarily
large time T if necessary, we may assume that | FX_[l» < . Then by hypothesis (2), the
assumption that || X" — X |l»» tends to 0, and the inequality

|F"X || oo < | F"X™ = F"X_|| y» + | F"X_ = FX_| y» + || FX—s0s]|
= K| X" = X_||ly» + | F"X = FX|| o + | FX_| s,

we may assume || F" X" || »» is bounded uniformly in n. Using the Emery-Meyer inequalities we
have:

33) |x*- X",;(/’P = " I =T + " FX_ — F"X_||¢» "M”;m
+F*X- = F*X2 ||oo | Ml + | F"X2 || oo || M — M"|| o

and since || F"X_ — F"X_||4» = K|| X- — X" | 4» and || F"X" ||4» is bounded uniformly in n,
the right side of (3.3) tends to 0 as » tends to «. O

In view of Lemma (3.2) we need state the next theorem, our chief result, only for the case
where J € %.

(3.4). THEOREM. Let M, (M™),z1 be semimartingales. Let F, (F")nz1 be in Lip(K) for some K and
all n. Suppose, J, (J")nz1 are in € and that X, (X" )nz1 are solutions respectively of

t
(3.5) X,=J, + f (FX)s—dM.,
0

t
(3.6) Xr=Jl+ f (F"X™)s-dM?.
0

Fix ap (1 = p < =) and suppose (1) J" converges locally in #* to J, (2) F"X converges locally
in #° to FX_ and (3) || M ||« < o and M" converges locally in #* to M. Then X" converges
locally in % to X.

(3.7). REMARKS. (1) Because of the local nature of stochastic mtegrab (cf. Meyer [7], page 307),
one can replace J; and J7 in (3.5) and (3.6) with J; = J,1A and J? = J?14, for A € % Then it
is elementary that  — X, and 1 — X, (X is the solution of (3.5) with J replaced by J) agree on
A as. (cf, e.g., Protter [11], page 48). This gives us a way to handle the situation if the initial
conditions Jo and J¢ are not in L”: if there exist sets /\r € % increasing to £ such that || (J*
— J)In, ||» tends to O for each k, one can define T, = k1, and one concludes that the modified
stopped processes X7zl (r,>0 converge to Xar,l(r>0 in & for each k. Of course, the T*
increase to ® a.s.



BMO DIFFERENTIALS IN SDE’S 1113

(2) If we know that J, (J™).z: are also semimartingales and that J" tends locally in #” to
J, then Lemma (3.2) allows us to conclude that X" tends to X locally in s#”. We also remark
that local #” convergence does not in general imply local #? convergence for ¢ > p. See [12],
page 344 for a simple example of processes which converge in #" but do not converge locally
in #” for any p > 1.

(3) Neither the #“ nor the stronger #* norm can be used to extend Kazamaki’s result: if
N, is the compensated Poisson process of intensity one and jump size a, and if T is the first
jump time, then M, = Naris in # and #*, but £(M) is in A" if and only if e < 1.

(4) As will be clear from the proof, the hypothesis that F"X converges locally in &” to FX
can be weakened to F"X converges weak-locally in #” to FX (or in Emery’s terminology, F"X
converges “locally” to FX in ¥7.)

(5) One need not state the convergence of the coefficients in terms of X. For example, if as
in [10] we assume F” is of the form F"(w, ¢, x) with F"(-, 0, x) = 0 a.s., and if we require

limn o p {SUP|x=m | F™(-, 1, x) — F(-, 1, x)[> €} =0
for each € > 0 and each m € N, then the conclusion of Theorem (3.12) still holds.
ProoF OoF THEOREM (5.4). By stopping at a large stopping time if necessary, we may assume
without loss of generality that:
@) limpe||J"—=J||s»=0
(b)  limy || F"X — FX|er =0
(© lim, | M" = M|x.=0.

We choose and fix an a such that 0 < a < 1/5,K. We know (Lemma (2.15)) that there exists
an arbitrarily large stopping time 7 such that M"~ € D“(a/2, k) for some k < . By Proposition
(2.16) and reduction (c) above we know there exists an N such that for all n > N we have
(M™™ € D*“(a, k), where k does not depend on n. Let T be such a stopping time, and let 0
=To<Ti<-:.- <T,= T be the times that carve M (and also M" for n > N) into slices less
than a. We then have

(d M"™ € D((a/2 k)and (M™)" € D(a, k)
foralln> N, k< o,and 0 < a < 1/s5,K.

Observe that for any stopping time R we have that:
(B8 | F'X" ||y = || F"X2 = F"O_| wrimy + | F"O- — F"X_| wr ()
+ | F"X_ — FX_|lyrm) + | FX- — FO-|9rm) + | FO-|| orr)
= K| X2 |lormy + 2K || X-||lvpam + | F"X- — FX_|l9pm) + | FO- | 9r ).

Since FO_ is left continuous we let R, = inf {t > 0: || FO| = n] and lim,.oR, = ® a.s. and
|| FO-|| #»r;7 = n. Thus without loss of generality we can assume

€ || FO-|¢r< co.

Since || F"X- — FX_ | +» tends to 0 by reduction (b), it is bounded, and hence (3.8) implies that
| F*X™ || »r&-) is bounded if || X ||s»r-) <  and sup, || X2 | s»r-) < . That there exists an
arbitrarily large stopping time R such that || X||»@&) < o and sup, || X" ||s»m < o is perhaps
the crux of proof. Given (d) this fact is the content of Lemma (3.25), the statement and proof
of which follow this proof. Thus by (e), inequality (3.8), and Lemma (3.25) we may assume
without loss of generality that

(f)  supal| F"X2 |yr < .
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From equations (3.4) and (3.5) we have that

t
(B9 X —X.=J'—J+ f (F*X,- — FX,.) dM, +
0

t t
J (F"X3- — F"X,-) dM, + f F*X5 dM" — M),.
0 0
By the Emery-Meyer inequalities and Proposition (2.11) we have for any stopping time R >
0 a.s. that equation (3.9) yields:
G10) X" = Xllgomey SNI" = Tlloe + 55| F*X= = FX_ ool M ||
+ K[ X" = Xllorw| Mpom-) + ol F* X2 ol M™ = M ||
= vn + K[| M po| X™ = Xl 5o

where s, is given in (2.11). Note that by reductions (a), (b), (c) and (f) we know that lim,_,.
¥» = 0.

Let0=To<T: .- T, = T be the “carving times” whose existence is assured in (d). Then
for R = T and letting B(1, n) = y,, inequality (3.10) yields:

I X" = Xy, = B, 1) + 7| X" — X[z,
where r = 5,K a < 1. Subtraction yields
3.11) | X* = X||seer, = B(1, n)/(1 = 7).
Recall that 6X; = X, — X,-, the jump at . One easily sees that:
| 6X%F — 80Xz ||Lr = ||8JF, — 8J7, ||Lr
(.12) + | F*X = FX|\oreri | SMr, 117y of | 7
+ K| X" = X||sreryo | SMr Lz, ot |7
+ N F" X _lorer,- | 8(M™ = M)z, 1z, o [

and since || 0M7, 17, o ||#« = | M || ». (Proposition (2.1)), combining (3.11) and (3.12) gives us
that

lim,l_,m " X" - X" #P(Ty)+ = 0

Now suppose we have established that lim, . || X" — X|| v»z) = 0, and consider T.+;. We
have that X, and X7 are solutions respectively of (3.4) and (3.5) with J, and J? replaced
respectively with Xiar, + J; — Jiar, and Xiar, + J¢ — Jiar, and with M and M™ replaced
respectively with M — M™ and M" — (M™)"". Inequality (3.10) then gives us, taking R = T,.,,

| X" = Xllont, o = BG, 1) + K| M = M" | oir, o | X* = Xz, o)
=BG n) +r| X" — Xl|era,,o
where r = 5,K a« < 1. Thus
(3.13) | X" — X|lyer,,, - = BG n)/(1 — 1)
where lim,_.. 8(i, n) = 0. A calculation analogous to (3.12) shows that
lim e | X* — X | wr(z,,p = 0,

and hence by a (finite) induction we conclude that lim, . | X" — X| ¢»1y = 0 and the proof
is complete. 0 .
The next two lemmas were used in the proof of Theorem (3.4). Lemma (3.14) has some
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interest in its own right, since it gives a bound on the &7 norm of the solution of a stochastic
differential equation in terms of other norms which are (at least theoretically) known.

(3.14). LeMMA. Let M be a semimartingale, let F € Lip(K) and let J € 6. Let X be the (unique)
solution of

t
(3.15) Zi=J+ f (FZ)s—dM,.
0

Suppose that (1) | M || = m < o, 2Q)||J]| #» =j < o, and 3) || FO-|l¢» = 1 < . Let a be a
constant such that 0 < a < 1/s,K, where s;, is given in (2.10). Let T be a stopping time such that
MT™ € D*(a, k). Then

"X"yp(r) =C<w

where C = C(p, j, K, 7, m, a, k) is a constant depending on the seven parameters in its argument.

ProOF. First suppose that || M||x. = a. Then by the Emery-Meyer inequalities (2.6) we
have

I Xllor = N Tllrr + 55 | FX- |0 || M ||
(3.16) =j+ spKa(|| X||se + || FO- ||5r)
Ej+r+r| X
where 0 < r = 5,Ka < 1. Then by subtraction we have
3.17) | Xler=(j+rn)/(A—r)

provided that || X|| »» < . We show this by successive approximation. Let X} = J, and
recursively define

t
=+ f (FX™)s_dM,.
0

Then clearly || X"||»» < o for each n using induction and the Emery-Meyer inequalities.
Moreover, one easily checks that for / = I:

(3.18) [ X' = XYr=(j+7) Tii

where 0 < r =s, Ka < 1. Fix a large N. Then for m > n > N we have:
(3.19) | X" = X lor = PV | X7 = X7V g

and combining (3.18) and (3.19) yields

(3.20) I X™ = X"l = PN[2(j + 1)/(1 = D]

for m > n > N, and the right side of (3.20) tends to 0 as N — co. Thus (X").z; is Cauchy in the
Banach space (%, || - ||+»). It is a simple matter to check that X" converges in |« |v» to a
solution Z of (3.15), and then Z = X by the uniqueness of the solution.

Now remove the assumption that | M || ». = a. We know that M™~ € D“(a, k). Let 0 = T,
< T\ < .- < T, = T be the “carving times” of Definition (2.13). Let N' = M™". By the
unicity of solutions we know X/"~ is the unique solution of

t
Zt = J; + j (FX)s—dNé
0

The preceeding reduction gives

(321) " X":’/’P(T]—) = C(Paja K’ T, a) < o,
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Since Xr, = Xp,— + 8J7, + FXr,— 8M7,, we have that

(3.22) | X\ oy = | X roe,- + 2j + s;mK || X || #or,—) + spmKr.
Inequalities (3.21) and (3.22) imply
(3.23) | Xllsey = Cp, ji K, 7, m, @) < oo.

Now set Ni*' = MF+~ — M7 for 1 =i =k — 1, and note that X7+ is the solution of the
following equation:

t
Zi= Xonr, + (JD™ =I5 + f (FZ).-dNiH,

0

Since || N || x = « we get as in (3.17) that

(329 I X7 loe = (| X |rnezy + 2 + rr)/(1 = r)
and since

XT:+1 = XTH»I_ + 8JT

+1

+ FXT:H_ 8MT:+1

it follows as in (3.21) through (3.23) that
| Xr,

v

MECEj, K 7m,m i+ 1) <co.

Since this is true for 1 =i = k and T, = T, we have the result. 0

(3.25). LEMMA. Let M, (M")n=1 be semimartingales; let J, ( J")nz1 be in €, let F, (F"),z; be in
Lip(K). Let X, (X" )nz1 be solutions respectively of:

t
Xi=J + f (FX)s_dM,
0

t
Xr=Jr+ f (F"X™)s-dM?.
0

Assume that (1) | M ||l v < 0 and lim o | M" — M || o = 0; 2) | J||9» < % and lim,_..|| J" —
Jllv» = 0; and (3) lim, o | F* X — FX||4» = 0. Let T be a stopping time such that | FO_ || sncr
<o and M™ € D“(a/2, k) for some a, 0 < a < 1/s,K, where s, is given in (2.10). Then infy
SUPnsn || X ||sonry < co.

Proor. By Proposition (2.16) we know that there exists an N such that for n > N we have
M" € D“(a, k) with k not depending on n. We can assume without loss of generality that
| M*|lxo = 2m for n > N. Note that

" F*O_ "y’p(T) = " F'0 — FnX"yp(T_) =+ " F'X — FX"yp(T_) + " FX - FO "yp('z‘_)
+ | FO||srro),
= 2K" X"y’p(T—) + " F'X — FX"yp(T_) + " FO ||_</p(7‘_)

hence supsn || F"0-||se(r) - - < » provided that || X||s-s(r—) < . But || X|| s < o by Lemma
(3.14). Applying Lemma (3.14) to X" as well, we see that for n > N:

| X" |oeery = C(p, jn, K, 7, 2m, &, k)
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where j, = || J"||s»n, which is bounded as well by hypothesis (2). This completes the proof.
O

4. An amusing application. Recently Garcia, Maillard, and Peltraut [4] have shown that,
given a totally inaccessible stopping time T and a constant K, there exists a martingale L with
precisely one jump (at T') such that Lr/Lr- = K. We extend this result in Lemma (4.2) to
allow random jumps in L' and %r measurable, and in Theorem (4.4) we establish a
“continuity” result for local martingales with (random) “multiplicative jumps”.

Let T denote a finite totally inaccessible stopping time, let A, = 1(7,«, and let (M,) denote
the BMO martingale M, = A, — A,, where 4 is the dual predictable projection of 4 (also called
the compensator of A). Let A € L'(%-), and N, = E{A — 1| %}. Define F mapping % to € by
(FC); = N,C.. Suppose X is the unique solution of

t
4.1) X, =1+ j FX,_dM..
0
Then X is the stochastic exponential of the local martingale Y, = [§ N,—dM,, and so

X.
X—T =1+ N (Mr— Mr.)

T

which implies that X7/ X7 = A.
(4.2). LEeMMA. The local martingale X of (4.1) is locally in #” for 1 < p < c.

PROOF. Let ' = inf{t: | N¢| = I} (| vy =4 Define F' by F'C = (FCY". Then F' € Lip(/).
Since M is in BMO, it is also in J# when considered as a semimartingale. By Lemma (2.15)
we can find a stopping time T with P(T' < S*) < %' and such that (1) M7~ € D*(a, k) for
some k < and 0 < a < 1/s,/; and (2) | F'O- ||¢»(rt) < . Thus by Lemma (3.14) we conclude

| Xl ooty < co.

Since lim; . S* = % a.s., also lim;. 7" = oo, and the proof is complete. 0
Let A" be a sequence of random variables in L'(%#r_) and let Nf = E[A\" — 1| %} . Define
(F"C); = N:C, for C € %. Suppose X" are solutions of

t
Xr=1 +f F"X? dM, nzl.
4.3) 0

Then each X™ has multiplicative jump of size A" at time 7.

(4.4). THEOREM. If A" converges to N\ in LU(1 < g < w) with |\"|= Y € L' for n = 1, then X"
converges locally in #*(1 = p < q) to X.

ProoF. Let Y; = E(Y| %) and let S* = inf{t > 0: Y, = k}. Then by stopping M at S* we
can assume without loss of generality that F and F" € Lip(k) for all n. By Holder’s inequality
we have | F"X — FX|¢» = || (N" = N)X |l 9o = || N" = N| »|| X|| & for (1/q) + (1/r) = (1/p).
By Lemma (3.14) we know there exists an arbitrarily large stopping time R such that
| X||.#r& < 0. By Doob’s inequality | N* — N| s« = g(g — )™ | A" = A| e which tends to
0 as n tends to . An application of Theorem (3.4) gives the result. 0
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