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The convergence properties of the empirical characteristic process Y,(f) =
n'(ca(t) — c(f)) are investigated. The finite-dimensional distributions of Y,
converge to those of a complex Gaussian process Y. First the continuity properties
of Y are discussed. A class of counterexamples is presented, showing that if the
underlying distribution has low logarithmic moments then Y is almost surely
discontinuous, and hence Y, cannot converge weakly. When the underlying
distribution has high enough moments then Y, is strongly approximated by
suitable sequences of Gaussian processes with specified rate-functions. The
approximation is based on that of Komlés, Major and Tusnidy for the empirical
process. Convergence speeds for the distribution of functionals of Y, are derived.
A Strassen-type log log law is established for Y,, and supremum-functionals on
the appropriate set of limit points are explicitly computed. The technique through-
out uses results from the theory of the sample function behaviour of Gaussian
processes.

1. Introduction and summary. Let X;, Xz, --- be independent real valued rv’s with
common distribution function (df) F(x) = P{X: < x} and characteristic function ch.f. c(¢)
= {2, exp(itx) dF(x), and let F.(x) be the empirical distribution function of the first n
variables. In a recent paper Feuerverger and Mureika (1977) initiated the systematic study of
the empirical characteristic function

(1.1 cn(t) = ﬁ F=1 exp(itXy) = J exp(itx) dFn(x), —0 < t< oo,

explaining the possible usefulness of it in various statistical areas. They prove that c.(f) a.s.
(almost surely) uniformly converges to c(f) on each finite interval (a consequence of the
Glivenko-Cantelli and the P. Lévy theorems) and explain that this uniform convergence
cannot generally take place on the whole line. However, they show that it does hold on the
whole line if F is purely discrete, and if c¢.(f) corresponds to special density estimators. It is
also shown that

(1.2) A, = suprp<=r@ | ca(t) — c(t)| > 0, as. as n— oo,

withT, =| T’ | /| TP | = o((n/log n)"/?), provided that the ch.f. of the singular part of F
vanishes at 0. The proof of the following simple observation already shows that the study of
the convergence properties of c,(f) can better be based on those of the empirical process of

(1.3).
THEOREM 1. If T, = o((n/log log n)"/?), then (1.2) holds true with arbitrary F.
Before formulating the problems the present paper is concerned with, we need to introduce
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some notations. The empirical process B.(x) is
(1.3) Bn(x) = n'*(Fy(x) — F(x)), —o< x<oo,

A Brownian bridge {B(y); 0 = y = 1} is a separable Gaussian process with EB(y) = 0 and
EB(y1)B(y) = min(y1, y2) = y1, 2, i€, B(y) = W(y) — yW(1) with an appropriate standard
Wiener process. A Kiefer process {K(y, 1); 0 = y=<1,0 =<t < o)} is a two-parameter real
valued separable Gaussian process with EK(y, 1) = 0 and EK(y1, t)K(ys, t;) = min (11,
t)(min(y1, y2) — y1y2). If 9 stands for the equality of all finite-dimensional distributions,
then clearly {T?K(y, T); 0 < y < 1}9{B(y); 0 = y < 1} for each fixed T > 0. Any
convergence result for processes related somehow to 8.(x) should now be compared with the
remarkable result of Komlés, Major and Tusnady (1975): there is a sequence of Brownian
bridges B,(y) and a Kiefer process K( y, t) such that

(1.4) P{SUp-wcic | Bn(X) — Bu(F(x))| > n7"*((4: log n) + 2)} < Age ™

and

(L5)  P{supisi=n SUP—w<s<w | k/2Br(x) — K(F(x), k)| > (44 log n) + z)log n} < Ase™+
JSor all n and real z, where A1, - - -, Ae are positive absolute constants. Consequently,

(1.6) SUP—a<r<a | Bu(X) = Ba(F(x))| = O(n™"* log n),

(1.7) SUP-—w<s<an | Bu(X) — n7/?K(F(x), n)| = O(n™"* log® n),

For rv’s R, and constants a, we write R, = ((a,) with the meaning that there exists a
nonrandom constant 4 < o such that lim sup,_... a,'R, =< 4 a.s. Relations (1.4) and (1.5) (and
thus (1.6) and (1.7)) are understood in two equivalent ways. Either 8,(x) in (1.4) and (L5)1is
a version of the original §, process on a new probability space, or 8;(x) is the original process
provided that the basic probability space is “rich enough.”

ReMARK 1. Koml6s, Major and Tusnddy (K-M-T) proved (1.4) and (1.5) in the case when
F is the df of the uniform distribution on (0, 1). When F is continuous the generalization is
trivial since F(X:), ---, F(X,) are uniformly distributed on (0, 1). It was observed in a
conversation with P. Révész that the extension is also quite straightforward (the proof is in
Section 2) even if F is entirely arbitrary. We also note here that recently Tusnidy gave a new
proof of (1.4), computing also the constants as 4; = 100, A2 = 10, A3 = Y%o.

Naturally, Donsker’s classical “justification of Doob’s heuristic approach,” B.(-) —o
B(F(-)), follows from (1.4), now with arbitrary F. Here and in what follows —¢ denotes weak
convergence in the appropriate function space.

Turning back to the empirical ch.f. of (1.1), define the empirical characteristic process Y,(t)

by

(1.8) Yu(t) = n'2(ca(t) — c(t)) = J exp(itx) dB.(x), —00 < t < oo,

As Feuerverger and Mureika (1977) remark, the finite-dimensional distributions of Y,(-)
converge by the multidimensional central limit theorem to those of a complex Gaussian
process Y(-) with Y(¢) = Y(—t), and the covariance structure of it is the same as that of
Y.(-), namely EY(r) = 0, EY(?) Y(s) = c(t — 5) — c(t)c(—s). Then, given the experience of the
last decade, it seemed natural to assert that Y,(-) =4 Y(-) in € = %[T, T:] for every pair
—o0 < T1 < T; < o, where 4[Ti, T;] is the Banach space of continuous complex valued
functions on [T, 7] endowed with the supremum norm. They prove tightness of {¥.(-)} in
the case when [.. | x|"** dF(x) < » with some 8 > 0. But the reproduction of a “truncation
type argument” they propose to remove this moment restriction becomes extremely compli-
cated below the first moment, and impossible if, for instance, only [*.. log* | x dF(x) <  is
known. Indeed, the above assertion (Theorem 3.1 in Feuerverger and Mureika (1977)) is false
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in the stated generality. One goal of the present paper is to clarify somewhat this situation.
Having, however, the K-M-T result above, it is more natural now to aim at a deeper insight
and to work within the context of strong approximation.

The weak convergence B.(-) —« B(F(-)) suggests that our limit process can be represented
in the form

Yi) = J’ exp(itx) dB(F(x))

= j exp(itF~'(y)) dB(y)

(1.9)
= f exp(itF~'(y)) dW(y) — W(1) j exp(itF~'(y)) dy
= J’ exp(itx) dW(F(x)) — W(l)c(2),

where

(1.10) F7l(y) = sup{t| F(t) <y}, - 0=sy=|,

is the right-continuous inverse to F. The stochastic integral [Z,, exp(itx) dB(F(x)) = [Z. cos tx
dB(F(x)) + i [Z» sin tx dB(F(x)) here is well-defined with probability 1, since [5 ¢*(:F'(y)) dy
= 1 with g(z) = cos z, sin z. Indeed, this Y(¢) of (1.9) is a Gaussian process, Y(t) = Y(—t),
EY(t) = 0, and using elementary properties of the It6 integral (manipulating on the third row
of (1.9)), a simple computation yields also EY(¢) Y(s) =c(t — s) —c(t)c(s). If Y is not sample-
continuous, then naturally Y, cannot converge weakly to Y in 4[7T1, T:]. Indeed, Y is not
always sample-continuous and this is the reason that Y,(-) —¢ Y(-) does not always hold.
Let A denote the one-dimensional Lebesgue measure, and define

m(y) =Ah € (%, %) | (1 — Re c(h))"* < y},
and define also the nondecreasing rearrangement of
(L0 @(h) = (1 — Re c(h))"?
by
#(h) = sup{ y| m(y) < h}.

THEOREM 2. A separable version of the process Y(t) = [2. exp(itx) dB(F(x)) is almost surely
continuous on [Ty, Tz] if and only if [* @le™) dx < o.

This statement is an easy consequence of results of Dudley (1967) (cf. also Dudley (1973)),
Fernique (1975) and Jain and Marcus (1974) (all the proofs are in Section 2). Since, with ¢ of
(1.11),

(1.12) E|Y() = Y(9) " = 2¢°(|t = s]) = [e(®) — () |* = 2¢"(| £ = s]),

another (but only sufficient) condition (due to Fernique (1964), Théoréme 4.1.1 in Fernique
(1975), and which holds evidently true also for complex processes) for the sample-continuity
of Yis

(1.13) J’ Ple™™) dx < co.

Though it is entirely natural to express the continuity properties of Y, as done in Theorem
2, via the behaviour of ¢(f) around zero, it will be more convenient to directly rely upon the
tail behaviour of F(x) when investigating the asymptotic properties of Y. Therefore it is of
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interest to express the continuity properties of Y also in terms of the tails of F(x). Since ¢(h)
of (1.11) is generally not monotonic, Theorem 2 does not give an immediate handle.

Let F(x) be symmetric and concave for x > xo > 0. Using the proof of Theorem 2, it
follows from Theorem 1 of Marcus (1973b) that a separable version of Y is almost surely
continuous if and only if

© (1 - Fx))'”

(1.14) x(log )72 dx < co.

NOWfOI’m=2,3, oo and€>01et
gm(x) = (log x)([Tr-2 logxx)’,
gme(x) = (log x)(ITF= logrx)*(logmx)**",

where log, denotes the j times iterated logarithm and [Ji-2 is understood as 1. It follows then
from (1.14) that if F is symmetric and eventually concave on the positive half line, and for an
m=2,3, ..., there is a constant k > 0 such that for large enough x, k < gn(x)(1 — F(x)), then
any version of Y is almost surely discontinuous. We also note that for any m =2, 3, - it is
easy to construct a discrete F so that g.(x)(1 — F(x)) = O(l) as x — oo, and the resulting
random Fourier series representing the real part (say) of Y is almost surely discontinuous by
Lemma 1 of Jain and Marcus (1973) or Proposition 2 of Fernique (1964). On the other hand,
for any symmetric F (it need not be concave) (1.14) is a sufficient condition for the a.s.
continuity of Y, as follows from Marcus (1973a). So if

(1.15) h(x)F(—x) = O(1), h(x)(1 = F(x)) = O(1), as x — oo,

is satisfied with a function h for which there exist an m = 2, 3, - - - and an € > 0 such that A(x)/
gm,(x) /' © as x — oo, then (F symmetric) Y is sample-continuous.

If F is arbitrary but we know (1.15) with a function A(x) for which there exist an m = 2,3,
... and a § > 0 so that

h(x)

1.16 ———— /' ®, as x— o,
(1.16) 8m,s(X) [T7=2 logex -
then it follows via integration by parts that
1.17) J’ gmel(|x ) dF(x) < oo,

for all 0 <’e < 4. With the same proof as on pages 424-5 of Kawata (1972), it follows from
(1.17) that ¢*(¢) = O(1/gme(1/|1|), as t — 0. Such a ¢ clearly satisfies Fernique’s condition
(1.13), thus Y is sample-continuous.

In this paper we will use the somewhat restrictive condition that F satisfies (1.15) with a
function A, for which (1.18) below holds. It can be conjectured that Y.(-) —o Y(-), if Y is
sample-continuous, and that Theorem 3 below is also valid if at least (1.17) is satisfied. Some
information on these problems are contained in Remark 2, Section 2, after the proof of the
following main result.

THEOREM 3. Let — o0 < T} < Ty < ®, and let h(x) be a continuous function on (0, %) such
that
h(x)

(1.18) — /1 o, as x / o,

with some positive o. If F satisfies (1.15) with this h, then there exist for each n a Brownian bridge
B.(-) and Kiefer process K(-, -) such that for the processes

{Z,,(t)= j e dB(F(x)); Th<t=< Tz},
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{K,,(t)= f e dn?K(F(x), n)); Ti<t=< T2}

one has
(1.19) P{supr<i=t, | Ya(t) — Za(t)| > Ciri(n)} < Lin~ "9,
(1.20) P{supr,<i=r, | Yo(t) — Ku(t)| > Cors(n)} < Lon™"*9,

where 8 > 0 is arbitrary large, and the constants 0 < Ci, C; depend only on §, F, Ty, T,, while L,
L on Tz — Ti. The rate-functions ry(x), k = 1, 2, are defined as

(1.21) r(x) = u(x)x"*(log x)¥,
where uy(x) is a function, the inverseuy'(x) of which, for large enough x, is defined by
-1
ur (x) 2

1.22 _—= .

( ) (log u;l(x))2k—l h(x)x
From (1.19) and (1.20) it follows that

(1.23) A = suprz=r, | Ya(t) = Za(t) | = O(ri(n)),
(1.24) AP = supr,zi=r, | Ya(t) — Ku(t) | = O(ra(n)).

Generally ri(n) < ry(n), and ry(n) — 0, as n — o (see Corollary 2 below). Since for each n
(1.25) (Zut)y i =t=T) = (Y(); i<t =T} =¢ {Ku(t); 1 s t = T2},
it follows from both relations (1.23), (1.24) that (with F as in Theorem 3)

Yo(+) =9 Y(-).

COROLLARY L. Consider the following functionals on %

T
¥y(u) = J lu(t) |* dG(r),

T

Ty
Yo(u) = J (Re u(1))* dG(2),

T
T,

Ys(u) = f (Im u(1))* dG( ),
T,

where G is some df with support [Ty, T;). Also, let ¥.(u) be an arbitrary real-valued functional,
Jfor which the Lipschitz condition

| \1’4(") - \1’4(") | =L SUp7r=<t=T, | u(t) - v(t) | > u,vE%,

holds with some positive constant L. Suppose that ¥(Y) has the density function fu(x), k = 1,
««+, 4, with respect to the Lebesgue measure. Then, under the condition of Theorem 3,

(1.26) SUP-—w<i<w | P{Wi(Yn) < x} = P{¥W(Y) < x} | = O(r1(n)), k=1,...,4,
provided that the functions fy(x), x"*fu(x), k = 1, 2, 3, are bounded.
In what follows a. ~ b, and a(x) ~ B(x) denote asymptotic equality, i.e., @n/b,, a(x)/

b(x) — 1,as n, x — oo,

CoROLLARY 2. If h(x) = x® in (1.12), with some positive a, then for ri(n) of (1.19), (1.23)
and (1.26) one has



EMPIRICAL CHARACTERISTIC FUNCTION 135

ri(n) ~ n—a/(2a+4)(log n)(a+l)/(¢x+2)’
and for ryn) of (1.20), (1.24) one has
ro(n) ~ n—a/(2a+4)(log n)(2a+l)/(a+2).

Specifically, if [*« | x |* dF(x) < o for arbitrary large a, then ri(n) ~ n™"/* log n, ra(n) ~ n~"/*

n)*, the rate-functions of K-M-T.

(log

It will be clear from Case 1 of the proof of Theorem 3 that the left-hand sides of (1.23) and
(1.24) cannot converge to zero a.s. if the supremum is extended to an infinite interval. However,
it can be extended to an interval [T, T2 ], whose endpoints (on the analogy of Theorem 1)
tend to infinity at an intermediate rate. Let 7, = max (| TS|, | T2|).

THEOREM 4.  Under the condition of Theorem 3,
P{supryi=re| Yu(t) — Zat)| > Ciri(m)T»} = Ly(T? — TS )n™ 1+
P{suprp<i=ro| Yo(t) — Ku(t) | > Cors(m) T} = L2(T},2) - Tf,l))n—(lﬂ)

where L, and L, are absolute constants, § > 0 is arbitrary, C, and C, depend only on F and §.

An application of the latter result is in Csorgd (1980).
To formulate the analogy of the Strassen-type (functional) law of the iterated logarithm,
known for the empirical process of (1.3), let

F= {flfi [0, 1] = (=, W),fEﬁ,f(0)=f(1)=0,J () dy= 1}

be the set of Finkelstein (1971), where ./ is the set of the absolutely continuous functions,
f'(») = df (y)/dy. Fis the unit ball of the reproducing kernel Hilbert space of the Brownian
bridge process.

THEOREM 5. Let F be a df such that the condition of Theorem 2 is satisfied. Then the
sequence
{2 loglog n) 2K.(t); tE [T, 2]}

is a.s. relatively compact in € [T, T:], and the set of its limit points is
g (F) = { g = f exp(itx) dfiF(x)), 1€ [Ty, L]|f€ f} :

Since ry(n) = o(( log log n)'/*), as seen in Corollary 2, the consequence of (1.24) is

COROLLARY 3. If Fis as in Theorem 3, then the sequence
{(2log log n)7'2Y(t);  te[Th, T=1}
is a.s. relatively compact in €[T:T; ], and the set of its limit points is 4F).
Introducing the notations 4, = [Z. cos tx dF(x), B, = [Z, sin tx dF(x), C; = [Z, cos? tx

dF(x), D, = [Z. (cos tx)(sin tx) dF(x), E. = [Z sin® tx dF(x), R, = C, — A}, S; = D, — A:B, T.
= E, — B}, if Fis as in Theorem 3, we have the following consequences of Corollary 3:

supr,<:=r, | Re Yu(9) |
(2 log log n)'/*

supr,<i=7, | Im Y,(1)|
(2 log log n)'*

(1.27) lim Sup, e = df{f’ = supr,=i=r, R,

(1.28) lim sup,_... =df = supr<=r, T¢'%,
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supr<et, | Yo(O)| _ , _ e
Qloglogm® dr = supr,=<i<r, (dr()"?,

where dr (f) = R, if S; = 0 on [T}, T:] (this case appears, e.g., if Im ¢(¢) = 0), and if S; & 0,
then

(1.29) lim sup, .«

1 2(R.T, — S}
dp(t)=R¢+S?(E+ (R.T: — St) )
t

RX(s{4S7 + (R, — T)))> + R, — T\) + 2R,S?

where s, = 1 or —1 according to R, — T, = or < —2S7(R, + T.)/(R? + T?).

The nice functional-analytic idea for the evaluation of the above lim sups was proposed to
me by Jozsef Szlics. My sincere gratitude to him is recorded here.

The multidimensional analogues of the present problems as well as the questions of weak
convergence and strong approximation of the empirical characteristic process when parameters
are estimated are to be treated in subsequent papers.

2. Proofs.

ProoF OF THEOREM 1. Let 0 < € < 1, and choose K > 0 so that F(—K), | — F(K) < ¢€/6.
For (random) large enough n we have by the Glivenko-Cantelli theorem a.s. that F,(—K), 1
— F.(K) < €/6, and hence also | F,(+K) — F(£K)| < €/6. For still larger (if necessary) n,
with probability 1, :

K
—it (Fn(x) — F(x))exp(itx) dx

-K

=€ + 2KT,SUp_w<s<ew | Fu(x) — F(x)|

Ar=<e+ SUPT(\=t<T®

=<e+ 3KT.(n"'log log n)"/?,
by the ordinary log log law for the empirical process, and this proves (1.2).

ProoF oF REMARK 1. Let Ui, ---, U, be a sample from the uniform distribution on (0,
1) for which (1.4) holds, and denote the empirical df of this sample by E,(y), 0 =y = L.
Define the rv’s Xz, k =1, -+, n, by X = F"'(U,) with F~' as in (1.10), and let F,(x), —o
< x < o, be the empirical df of these rv’s. Then P{ X, < x} = F(x), and therefore F,(x) =
E,(F(x)) in every point w € £ of the basic space (2, %, P). Thus

SUP—w<x<a| Brn(X) = Bu(F(x))| = SUP—wcrea| /2 (En(F(x)) = F(x)) = Ba(F(x))|
= Suposy<1| n"*(Ea(y) = ») = Ba(p)|,

and the completely analogous lines can also be written down to prove (1.5), too.

ProoF oF THEOREM 2. Consider two independent Wiener processes Wi, W: on [0, 1], and
let

Xi(t) = f e'* dW,(F(x)), k=1,2.

We have EX; (1) Xi(s) = c(t — 5). Let X = X; + iX,. Because of (1.9), the continuity properties
of Y and X are equivalent. But X is complex Gaussian and strictly stationary with
EX(t)X(s) = 2¢(t — s), and for the stationary real and imaginary parts we have E(Re X(¢) —
Re X(s))? = E(Im X(¢t) — Im X(s5))> = 1 — Re c(¢ — s). The sufficient condition of Dudley
(1967) for sample continuity was proved by Fernique (1975, Théoréme 8.1.1) to be also
necessary. On the other hand, an equivalent form of Dudley’s condition for stationary
processes was given by Jain and Marcus (1974, Theorem 2.3) in terms of the nondecreasing
rearrangement of the increment variance function. So the statement is a corollary to these
theorems.

It is interesting to note that Z(r) = 27/2X(¢) is the limit process of the complex quantogram
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(cf. Kent (1975) and Csorgd (1980)).

ProOF OoF THEOREM 3.  B,( y) and K( y, t) will denote the processes given us by the K-M-
T theorem, and the constants A, - - -, A¢ will also be those in (1.4), (1.5). Let a = sup{x | F(x)
= 0}, b = inf{x | F(x) = 1}. Three cases will be distinguished.

CasE l. —o < a < b < . Integration by parts gives Y,(t) — Z,(t) = —it [5 (Ba(x) —
B,.(F(x)))exp(itx) dx, whence, using the notation of (1.20) and (1.21), by (1.4) we get (with T
=|T:| v|T:])

@.D P{AD > n7'2T(b — a)((A1log n) + 2)} < A2,

and also the analogous relation for A via (1.5).

CASE 2. a = —o, b = oo. Partial integration is not allowed here, since exp(itx) is of
unbounded variation on the whole line

Formally we prove only (1.19) in this case, since the proof of (1.20) runs on exactly parallel
lines. In this part the subscript 1 will be dropped, i.e., in what follows, u(n) = u(n), r(n) =
ri(n).

From the definition (1.22) of ™" it follows that

22 u~'(x) ~ x*h(x)log(xh(x)),

and thus u(x) / « as x / c. Without loss of generality we can assume that (1.18) is satisfied
with 0 < a < 2. Moreover, if there is no « in [1, 2) for which (1.18) would hold, then we choose
our a € (0, 1) so that for large enough x, h(x) < x* is also satisfied together with (1.18). Let
8> 1+ (1/w). It follows from (1.15) that there exist a constant K, 1 < K < oo, such that

max(h(x)F(—x), h(x)(1 — F(x)) = K.
Let ¢ = 1/(16 K(1 + 248)). For the function h*(x) = ch(x) we have

1
* — * — -

2.3) max(h*(x) F(—x), h*(x)(1 — F(x)) < 6+ 28)"

Now for the function u* that corresponds through (1.22) to A* we have u*(x) ~ u(x/c). Since
0 < ¢ < 1, for the latter function, in turn, it can easily be shown, in virtue of (2.2), that u(x/c)
< c*u(x) for large enough x, where c* > ¢~"/2 That is, for large enough x, u*(x) < c*u(x).
So if we prove the theorem for h*(x) (with the resulting ¢ and u}(n), k = 1, 2), then it will
also be proved for large enough n for the original h(x) with u.(x) as defined in (1.22) and with
cr = c¥2(16 K(1 + 28))"/? say. On the other hand, it is clearly enough to establish the theorem
for large enough n. To avoid starred notation, we assume that (2.3) is satisfied with A(x) in
place of 2*(x). In the sequel x and n are taken as large as needed without any further mention
of it. Since

o u'(x)  _loguT'(x)
T xflogui(x) rPu(x)’

h(x)

(2.3) is equivalent to saying that

2 2
.4 min( = ; (i’:‘) o T : (F"()u(n»)) = (1 + 28)log n.
Now (the sup is always taken on [ 71, T:] if not specified otherwise)
.5) A < sup| Li(t)| + - -+ + supe| Lns(2)| + supe| Ino(?)],
where

—u(n) —u(n)
I.(t) = j cos tx df3n(x), Io(t) = j sin tx df.(x),
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o

I.s(t) = cos tx df.(x), Ii(t) = J sin tx dB.(x),
u(n) u(n)

—u(n)

—u(n)
Ls(t) = f cos 1x dB,(F(x)),  Ins(t) = f sin tx dB,(F(x)),

—o

L) = J' cos tx dB.(F(x)), Lus(t) = f sin tx dB.(F(x)),
u(n) u(n)

and

u(n)
[ Ino(D)| = j eXP(itX)d(Bn(X)—Bn(F(X)))‘

—u(n)

< SUP-—wer<a| Bu(X) — Bu(F(x))| (2 + 2| 1| u(n)),

after integrating by parts. Let z = K log n in (1.4) with K = (1 + §)/A43, and let C = (4; + K)(2
+2T), with T= | T;| v | Tz|. Then

(2.6) P{sup| Lio(2)| > Cr(n)} < Asn="*9),

We proceed now to estimate the first term in (2.5). For a number x, {x} will denote the
smallest integer =x. Set #, = tx(n) = T1 + k/n’, k =0, - .., {(T> — T1)n’}. Then

@7 P{sup| Ini(1)| > 4r(n)} = I} + J 73,

where

T8 = TG0 P{| La(te)| > 2r(n))
11;21) = Zlgg(‘)z_T“ns) P{supth535’k+]| Iﬂl(s) - Iﬂl(tk)l > 2r(n)}

Here I.:(f) = n 2 Y21 Ryi(¢), where

—u(n)
Rui(t) = x({ X; < —u(n)})cos tX; — f cos tx dF(x),

x(4) standing for the indicator function of the event 4. For each n these variables, j = 1,
-+, n, are independent with | R,;(¢)| < 2, ER,;(f) = 0, and
—u(n)

—u(n) 2
vii(t) = ER%(t) = J cos’tx dF (x) — (J’ cos tx dF(x)) ,

—00

whence v%:1(7) < F(—u(n)). Denoting the terms of J{ by p{”, we have by Bernstein’s classical
upper bound (Loeve (1963, page 254) or Prohorov (1968, first page)) that

P’ =2 exp(—r(n)n'’*/4)
=2n""4if 2r(n) = 272 ()2,
and
P =2 exp(=r*(n)/vii(t))
=2 exp(—r®(n)/F(—u(n))),  otherwise.
In any case (u(n) — o, (2.4)), pi* = 2n~"*2? whence
.8 T <2(T, — Ty)n~+),
Denoting now the terms of J& by ¢§*, we have
g = P(n7? T} RY; > 2r(n)}
= P{{n""> ¥ }1 (R% — ER};) > r(n)} U (2nE, > u(n)log n}},
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where

R7 = x({ Xj = —u(n)})supy,=s=y,., | cos sX; — cos 1 Xj| + En,

—u(n)
E.= J’ SUP¢,=s=t,,,|COS sx — cOs trx | dF(x),
e

that is ER}; = 2E,. Let m(n) = h™'(n/(u(n)log n)). Clearly u(n) < m(n), since h(u(n)) = n/

(u?(n)log n) < n/(u(n)log n) = h(m(n)). Also (n/(u(n)log n)) F(—m(n)) = h(m(n)) F(—m(n))

=< %, and m(n) < (n/(u(n)log n))"/*, since h(x) > x°. Thus
—m(n) —u(n)

2nE, < 4n f dF(x) + 4n f SUPe,ss=ty,,

—m(n)

S — I

s 5

x l dF(x)

—u(n)
=< 4nF(—m(n)) + 2n J SUPe,=s=ty,, | (S — tr)x | dF(x)

—m(n)
=< ((u(n)log n)/2) + 2 nm(n)n™°
= ((u(n)log n)/2) + 2n"*V*n = (u(n)log n)~/
=< u(n)log n,

by choice of 8. The Q,.; = R, — ER}; variables, j= 1, - - -, n are independent, | Q.| =4, EQ,,
=0, and v, = EQ% = E(R;; — 2E,)* < 4F(—u(n)). So, again by the Bernstein inequality,

g =2 exp(—=167"r(n)n'’?)
<2~ if pn) =47 i n'?
and
g = 2 exp(=167"r*(m)/ F(—u(n)))
= 2p~0¥20) otherwise.

Therefore J& < 2{T; — T:}n~"*®, and this, together with (2.8) gives the desired bound
through (2.7) for the first term of the sum in (2.5). When estimating the second and fourth
terms, |sin x — sin y| < 2|sin(x — y)/2] is used, and in the case of the third and fourth terms
1 — F(—u((n)) and 4(1 — F(—u(n))) majorize the appropriate variances. Otherwise the
procedure being the same, we get

(29) P{Z“kzl Sllptll,,k(t)l > 16"(”)} = 16{T2 - Tl}n'“”’.
Turning now to the estimation of the second four terms in (2.5), it is clear that
I‘,,k(s, t) = EInk(S)Ink(t)
by by, by,
= j qr(sx)qr(tx) dF(x) — j qr(sx) dF(x) [ gr(1x) dF(x),
@ 3 ay

where gs( ) = g2(y) = cos y, ge( y) = gs(y) =sin y, as = ag = —®, bs = bg = —u(n), a1 = as
= u(n), b; = bg = . Therefore,

@.10) | T || = supr,=s,e<t,]| Trr(s, 1)| < 2F(—u(n)), k=5,6
=< 2(1 — F(u(n)), k=1,8.

Set

Pri(€) = SUPT s =Ty(s—t1=e( E(Tnr(s) — Lk (£))*)"°.

Similarly to (1.12), it is easy to see that E(L.x(s) — L.x(2))* <2 j'f,; (1 — cos(s — t)x) dF(x).
whence, for all n
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1D Pnr(€) < 2'2supo<p=cp(h), k=5,...,8,

where @ is of (1.11). Using the Boas-Binmore-Stratton theorem (Kawata (1972, page 420)), it
follows from our assumption (1.15), (1.18) and the choice of & (0 < a < 2) that there exists a
constant T > 0, depending only on F, so that for € < 1, say,

.12) 2'2supo=n=ep(h) < Te2.

We are aiming at the application of an inequality of Fernique (Lemma 4.1.3 in Fernique
(1975), which also dates back to Fernique (1964), being the main tool to derive his continuity
result used in Section 1). Let M = (T:> — T:1)/2, Co = TM %2 + 2%)/(1 + (a/2)), and

(2.13) gn =212 f o(Mn™*") dx.
1
By (2.12) one has

2+ 21/2)q,. =

2+22 (% o(M/x)2"?
(log n)'”? | x(log x)'/*
TM?2 +2) [ 1
= (log n)'7* f x* 2 (log x)'72 dx
C.
P S,
(log n)"2n/

of n ) (ogn)?
e

where g7!(x) is the function inverse to g(x) = x2h(x). Here the last inequality is trivial if
= I If a < 1, then, remembering h(x) < x°,

g(n(l—a)/Z(log n)—l) = nl—a2(log n)—(2+2a)
= n(log n)7*,

and this inequality is equivalent to the one in question. Further, it follows from (2.2) that
g '(x/log x) < u(x). Therefore

2.19) 2 + 2*)gn < u(n)n""*(log n)"/2C,.

Setting x, = (6(1 + 28)log )"/ and applying (2.4), (2.10), (2.11), (2.14) and the Fernique
inequality (the processes I,x(?), k = 5, - - -, 8, are all Gaussian) we get

P{¥%=s sup| Ix()| > 4(1 + Cu(6(1 + 26))?)r(n)}
= Bh-s P{supe| Le(1)| > (12(1 + 28)(log n) F(—u(n)))* + (6(1 + 28))*r(n)C, )
+ Xk P{sup| ()| > (12(1 + 28)(log n)(1 = F(u(m)))"* + (6(1 + 26))2r(n) G, )
= Xk=s P{supe| Ine(t)| > xa(l| Tt |2 + u(m)n™"2(log n)"/*)C.}

= Xkes P(supe| Ln(t)| > xa(l| Ta | + (2 + 21/2)[ Pnr(Mn™) dx))
1

= 4—§—n2J’ e~ dy

n

—x2
< 10n%e~*"/?

= 10n—(1+69)
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This, together with (2.6) and (2.9) proves (1.19) through (2.5). As we have already mentioned,
the proof of (1.20) is entirely analogous.

CASE3. a= —mw, b < ®or —» < a, b = . These two situations are covered by the
combination of the respective parts of the first two cases. The proof is thus terminated.

REMARK 2. Let r*(n) = max(rj(n), ga(log n)"/?), j = 1, 2, where ¢, is that of (2.13). We
saw that under (1.18) r/(n) = r;j(n). Of course, g.(log n)"/* — 0 under (1.13) only. For j = 2
the analogue of (2.2) is

2.15) uz'(x) ~ x2h(x)(log(x>h(x)))°.
Assuming only (1.15)-(1.16) (or directly (1.17)), it can be shown via (2.2) and (2.15) that
(2.16) ri(n), ro(n) < 2'2/((TT#=' logan)(logmn)'*<');

ie, rf(n)—> 0,j=1,2. When we estimated the Gaussian integrals, we have, in fact, proved
that

.17 P{¥%=s supd] Lu(t)| > Gir)(n)} < Lin™**?, j=12,

without the assumption (1.18), i.e., using only (1.13). This means that if one could prove (2.9)
under (1.17), with r(n) in place of r;(n) (in the definition of the I,x(f), k=1, - - -, 9, here and
in (2.17), uz(n) replaces u;(n) when j = 2), then Theorem 3 would hold true under (1.17) with
the new rate-functions r(n). For proving Y,(-) =4 Y(-), under (1.17) only, it would be
enough to show that Y3—; sup¢| I+(#)| — 0 in probability.

PROOF OF COROLLARY 1. Let D, = (¥i(Y,)"2 E. = (¥1(Z.)"% E, =5 (¥1(Y))Y?
because of (1.25). If f( y) denotes the density function of E,, then f(x'/?) = 2x/*f;(x) almost
everywhere. Let K denote the supremum of the latter function. Since ||u|| = (7 |u()|?
dG(t))"/? is a norm for which the inequality ||| u; || — || 2| | =< || 1 — u2|| holds, we have

Ty 1/2
| D, — E.| < ( f (Yu(?) = Za(0))® dG(t)) =AY,
T

with A" of (1.23). Hence, with r(n) = Cyiri(n), we get
P{| D, — E.| > r(n)} < Lin™"*?,
Hence, with V,(x) and ¥(x) standing for the df’s of ¥,(Y,) and ¥,(Y), we obtain
Va(x) < P{Dn < x'2, | D» — E,| < r(n)} + Lin~4*®
= P{E.<x"+ r(n)} + Lin~"*?

x1/24r(n) .
= V(x) + f f(y)dy + Lin~*®

2 -

IA

V(x) + Kr(n) + o(r(n)) + Lin~0*®
V(x) + O(ri(n)).

Analogously one shows that V,.(x) = ¥(x) + O(ri(n)). For k = 2, 3 the proofs are the same.
In the Lipschitzian case (where we only need boundedness of f;(x)—not of x'/*f,(x) as well)
the proof is even simpler.

ReMARK 3. For k = 1, 2, 3, another proof can be found in Csorgd (1976), where the
Cramér-von Mises functional of 8,.(x) is treated using the K-M-T result. There is some minor
oversight in that proof. To make it formally correct one has only to appeal to (1.4) of K-M-T
instead of (1.6). The above proof is shorter, and is a corrected version of an argument, which
I learned from a letter of J. H. Venter.



142 SANDOR CSORGO

PrOOF OF COROLLARY 2. The first two statements follow from (2.2) and (2.15) respectively.
For proving the third statement we have to show that C;, k =1, 2, ... (in Theorem 3) does
not diverge to infinity if a — . It follows from the proof of Theorem 3 that C = K, max(] T: |,
| T2 |, (Tz — T1)/2)*?), k = 1, 2, where K}, does not depend any more on T1, T: and a. So if
T — Ty < 2, then the third statement in question follows at once. If T, — 71 > 2, then introduce
the division 71 = to < #; < --- < ti7,-1,3+1 = T» where the distance between any two
neighbours of the [T; — T:] + 2 points is <1, and [ ] denotes integer parts. (7> — T1)/2)**
entered only when we estimated the Gaussian tail-integrals using the Fernique inequality.
Now

22=5 SupTlststl Ink(t)l = ][Z%_TIP'I 22=5 Supt!_lststjl Ink(t)l’

and we get [T, — T1] + 1 times 10n~"*%® on the corresponding right-hand side, while the
resulting C, constants in Theorem 3 can be majorised by K max(| T1|, | Tz |), so that K} do
not depend on T3, T; and a any more (k = 1, 2).

ProoF oF THEOREM 4. The argument in the above proof of Corollary 2 is a proof for this
theorem as well.

PrOOF OF THEOREM 5. Let Qn(x) = (2n log log n) *K(F(x), n), Ha(t) = (2 log
log n)72K(f) = [Z= exp(itx) dQn(x), and Ha(t; a, b, q) = [% q(itx) dQx(x). It follows from
Finkelstein’s theorem (as extended by a Richter (1973) for an arbitrary df F) and the K-M-T
strong invariance principle of (1.7) that {Qn(x); —% < x < 0} is a.s. relatively compact with
respect to the supremum distance on (—oo, ) with limit points { f(F(x))|f € #}. Consider an
arbitrary sequence {n:} of positive integers, and choose a subsequence {m; = ny } of it so that
for all j, m; = e’. Then {m;,} has a subsequence {r, =m;} such that

(2.18) SUP-w<x<a| Or(X) = f(F(x))| > O as, 1> o

with some f € #. Then, with g € %(F) which corresponds to this f, one has
sup:| H.(t) — g(t)| < sup:| H,(t; —», —u, cos)| + sup| H,(t; —», —u, sin)|

+ sup:| H,,(¢; u, », cos)| + sup;| H.(t; u, o, sin)|

+ sup: j_ exp(itx) df (F(x))

(2.19)

+ sup: f exp(itx) df(F(x))

+ sup, | —it f exp(itx)(Qr(x) — f(F(x))) dx

+1Qn(—u) = f(F(—w)| + | @ () = f(FW))|,

where u > 0. Now the last three terms converge to zero as / — o because of (2.18). Let € > 0
be arbitrarily fixed. f can be represented as f( y) = fi(y) — f2(y), with f1 and f, monotone
increasing, and fi, f; € /. Therefore the fifth term is not larger than Y -1 | fo(F(—u)) — f2(0)]
< €/2, if u is sufficiently large. The sixth term is also. We assume that F is nowhere zero or
one, since the remaining cases are trivial. The process X(#) = [~ cos tx dB(F(x)) is continuous,
hence a.s. bounded on [T}, T3], and sup, EX”(t) < F(—u). If / is large enough, then by another
beautiful result of Marcus and Shepp (1971) and Fernique (1971) (also in Fernique, (1975
page 13), or in Dudley (1973, page 69), stating that the tail of the supremum of a bounded
Gaussian process is Gaussian-like) we have

= P{SUPII H,(t; =, —u, COS)I > (3/2)1/26}
= P{sup,| X(¢)| > (3 log log )"}
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= exp(—€°(3 log log r/)/3 F(—u))

€2/F(—u)

= (log 1)~

sjl—ez/F(—u)

< [/FCw,
Therefore, if u is so large that €?/F(—u) > 1, then ¥, p; < ». This means that the first term of
(2.19) converges to zero a.s. as | — . Similarly the second, third and fourth, and thus the left-
hand side of (2.19), too. On the other hand, if we pick an arbitrary g € %(F), then for the f
€ &, which corresponds to this g, there exists a sequence {r;} such that (2.18) holds. Then

choosing a subsequence {n, = r,} such that n;, = e*, the above argument shows that
sup;| H,,(t) — g(t)| = 0... as k — . The theorem is proved.

Proor oF (1.27), (1.28) anD (1.29). Let
H = {flfi [0, 1] = (==, »), f€ o, f(0) = f(1) = Qj (f7< °°}
be the Hilbert space with inner product ( f, g) =[5 f'g’. Then

dp = Sup:SUPse #,(f,f1=1

J’ exp(itF ' ()f () dy‘ :

# can evidently be identified with the subspace J#, = { g € L*(0, 1)|f5 g =0} of the real L*(0,
1) space with the inner produce (-, -) and norm | -||. If f and g are orthogonal, (f, g) = 0,
then we write f L g. Denoting by ®@.( g) the complex functional [3 exp(itF ~'( y))g( y) dy on
Ho, we have

dr = Sup.Supge x, ei=1| Pe( g)|-

Let a:( y) = cos thl(y), b(y) =sin tF_l(y). Then ¢:(y) = al y) — Ae, Yo(y) = b(y) — B:
€ Ho. Let

A= {ape(+) + BYu(+)| a, B real}

be the linear subspace (of dimension 1 or 2) of #; generated by ¢, .. The functional @, is
zero on #p © A; (© denotes orthogonal subtraction). Indeed, if g € #%, then g L A4, B, (it is
orthogonal to any constant function). If, in addition, g L #;, then g L ¢, .. Hence g 1 a,, b,,
whence ®,(g) = 0. Now we claim that

SUPge x,lel<1]| Pe( g)| = Supgeriei=1|Pe(g)]-

The right-hand side is clearly not greater than the left-hand side. But, if g € #%, || g|| < 1, and
g=g + g, 8 € A, g2 € #,© A; (decomposition theorem, Riesz and Sz.-Nagy (1955, page
70)), then | gi|| = |lgll = 1 and ®«(g1) = ®.(g), and this proves the opposite inequality.
Therefore, dr = sup.dr(t), where

dp(1) = max, g(fi(a, B))"* = max,,s

J’ (ad: + Byi)(a + ib)|,

where the maximum is conditional with respect to the condition
1

gla, B) = f (ad: + o)’ =1,

[

where “<” could clearly have been replaced by in this condition.

All that was said up to now is in force with the trivial simplifications if, instead of @, the
functionals ®"(g) = [ a.g, ®{” = [ b.g are considered. In case of ®{" e.g., the corresponding
linear subspace is #{" = {a¢.|a real}. This leads to d’ = sup,max.| [} a¢.a:|, where a® <
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1/f5 ¢¢. Hence (1.27), and similarly (1.28) follow.
Turning back to the proof of (1.29), we have to find the conditional maximum of

fi(a, B) = (aR: + BS:)* + (aS: + BT.)%,
subject to the condition
gi(a, B) = a’R; + 2aBS: + B°T. = 1.

It can be shown by an orthogonality-argument of the above type that dg,/da and dg./d8 cannot
vanish at the same time given the latter condition. Therefore the multiplier method of
Lagrange can be applied to compute the conditional maximum. From here a straightforward
but quite long and tedious computation yields (1.29).
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