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STOCHASTIC INTEGRATION AND I”-THEORY OF
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If X is a bounded left-continuous and piecewise constant process and if Z
is an arbitrary process, both adapted, then the stochastic integral [ X dZ is
defined as usual so as to conform with the sure case. In order to obtain a
reasonable theory one needs to put a restriction on the integrator Z. A very
modest one suffices; to wit, that [ X, dZ converge to zero in measure when the
X, converge uniformly or decrease pointwise to zero. Daniell’s method then
furnishes a stochastic integration theory that yields the usual results, including
It6’s formula, local time, martingale inequalities, and solutions to stochastic
differential equations. Although a reasonable stochastic integrator Z turns out
to be a semimartingale, many of the arguments need no splitting and so save
labor. The methods used yield algorithms for the pathwise computation of a
large class of stochastic integrals and of solutions to stochastic differential

equations.
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1. Introduction. There are two situations in which the stochastic integral [ X dZ
can be defined with ease. When the integrator Z is a process of finite variation the
integrand X can be quite arbitrary and the integral is defined as a Stieltjes integral
pathwise. When the integrator is a square-integrable martingale, It6’s extension procedure,
generalized by Kunita and Watanabe [KW], yields an integral with good properties
provided the integrand is previsible. (For other definitions see [M2, S1].) In the search for
the greatest common denominator of these two situations the notion of a semimartingale
emerges: it is that kind of integrator Z for which a mixture of the pathwise Stieltjes and It6
integration techniques yields a good integral. Not surprisingly, the integrand has to be
previsible for the amalgamated techniques to work. An excellent account of the stochastic
integral for semimartingale integrators and previsible integrands can be found in [M5] (see
also [J1]).

The starting points for the present investigation are two questions arising immediately.
First, does one get the most general ‘reasonable’ stochastic integration theory by amalga-
mating the two known techniques? The answer is yes. This might be considered surprising
in view of the modest criterion of reasonableness adopted; to wit, that [ X, dZ converge to
zero in measure when the sequence X, of elementary integrands either decreases pointwise
to zero or converges uniformly to zero. A proof of this has recently been given by
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Dellacherie, Mokobodzki and Letta (see [M7]). We shall present an alternate proof that
rests on a deep and powerful theorem of Maurey [M1] and Rosenthal [R1], which is a
close relative of Grothendieck’s Fundamental Theorem and yields additional information
in the L?-theory, 0 <p = 2.

Secondly, integrals are limits, and the question arises in which sense [ X dZ converges.
The present investigation concentrates on convergence in L”-mean, 0 = p < o, though
many of the methods developed apply as well to convergence in the topology of certain
Orlicz spaces and Lorentz spaces. In the course of the investigation some of the known
martingale inequalities appear in a rather natural way in the setting of stochastic integra-
tion, and a few new ones are added.

To make these remarks on our goal more precise, some notation is required. The basic
data underlying everything are these: (R, %, P) is a complete probability space; = { %:
t = 0} is an increasing and right-continuous (r.c.) family of o-algebras with span %.; every
negligible subset of %, appears in %#,. The word ‘process’ will refer to a function Y on the
base space

B =Q % [0, »)

or to the class Y of its modificaticns. Y is called a representative of Y. All processes are
also assumed to be a.s. finite at any instant and adapted:

Y. € X% P); Y, €L%%;P).

We shall use freely the results, and most of the notation, of Dellacherie’s book [D2].

Let 7 denote the collection of all Zstopping times that take only finitely many values,
all of them finite; .o the ring of subsets of B generated by the stochastic intervals (S, T'],
S, T € 7, and the special intervals [So, 0] = [So = 0] X {0} whose graphs are contained in
© X {0}; and £ the vector lattice of step functions over /. &/ generates the previsible o-
algebra #, and every A € </ can be written as a disjoint union

(1.1) A =[S, 0] v UL (S;, T:].

The intervals (S,, T;] can be fixed uniquely by insisting that they be consecutive: 0 = S,
=T =8 =---and S; < T; < Si+1 on [Si+1 < Tit1]. Every function X € £ is a left-
continuous bounded process vanishing after a bounded time and has a representation’

(1.2) X =ro-[So, 0] + X1 ri- (Tiy, Tv1; rneEr,T.€9

which is unique when the intervals are chosen consecutively. (The T} are not unique, the
intervals are; we shall also say the T, are chosen consecutively.) The processes in # are
termed elementary integrands. One may now define, for any processZ and X € %
asin (1.2)

(1.3) dZ(X) :=ro-Zo-[So = 0] + Y1 1+ (Zr, — Z1_))

and obtain a linear map dZ: # — L°.
The questions raised above are given their precise meaning by the following notion, and
amount to the problem of investigating it.

DEFINITION. Let 0 = p < . The process Z is an L?-integrator if Z, € L?( %; P) for all

! Sets will be identified throughout with their characteristic functions; e.g., X takes the value ro on
[So, 0], . on (T.—1, T.], and zero off the union of these stochastic intervals.

% A class Z is chosen for the integrator rather than its representative for two reasons. First, it is
more general, and then the integral will be defined as a mean limit anyway. The choice is thus made
for consistency—until it is abandoned for good reason in Section 2.7. The ring 7 is chosen over the
ring % generated by the right-continuous intervals [S, T') because it is ‘smaller’ in the sense that the
o-algebra 2it generates is smaller than the o-algebra # generated by %: the smaller the domain of dZ
the easier it is for dZ to be reasonable and thus the larger the scope of the investigation.
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t =0 and if dZ : 2 — L” has an extension satisfying the Dominated Convergence Theorem
(DCT).

Replacing L” by an Orlicz space L® or a Lorentz space L, etc., gives the notion of an
L®-integrator or an L”%-integrator, etc. The condition that the DCT hold looks at first
sight rather more stringent than the conjunction of the two mentioned above; to wit

(Ap) The set {dZ(X):X € #r, | X| = 1} is bounded in L” forall T € 7,

where Rr={XER:X=00n (T, »)},
and
(B,) lim dZ(X™) = 0 in L” for every decreasing sequence X"

of elementary integrands with pointwise infimum zero.
However, we shall see in the next section that (A,) and, merely,
(B%) Z is right-continuous in probability

imply that Z is an L-integrator. (A,) simply means thatdZ :# — L” is continuous when
2 is given its natural topology, the inductive limit of the sup-norm topologies on the Zr,
T € J. For p > 0 it amounts to this:

(A}) v8[2] := sup{| dZ(X)||Lr: X E R, | X|= 1} <  forall TE I

The y4[Z] measure the size of Z as an L”-integrator. Other quantities measuring this have
been investigated. For instance, Meyer [M6] introduces numbers| Z|z» for 1 = p = .
They are equivalent with our y4[Z] in this range of p’s, as was shown by Yor [Y1]. Such
quantities are of great importance in the theory of stochastic differential equations, where
a firm control on the size of Z is needed for the convergence arguments (see, e.g., [DM],
[E1], [P2] and Section 8 below).

The idea to do the integration theory of [ X dZ by regarding dZ as a vector measure is,
of course, not new. It6’s definition does just that; and it was resumed and developed by
Kunita and Watanabe [KW], Meyer [M5], Pellaumail [P2, P1, MP], Yor [Y4], Metivier
[M4], and Kussmaul [K2], to name but a sample. The principal difference of the present
effort are the single-mindedness in the pursuit of this idea—which in our view reduces the
technicality of the subject to a considerable degree—and the emphasis on the previously
neglected case 0 = p < 1. In particular, all of the inequalities connecting the size y?, the
square function and the maximal function are known in the case p = 1—[G2] and [Y1] are
good references—while most of the ones with p < 1 are new. Careful accounting of the
quantities yZ[Z] and y%[[ X dZ] yields new results on the pathwise computation of the
integral (7.14) and on the pathwise solution of stochastic differential equations (8.2), and
a priori estimates on the size of the solutions (8.4).

The reader has noticed the close analogy of the definition of an L ”-integrator with that
of a distribution function z = z(¢) on the half-line: (a) the set function dz must be bounded
on the ring z generated by the left-continuous' intervals and (b) z must be right-continuous.
The quantitative expression of (a) is (a’): the variation y.[z] of z on every interval [0, ¢] is
finite. In this case, and in this case only (apart from changing right for left) does dz have
a good, Lebesgue type integration theory.

Our first goal is to show that the same holds in the stochastic case.

2. Characterization of L?-integrators and their extension theory.

2.1 THEOREM. Let 0 < p < . The process Z is an LP-integrator if and only if (A,)
and (B,) are satisfied.

The necessity of the conditions is obvious. To show the sufficiency really amounts to an
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exercise in vector valued Daniell integration. We shall give a sketch in order to establish
notation needed later and also because there seems to be no account in the literature of
the case most interesting to us, namely that of a nonlocally compact base space B and a
nonlocally convex range (0 < p < 1) of the vector measure.®> We indicate the steps in the
most economical order, leaving the straightforward details to the reader.

Step 1. Construction of the upper integral. To begin with, we choose a translation-
invariant metric p for L?, say the usual

1A1/p
ool F) = £l = ( f I dP) itp>0,

po(f) = inf{c: P[|f] > c] < ¢} itp=0.

The Daniell upper integral G = GZ for the measure dZ is defined first on processes H that
are pointwise suprema of sequences in Z by

G(H) = sup{p(dZ(X)): XE R, | X| < H}
and then on arbitrary functions F: B — R by
G(F) =inf{G(H): |F| = H; H as above}.

Conditions (Ap), (Bp) and the subadditivity of p translate into the following four properties
of the pair (#, G);

(@) G is finite on #; i.e., im\_oG(AX) =0 forX € %.

This is immediate from (A;). For p > 0 one has, more quantitatively,

(ep) G,(AX) = | A |'"*Gp(X), XeER.
(B) Gissolid: | F| = |F’| implies G(F) = G(F"’).

(y) G is countably subadditive.

To see this, note that (B,) implies in the presence of (A,) that lim dZ(X,) = dZ(X) for any
increasing sequence X, in £ with pointwise supremum X € £. Then use a standard

argument.
(6) lim G(X,) = 0 for every sequence (X,) of elementary integrands X, = 0 satisfying

lim,_,o SupNeNG(}\ 22’=1 X.) =0.

If p > 0, the last property reads: G(X,) — 0 if G({Y X,»: n < N}) is bounded. For all p =
0 it means this: If the finite partial sums of the sequence X, = 0 form a set bounded in G-
mean then necessarily X,, — 0 in G-mean. It is the most crucial of the four properties in
the sense that it distinguishes G from an #*- norm, which shares the other three properties;
and it derives from the fact that the spaces L? have the analogous topological feature.
Here is a sketch of its provenience:

Let r. denote the Rademacher functions. Khintchine’s inequalities (cf., e.g., [Z1]) say
that the map (a.) — ¥, a7, is a homeomorphism of I? into L?(0, 1), for any p € [0, ). In
particular, there are constants &, so that

S al)? = kp||Y anrellLrony, for0<p <o,

Let then X, € # with | X;,| = |X.|. Forall N €N,

®For a detailed treatment see [B2]; also [T1] for locally compact base spaces. The method of
Metivier and Pellaumail [MP] is very close to the one used here in the case p = 0.
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Up
I Cr=s [ dZ(X70) Y2 (loce) < By (f | 2o dZ(X7) (@)ra(8) |” dP(w) dt) .

Since | YV X;ra(t) | < V| X.| for all N and ¢ € (0, 1), the right-hand side is majorized by
kp(GE(ZN| X)) P! < const < o
and so
GJ(X,) = sup{[|[dZ(X) |1 25(p): | Xn] = | Xa [} — 0.

The slight alterations in the case p = 0 are left to the reader. Incidentally, this estimate
applied to X4 = [0], X, = + (Tw-1, T ]" gives the following very useful corollary (established
for p = 1 by Yor [Y2] in this very way).

2.2 PROPOSITION. Let Z be any process and 0 < p < «. Then
(2.2) (28 + $hes (Zr, — Z1,_)) " lle < ko-v5[Z]

for any sequence 0 = Ty = T; - -- < T of consecutive stopping times in J. For p = 0, the
corresponding statement reads: if Z is an L -integrator the family

(Z% + Zg=1 (ZT" - ZT"_,)2)1/2

stays bounded in L° as0< Ty < ... < Ty < T vary, with T € J fixed.

We return to the main theme. Couples (£, G) with properties («) -(y) are termed upper
gauges (cf. [B2]). The upper gauge GZ constructed above is the smallest upper gauge G
satisfying

() pp(dZ(X)) = G(X), XeAR,

but not always the easiest one to handle. It should therefore be kept in mind that the
integration theory of (£, G), sketched in the next step, does not use the provenience of G
but merely properties («) -(5).

Step 2. The integration theory of (£, G).
2.3.1. A function F: B — R is G-negligible: G(F) = 0, if and only if G([ F # 0]) = 0,
i.e., iff F vanishes G-a.e.

2.3.2. 'The functions finite for G are defined as
Z[G] = { F: B— R; lim\_,oG(AF) =0},

which equals { F: G(F) < ©} when G =G%, 0 < p < . #[G] is a complete pseudometric
vector lattice under the distance G(F — F’). Every G-mean convergent sequence F, €
Z1G] has a G-a.e. convergent subsequence F,) such that Y2G( Frg+1)y — Fagy) < .

2.3.3. The (#,G)-integrable functions are defined as the G-mean closure of the
elementary integrands £ in #[G] and are denoted by .#'(#, G). When the provenience of
G is from dZ as above we also write YN%, G) = ¥"(dZ; p, P) and def"mef-dZ on
LNdZ; D, P) as the unique extension by G-mean continuity of dZ: # — L?(P). In any
case, £' (&, G) is a complete and order complete pseudometric vector lattice.

2.3.4. The DCT holds: if X,, € (2, G) converges G-a.e. to X and if sup | X, | is finite
for G then X € £Y(£#, G) and X, —» X in G-mean. To prove this one shows first that the
pair (£ (£, G), G) is an upper gauge, derives the Monotone Convergence Theorem from
that, and obtains the DCT with a standard argument.
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2.4. (%, G)-measurability. Let us equip the base space B with the initial uniformity
of the collection Z of functions on B. (Since each X € £ takes its values in a compact set,
the completion Z of B is compact.) A collection J of (%, G)-integrable sets' is termed
(%, G)-dense if for every integrable set A C B and every € > 0 there is a K € J#'with K C
A and G(A — K) < e. A function F on B is defined to be (2, G)-measurable if the
collection %( F) of integrable sets K C B on which F is uniformly continuous is dense.

2.4.1. Egoroff’s Theorem. The pointwise limit X of a G-a.e. convergent sequence X, of
G-measurable functions is G-measurable; moreover, the collection of integrable sets on
which the convergence is uniform is dense. Thus every previsible process is (%, G)-
measurable.

2.4.2. A function F on B is (%, G)-integrable iff it is (%, G)-measurable and finite
for G.

Every GZ-measurable function X on B is equal GZ-a.e. to a previsible process, so
knowing the dZ-integrable processes is equivalent with having a manageable expression
for GZ or a manageable replacement of it. This will be attempted in Section 7. In the
meantime, here is a little information:

2.4.3. For any GZ-measurable process F,

r
GZ(F) = sup 1pp(f X dZ) : X dZ-p-integrable, |X|= |F|}

= sup{p,,(J’ KF dZ): Ke %(F)}

2.5 PROPOSITION. SuppqseZ is an LP-integrator, for some p € [0, ). Then there
exists a representative Z € Z, unique up to indistinguishability, whose paths are right
continuous with left limits (r.c.1.1.) and bounded on every bounded interval.

PrOOF. Let Z’ be a representative of Z. Fix an instant ¢ > 0, a finite set S = {0 = s;

< sy < ... <8, =t} of consecutive rationals, and two rationals a < b. Set Ty, = 0 and
Torsr =t AInf{s € S: s> Tor ,Z;> b}
Tor=t Ainf{s €S: s> Top1, Z: < a}, k=0,1,....

Let U%**! denote the number of upcrossings of [a, b] performed by the path s — Z on S.
Clearly’

1
b—a
Due to (A;), the right-hand side stays bounded in L” independently of S C Q. Thus

[US®) = ] is negligible. Taking the union over a < b rational shows that Z’ has a.s. right
and left limits through rationals. By (B,),dZ is not changed if Z’ is replaced by Z with

Z,=lim{Z;: t<q€EQ}.

n[Ug=n] =<

(Xk=1 (Z7y,,, — ZT,,) + (a — ZD)4).

To see that the r.cLl. representative Z € Z is a.s. bounded on bounded intervals, consider
the maximal process Z* of Z defined by

Zf: = sups=t| Zs| = sup - - s=tscq-

Fix an instant ¢, a ¢ > 0, and let 7T be the first time | Z| exceeds ¢. Then [Z} > c¢] C [T =
t], on which set | Zr| = c. Hence' ¢[Z} > ¢] = | Z7|[T = ¢] = | Zr| = | dZ([0, T])| and
consequently
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(2.5.1) pp(c[ZF > c]) = GZ([0,¢]) and P[Zf = w] =

The last result of this section shows that (B,) is equivalent with (Bo) and with the
existence of a r.c.Ll. modification and shows that (A,) alone characterizes L ”-integ: ‘tors.

2.6 THEOREM. Let Z be a process right-continuous in probability and let 0 < p < .
Then Z is an L”-infegrator if and only ifdZ: # — L? is continuous. For p > 0 this
condition reads y7[Z] < o for all T € J.

PrRoOOF. Only the sufﬁcjency of this condition needs to be established, and by 2.1 it
suffices to show that it implies (B,). If p = 0 this is easy. Suppose

X" = r3.[S5, 0] + TK® r2.(S3, TR ER of. (1.2)

decrease to zero, and let € > 0. By the stochastic right continuity there are stopping times
Sk € Iwith S§ < S% on[S% < T#] such that

Y TED po(rk | Zsy — Zsy |) <e.
The dZ-integral of
Xr=(X"—- Y0 YK rr (ST, ST+ ER

then differs from that of X" by less than ¢, if measured with po. But X" is majorized by the
process

X"=( m= Ki’f"rk (Sk,Sk))+_X"

which has upper semicontinuous trajectories. By Dini’s theorem,| X" |% | 0. For n so large
that P[| X" |% > €] < ¢, po (dZ(X" — X" A €)) < €. Since po(dZ(X"A €)) — 0 as € — 0 by
(Ao), dZ(X™) — 0 in L° as claimed.

For the remaining case p > 0 a little trick is needed. Recall that the completion % of B
is compact (2.4). For every X € # let X: 2 — R be its extension by uniform continuity. The
collection Z so obtained is a vector lattice of continuous functions on 4, all vanishing at a
point o € % \B, dense in Coo(#\ {}) by the theorem of Stone-Weierstrass. We define a
continuous linear map dZ: # — L? by dZ(X) = dZ(X), X € #, and extend it to a
continuous linear map U: Cy(%\ {0}) — L? by continuity. Note here that the natural
topology of Coo(Z\ {=}) coincides, on £, with the natural topology of # commented on at
the end of Section 1. The map U satisfies (A,), and (B,) is now automatically satisfied by
Dini’s theorem. Following the extension procedure outlined in 2.1-2.3 one arrives at an
extension [-dU of U satisfying the DCT. Thus, if the X" € # decrease to zero, lim dZ(X")
= lim U(X") = [ inf X" dU exists in L?. Now observe that Z is also an L‘-integrator, for
which as shown above lim dZ(X") = 0 exists in L°. Hence lim dZ(X") = 0 in L”.

We point out again that every result in this section persists if the spaces L? are replaced
by Lorentz-spaces L7, p # o, or Orlicz spaces L®, where ® satisfies a As-condition (this
restriction is needed to arrive at (§)).

2.7. We close the section establishing some notation. Note first that the generality
attempted by admitting classesZ as L P-integrators is illusory, by 2.5. Prompted by 2.5 and
2.6 we set forth the notion we shall be investigating throughout the remainder of the paper.

DEFINITION. A numerical process Z is an LP”-integrator, 0 = p < oo, if it is right-
continuous with left limits a.s. and if dZ :2 — ¥7 is continuous.

That is to say, the class Z is an L *-integrator and Z is its ‘unique’ r.c.Ll. representative.
We write y4[Z] = y%[Z], G} = G} etc. Suppose X is a dZ-p-integrable process—meaning,
of course, that it is dZ-p-integrable. The very extension procedure produces a class [X dZ
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:= [X dZ for the integral. Note, however, that clearly the processY defined by
Y, := f [0, t]-X dZ, t € [0, ),

is an L P-integrator. As such it has a r.c.1l. representative, unique up to indistinguishability,
which will be denoted by

T]
X+Z . J Xdz
[0}
is defined as (X*Z)r, the value of this representative at 7. If S = T are any two stopping
times one defines

T]
f XdZ = (X+Z)r — (X*Z)s
(

S

and checks easily that it is a member of the class (X (S, T'] dZ.
The following relation on the size of Y = X*Z is useful in subsequent computations and
is easily verified from 2.4.3.

@7 Y[ X+Z] = (GZ(X-[0, T for p>0.
Lastly, for any r.c.L.L. process Y, Y_ is the process with values
Y_(w) = limy Ys(w) fort>0,Y_o=0.

Abusing the language, we call Y_ the left-continuous version of Y. The value of
AY:=Y-Y_
at any time 7' is denoted ArY.

3. Examples.

3.1. A right-continuous process I (adapted and a.s. finite as all processes are by
convention) is called an increasing process, if a.s. its paths ¢ — I,(w) are increasing
functions. It is clearly an L -integrator: For every T € 7, the set {f X dI: X € #r, | X| =
1} is order-bounded in #°—by [ [0, T] dI = Ir—and so is topologically bounded. It is an
LP*-integrator, p € (0, «), if and only if

YrlIl= Iz
is finite for all bounded times T'; in fact it is easy to see (cf. 2.4.3) that

p 1A1/p
G, (F) = ( f dP(w))

for F Gj-measurable. In any event, the right-hand side defines an upper gauge on all
processes F, which majorizes dI (cf. 2.1¢) and is just as good as G} for the purpose of
extending dI to an integral. The theorem of Fubini in a suitably general form ([B1], page
228) says that [ X dI can be evaluated pathwise as an ordinary Stieltjes integral (X €
ZLUR, Gp), p € [0, ).

In fact, the pathwise Stieltjes integral [ X dI is defined for any suitably smooth
integrand X for instance, when X is progressively measurable, Y, (w) = [§ X (w) dI(w)
defines an adapted process Y = X Z.

J’ | Fe(w)|| dI.(w) |

3.2. Ar.c. process Vis called a process of finite variation if a.s. its paths are functions
of finite variation. From the usual definition of the variation [ |dV| of V,

¢
(3.2.1) J |dV| = supn Yi=1| Vinre— — Vina—1)2-#|
0
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which yields an increasing r.c. process [ |dV|, we see that V can be written as the
difference of two increasing processes:

v=3([1aviev)-2([1avi-v) = ve-v-

Conversely, a difference of two increasing processes is clearly a process of finite variation.
Such a process is therefore an L integrator as well. It is not so easy to determine when V
is an L”-integrator if p > 0. A sufficient condition is evidently that [ | dV| or both V* and
V'~ be LP-integrators. In this case

1Ap

(3.2.2) G}V (F)=“J’|F| [aV|| = GY(F)

Lr

is an upper gauge, reasonably manageable, that majorizes dV on £ and can be used to
extend it to an integral. However, GJ!?"! is not in general equivalent withGY. No easy
necessary and sufficient condition for V to be an L?-integrator, p > 0, seems to be known,
and no manageable equivalent of G} either. The reason is, of course, that the natural
domain for dV are the well-measurable sets, and that .o/ is too small a subdomain to
distinguish the behaviour of dV.

3.3. The situation improves when V is previsible. We cite a most useful criterion for
previsibility [D2; page 85 & page 105]. It is, incidentally, also the most advanced result of
Dellacherie’s book that we shall need here.

3.3.1 LEMMA. Let X be ar.cll adapted process. Then X is previsible iff A7 X = 0 a.s.
at all totally inaccessible stopping times T and Xr-[T < x] € Fr_ at all predictable
stopping times T; in this instant, Xr-[T < o] € Fr_ at all times T. Suppose X is
increasing and integrable: X, € %'V t. Then X is previsible iff

t
EM.X, — MXo) = E J M_dX
0

for all bounded positive r.c. martingales M.

Let then V be a previsible process of finite variation. (3.2.1) shows that the jump of
J|dV| at any time T equals | A7V | € %r—. Thus [ |dV|and V™, V™ are previsible as well.

3.3.2 PROPOSITION. Suppose V is previsible and of finite variation, and 0 < p < .
Then V is an L?-integrator iff [ |dV | is; in fact

1ap

y';[V]=y';U|dV|] and GX(F)=G{»"’V'(F)=“JIFIIdVI

LP
for F preuvisible.

ProoF. Let T be any stopping time such that [ | dV| is bounded on [0, T']. Arbitrarily
large such times exist:* Choosing K sufficiently big, S = inf{s: [§|dV | = K} can be made
arbitrarily large (2.5) and is predictable [D2, page 74]. Any T predicting S will do. Denote
by pv the measure A — E [ AdV 7 on the previsible ¢-algebra, and let D be a previsible
derivative duv/dus av|. Then D* =1, D*V = [ |dV|, and so y&2[[ |dV|] = y&[V]. The
reverse inequality being trivial, the statement follows from (2.6).

‘ie., for any ¢ and € > 0, a stopping time 7T can be found that satisfies this description and
P[T<t] <e
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3.4 DooB PROCESSES. The scalar measure p attached to V in the previous argument
is worth some attention. First note that it can be defined for any r.c. integrable process Z:
mz(A) = E dZ(A), AE .
Our present aim is to characterize those processes Z for which mz behaves well.
DEFINITION. A right continuous integrable (Z; € £ V ¢) process Z is a Doob process
if it satisfies these two conditions:

(D1) There exists an increasing function fon J such that | E(Zr — Zs) | < f(T') — f(S) for
S=Tin J.

(D2) For any T € 7, the collection {Zs: T = S € 7} is uniformly integrable.
Condition (D1) is met by submartingales, supermartingales and linear combinations
thereof. It is but another way of saying mz has finite variation.

ProposITION (Pellaumail [P2]). Let Z be a right continuous integrable process. The

following are equivalent.

(1) Zis a Doob process.

(2) mg has finite variation, is o-additive, and vanishes on evanescent sets.

(8) There exist a r.c. previsible process (Z) with integrable variation and with (Z)
=0 and a r.c. martingale Z such that Z = Z + (Z).

Moreover, the decomposition (3) with the stated properties is unique in the sense of
indistinguishability; it is termed the Doob-decomposition of the Doob process Z.

(The term Doob-Meyer decomposition is more appropriate but longer.)

PrOOF. (1) = (2): It has to be shown that mz(A ™) — 0if A ™ is a decreasing sequence
in &/ with evanescent intersection. Let € > 0 be given, and let T € . be such that A"’ C
[0, T] = A. Let mz = m* — m~ be the Jordan decomposition of mz. There exist sets A™*
€ o withA*+ A" =Aandm*(A”) + m~(A*) < e. Reviving the notation of 2.5, let

AW =[S, 0] U UK (S, T ],
Clearly mz(A™ n [0]) = mz([S§, 0]) = E(Z,-[S§” = 0]) = 0. We may assume
A = UED (S, TP,

Consider the stopping time (S{™ + 1/p) A T\® = S{™ between S{™ and T'*). It decreases
to S{™ as p increases, by right continuity Zsw — Zsm, and (D2) ensures that E|Zsm» —
Zsw| = €2 ~"~* for the proper choice of p. The mz-measure of the set

AP = AU UETD (S, S € o
then differs from that of A ™ by less than e. But A™ is contained in the set
A™ = UKW [§ T A™
which has compact sections, whose intersection over all n is void a.s. In other words,
R™ =T A inf{¢: A{® > 0}
increases to T, being eventually equal to T a.s. We estimate:
mz(A™) <e+mz(A™) =e+m*(A™) —m~(A™)
=e+m* (R, T) =2¢+m*((R", T]n A")
=3e+m((R*, TIn A").
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Now A* is of the form UX_; (S%; T#], and so
m((R", T1n A") = hy = J (Zrtar — Zstvr~) dP.
(Ti>StvR"]

The integrands converge to zero a.s., staying uniformly integrable, and so mz(A ™y < 4¢
eventually. We repeat the argument with —Z replacing Z and find mz(A™) = —4e
eventually. Thus mz(A™) — 0.

(2) = (3) This is a lemma due to Pellaumail [P2]. Here is a sketch of the proof. For
any T € 7 and g € ¥*(%r) let M? denote the r.c. martingale M? = E(g| %) and set
m3(g) = m*(M&.(0, T). If g. | 0 a.s. then M¥ decreases to an evanescent process by
Doob’s maximal inequality, and so m7(g.) — 0. Hence m% << P and there is a derivative
A#%. Let (Z)* be ar.c. representative and (Z) = (Z)* — (Z) . One checks easily that mz,
= myg, so that the difference Z = Z — (Z) is a martingale. Since by the definition of (Z),
EM7(Z)r = E [§ M_ d(Z) for all bounded martingales, (Z) is previsible (3.3.1). This
property also implies the uniqueness stated.

(3)=> (1) is obvious from (3.3.2) and the fact that the Zs = E(Zr| %s), T=S € 7,
form a uniformly integrable family.

3.5. A r.c. square-integrable martingale M is an L*-integrator.

Let X = ro[So, 0] + ¥ ri(Ti—1, T;] be an element of #7 with | X| < 1. T € 7 is fixed, 0
< T, < ... <T,=< T consecutive, and |r;| = 1. Then, using an elementary version of
Doob’s optional sampling theorem and the fact that M? is a submartingale,

| dM(X)|2: = E(roMo[So = 0] + ¥ ri(Mz, — M7,_)))*
< E(riMj+ 2roMo[So=0]Y; --- + ()%
<=EMS+EY,;;roriMrg — Mr,_)(My, — Mr7,_)
=EM}+EY ri(Mr — Mr_)'< EM} + E Y (M%, — 2MrMr,_, + M%,_)
= EM}+ EY (M% — M%_)) = EM%, < || Mr|3..

Hence y%[M] = || Mr||:. As opposed to the last example, the fact that the integrand X is
previsible was crucial to the computation.

3.6 LEMMA. Let Z be a positive bounded r.c. supermartingale that vanishes at the
stopping time T. Then Z is an L*-integrator and

Y5[Z] = vi[Z"] < 2(2-sup Z-E(Z))"*.

Proor. Clearly Z is a Doob process and so has a Doob decomposition Z = Z+ (Z),
with (Z) decreasing, (Z)o = 0. Let X € #r with | X| =< 1, and estimate, with ¢ = sup Z:

EZ% = E(Z)} = 2E(Z)} — EJ ((Z) + (Z)-) d(Z) see 5.10
T T

52EJ’ (Zr) = (Z)) d(Z) =2EJ (Zr - Z) d(Z) see 3.3.1
0 0

T
=2E J Z d(—(Z)) < —2¢cE(Z)r = 2¢cEZr = 2cEZy = 2cEZ,.
0

By 3.5 and 3.3.2 the processes Z and (Z) both have y%[ -] =< (2cEZ,)"?, and 3.6 follows.
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3.7. A right-continuous martingale M is an L">-integrator. (It is not, in general, an
L'-integrator; those that are form the class H?, to be characterized in 7.2 below.)

Again, we need to show only that dM: # — £"* is continuous; i.e., that for fixed T €
J the numbers

| dM(X)|| 1~ = supe cP[| X*M|r > c]

stay bounded as X ranges over the unit ball of £ r. We could quote a result of Burkholder-
Davis-Gundy [BDG] to the effect that actually

(3.7.1) sup. cP[|X*M |7 > c] =< C.|Mr| .

The constant C can be chosen to be 2, which is sharp [B4]. For completeness’ sake, we
prove the following inequality, which certainly serves the purpose.

(3.7.2) cP[|X*M|r > c] =< 18| Mr|L,,
foranyc>0andany X € Zr, | X| = 1.

Proor. Up to time T' € J, M is the difference of two positive martingales. We may
therefore reduce the problem to establishing (3.7.2) for M = 0, with 9 replacing 18. To
do this, let S be the first time that M exceeds ¢, and set Z = M-.[0, S). Note that Z is a
bounded positive r.c. supermartingale, and that the processes X*M and X*Z agree on
[S > T] up to time T. Doob’s maximal inequality and 3.6 yield

cP[|X*M|r> c] < cP[S=<T]+ cP[|X+Z|r>¢;S> T]
T 2
=cP[|M|f=c]+ c-lEU XdZ) = EMr + ¢ (y3[Z))?

0

=EMr+ C'_1 .8.¢c-EZy< EMT =+ SEMO = 9||M7||L1

3.8. Ar.c. p-integrable martingale M is an LP-integrator, 1 < p < oo,
To see this, fixa T € J and X € #7 with | X| < 1, and consider the following map U
from L*(%7, P) to L*(%r, P):

U(f) = dM’(X),

where M’ is the r.c. version of the martingale E(f | #). By (3.7), 17 is of weak type (1, 1),
and by (3.5) it is of strong type (2, 2). A trivial calculation shows that it is self-adjoint on
L*. By interpolation, it is of strong type (p, p) for 1 p < o with constants C, depending
only on ¢®™" = 2 and ¢®® = 1; and this fact reads

(3.8) IdM(X)||Le = Cp | Mz||Lr or YZ[M]=< G, || Mr||,, I<p<o.

3.9. A process Z is said to have a property @ locally if there exist arbitrarily large*
stopping times T such that the stopped process Z” has the property @. T is then said to
reduce Z to a process with the property in question. A semimartingale is a process which
is locally the sum of a r.c. process of finite variation and a r.c. uniformly integrable
martingale. A local martingale is a process that is locally a uniformly integrable martin-
gale. A process that is locally an L?-integrator is also called a local LP-integrator. Z is a
global LP-integrator if dZ: # — L” is continuous in the uniform topology on %.

3.9.1 PROPOSITION. A semimartingale Z is an L°-integrator.
(See 7.6 for the converse.)
Proor. By 3.2 and 3.7, the reduced processes Z” are L -integrators. Let T be any a.s.

finite stopping time. Given € > 0, find a reducing time S with P[S < T'] < €. Now dZ is
bounded on the unit ball of 5. If X € #r with | X | =< 1, write
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X=X.[0,8]+X-(S, ©) =X; + X;.

Then dZ(X,) lies in a fixed bounded subset of L°, while po(dZ(Xz)) <= P[S< T]<e: dZis
continuous on Zr.

3.9.2 CoROLLARY. IfZis an L integrator then dZ: #r— L° is bounded for any a.s.
finite (not necessarily bounded) stopping time T.

3.9.3 PROPOSITION. A local martingale M is a local L'-integrator.

Proor. We may evidently assume that M is a uniformly integrable martingale, and
positive. There are arbitrarily large times T such that M is bounded on [0, T'), e.g., T =
inf{¢: | M,| = K}. Write

M"=M.[0,T) + Mr[T, ©) = Z; + Z,.

Then Z, is a process of integrable total variation | Mr| and thus is an L '-integrator (3.2),
while Z, is an L’-integrator by 3.6.

3.9.4 CorROLLARY. Let Z be a r.c. process. The following are equivalent

(1) Z s locally a Doob process;

(2) Zis a local L'-integrator;

(8) Z has a decomposition Z = Z + (Z) into a local martingale Z and a r.c. previsible
process (Z) of finite variation with (Z)o = 0. Moreover, this decomposition is then
unique. It is termed the Doob decomposition of Z.

The processes described in 3.9.4 are thus the ‘special semimartingales’ of Meyer [M5].

ProoF. (1)= (2) Suppose T reduces Z to a Doob process, with Z7 = M + V its Doob
decomposition. Let S” be a sequence announcing the previsible time inf{¢: [5 |dV| = K}
and S’ a time reducing M to an L'-integrator (3.9.3). Clearly S= T A S” A S’ can be made
arbitrarily large* and reduces both M and V, and thus Z, to a (global) L'-integrator.

(2) = (3) If T reduces Z, the measure mzr evidently satisfies (2) of proposition 3.4. By
uniqueness, the resulting decompositions Z7 = (Z7)~ + (Z”) are compatible as T'— o and
yield the decomposition of (3).

(3) = (1) is evident from 34.

4. Properties of the integral.

4.1 PROPOSITION. Suppose Z is an L?-integrator, 0 = p < o, and X is dZ-p-integrable.

(1) If X" € £YdZ, p) converges to X in GZ-mean then X"+Z — X*Z uniformly, in
measure.

(We shall see later (7.4) that actually ||| X"*Z — X*Z|% |- — 0.)

(2) There exists a sequence X" € R converging to X in GE-mean and so that X"*Z
— X+ Z uniformly as.

ProOF. By 25.1 and (2.7), po(c[| X"+Z — X+Z|% > c]) = G %([0, ©)) = GE(X"
— X) — 0 for any ¢ > 0. This proves (1). As for (2), first define inductively a sequence X},
so that GF(2*(X — X; — X» — -+ — X)) = 27% then set X" = X; + -+ + X,. Then
Y GZ(2%X;) < », and P[lim sup [(X — X")*Z|% > 2™™] = infy P(Unson [Tron | Xe*xZ |5 >
2_m]) = infn 2k>N P[2k|Xk*Z|§; > 1] = infy 2k>N Gg(2ka) = 0 for any m.

4.2. Despite its definition as a limit in p-mean, (X, Z) — X+ Z is local in nature:

PROPOSITION. Suppose Z, Z' are LP-integrators, 0 < p < o, and X, X’ are processes
integrable for both. Let Qo C Q and assume the paths of X equal those of X’ and the paths
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of Z equal those of Z', almost surely on Qo up to time T. Then the paths of X*Z and X'+ Z’
coincide a.s. on Qo up to time T.

ProoF. It suffices to treat the cases X = X’ and Z = Z’. In the former case, evidently
X+Z = X+Z' on Qo up to time T for all elementary integrands X, and then by 4.1 for all X
integrable for both Z and Z’.

In the latter case it suffices to prove this: If X = 0 a.s. on £, up to time T then [§ XdZ
= 0 on Q for any bounded time S < 7' Let By = (2 X [0, ®)) n [0, S], and denote by .7,
the trace of the ring & on B,. Define an L’-valued set function u on </, by

w(A n By) = Qo-dZ(A), AE «.

Clearly p is well-defined and satisfies (Ao) and (Bo) of Section 2. Therefore, u has an
extension [.dp satisfying the DCT. Note that By is p-integrable; in fact By € o/,. Let #
denote the set of all bounded previsible processes X such that

S
fXBod,u=Qof X dZ.
0

Clearly 2 C . By the DCT, # is closed under pointwise limits of dominated sequences
and so contains all bounded previsible processes. By truncation, the equality is true for all
dZ-integrable X. In particular, if X = 0 a.s. on By then [§ X dZ = 0 a.s. on Qo, as was to be
proved. We use here the fact that [§ X dZ = (X*Z)s is a member of the class [ [0, S]X dZ
€ L°. This is true for constant S, then for S taking countably many values, then for the
limits of sequences of such, i.e., for all stopping times S.

So far the argument was carried out as if ‘up to time 7” meant ‘up to and including time
T°. What happens if X = X’ and Z = Z’ a.s. on £, up to and excluding time 7, i.e., on B}
= (R X [0, »)) n [0, T')? We may then discard, for every rational g, from Qo n [¢ < T'] a
negligible set Q, leaving an equivalent set €, such that X*Z = X’*Z’ on (2, X [0, ©)) n
[0, T A q]. Then clearly X' +Z’ = X+ Z on €0 U Qj up to and excluding time 7.

4.3. Where and by how much does X *Z jump? Recall that Z_, = lim{Z,: s < ¢}, with
Z_o = 0 by convention, and that AZ =7 — Z_.

PRrOPOSITION. Suppose X is dZ-0-integrable. For any stopping time T,
AT(X*Z) = XT-ATZ a.s.

Proor. This is true by inspection for X € #. For arbitrary integrable X we find a
sequence X" € # as in proposition 4.1(2). Since X = lim X" G¢-a.e., Ar(X+Z) = lim
Ar(X"+Z) = lim X%.ArZ = X7-ArZ as.

4.4 PROPOSITION. Let Z be an L integrator, T an as. finite time, and X a previsible
process with | X|# < « a.s. Then X.[0, T is dZ-0-integrable.

Proor. Let € > 0. Choose n so large that P[| X | > n] < ¢, and write X = X.
[|X|=n]+X-[|X|>n]=X,+X,. By 39.2 and 2.4.2, X; -[0, T'] is dZ-0-integrable. Now
G§(X,-[0, T)) < e. For if Y is bounded and G§-measurable with | Y| < | Xz |[0, 7], then Y
vanishes up to time 7T on [| X |# < n] and so [§ Y dZ vanishes on this set (4.2); by 2.4.3,
G¥(X;-[0, T]) < € as claimed. That is to say, X-[0, T'] differs arbitrarily little from an
integrable process and so is integrable itself.

The merit of this simple result is that the expressions [§ X dZ and X*Z make sense
under very general circumstances and can be written down fearlessly. We shall do this in
the future without checking explicitly the rather weak conditions on their existence when
they are clear from inspection.
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4.5. PROPOSITION. Suppose Z is an LP-integrator, 0 = p < o, and the r.c1l. process X
has dZ-p-integrable left continuous version X_. Then

(4.5) IX_ dZ = Xo-Zo + lim Y31 X1, -(Zr, — Zr,_) in L7,
where the limit is taken as the partition : 0= To = T = -+« = Ty of [0, ®) is refined.
(See the proof about how to refine partitions.)

ProOF. Let € > 0. The DCT provides an instant  so that Gz(l X |- (1, 00)) < €/2. With
8 > 0 so that GZ(5- [0 u]) <, define a partition 0: 0 =S_; =S, =S =< -+ by Sps1 =
u A inf{t> Sp:| X, —Xs, | > 8}. Then S,, 1 u as., and by the DCT once again there will be
an M with GZ(|X_|- (SM, ®)) < €. Suppose thenthat T1:0 = To = T' =< -.- = Ty is a
refinement of 0:0 = Sy = S; = - .- = Sy. That is to say, each of the intervals (T, Th+1] is
entirely contained in one of the (S, Sn+1]. Set

X" = Xo-[o, To] =+ 2;’:;1 XT,,_l' (Tn—l, Tn]

Then | X" — X_|.[0, Sp] = 8-[0, u], and so GA(X" — X_) = € + GZ(| X_|-(Sy, ®)) = 2e.
Now (4.5) follows from the observation that the expression under the limit i is just X" dZ.
Thus || [X- dZ — [X" dZ||» = 2€ for all refinements 7 of o.

We take the occasion to draw attention to theorem 7.14 below. It says that [X_ dZ can
actually be evaluated pathwise, thus considerably strengthening the locality property 4.2.
An LP-version of 4.4 for 0 < p <  can be found in 7.11 (See also Yor [Y1]).

REMARK. Since every bounded stopping time 7' is the infimum of a sequence S, in I
and Zs, — Zrin L7, the T, themselves can be chosen in 7. There will then be a refinement
of 7 consisting of sure times. It is not hard to see that, thus,

(4.5") J'X_ dZ = lim (XoZo + Y01 X;,_,+(Zy, — Z,_,) in L7,
where the limit is taken as the sure partition 0 S t) = t; = ..+ = ¢y is refined.

5. Functions of L’-integrators. The question addressed in this section is this: For
which functions F is FoZ an L’-integrator when Z is? The answer is, roughly: For functions
F as smooth as a convex function. The corresponding question for p > 0: Suppose Z is an
L?-integrator, when is F(Z) an L%integrator? is open. A few results concerning this
question appear below.

We return to p = 0. For some applications later on, results in dimension d = 1 are
needed. Accordingly, consider an open convex subset D of R? a function F: D — R, and a
vector

= (Zl) M) Zd)

of L’-integrators taking values in D. The partial derivatives of F, when they exist, will be
denoted by

F, = oF/dx", vy = 8°F/dx® dx® etc.
and the Einstein summation convention will be used.
5.1 THEOREM. Assume that F is convex and of class C* and that the path of Z and Z_

stays a.s. in D.
Then F(Z) is an L'-integrator. There exists a r.cll. increasing process A = A" [Z]
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such that
T]

F(Zr) — F(%) = f Fi(Z_)dZ* + A}  as.

©

for all as. finite stopping times T. A is the sum AT = CF + J¥ of a continuous increas-
ing process C* = C*[Z] and an increasing pure jump process J* = J*[ Z] which is given
by

JE=Y,_ _ (F(Z) — F(Z) - FulZ-)(Z% - Z3)},

a.s. absolutely convergent sum of positive terms. For any a.s. finite time T
ATZT1 = (AT[Z)7,  CT[Z"1=(CT[Z)", etc.

Proor. The proof rests on the simple observation that F(Z,) — F(Z,) —
Fo.(Z,)(Z% — Z1) = 0 for any two points Z1, Z, € D, a consequence of the convexity. Let
v:0=S8p=<8; =< ... =Sy = T be any partition of (0, T'] and set

AT = F(Zr) — F(Z) — YL Fo(Zs_ (28 — Z5,_))
=YX (F(Zs) - F(Zs._,) — Fa(Zs_)(Z8, — Z5,.)),

a positive random variable. The assumption on Z has the effect that the maximal function
(F2(Z_)) ¢ is finite a.s., so that the 1.cr.l. process’ Fi, (Z_)-(0, T] is dZ-integrable (4.4).
By (4.5), the sums on the right of the first equality converge in L° to[? F, (Z_) dZ as v is
refined. Hence YA% converges in L° to AF = F(Zy) — F(Zy) — (F,(Z_) * Z*)7. From the
second equality above it is seen that the r.c.Ll. process A so defined (2.7) is increasing.
Writing dA” = dF (Z) + F,(Z-) dZ°, the jump part of A7 is identified as stated using 4.3.
The last statement is obvious.

5.1 REMARK. . The theorem stays if F is, instead, a difference of convex functions of
class C', except that the processes A, C, J are now of finite variation, with the expression
for J¥ converging absolutely.

5.2 THE SQUARE FUNCTIONS. Particularly important is the simple case that d = 2 and
that F(y, z) = y-z = ((y + 2)% — (* + 2?))/2. For any two L’integrators Y and Z one
defines the brackets

[Y;Z]:=AF[Y,Z] and (Y;Z}:=CF[Y,Z]
and computes the difference
[Y; ZY = JF = Yozs=t A Y-AZ.
Let Y = Z. The increasing process
S[Z]):=[Z; Z]"*

is termed the square function of Z. It has the value Sr[Z] at T. Of equal interest is the
continuous square function

o[Z] = (Z; Z}'*
It is well to keep in mind that these brackets are defined by the equations
YZ=Y_«Z+Z_xY+[Y;Z]; [Y; Z1r = {Y; Z}1 + Yoss=7 A Y-AZ.

The importance of the square functions for martingale theory and stochastic integration
is well illuminated in, e.g., [KW], [BDG], [B3], [G2], and [M5]. Meyer’s definition reads
differently from ours; but its equivalence with ours is implicit in [M5]. The proof of
Theorem 5.1, with F(z) = 2%, exhibits Sr[Z] as lim(}(Zs, —Zs,_, )*)*/* An appeal to Fatou’s
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lemma and (2.2) gives the following important quantitative information. (As usual, the
case 1 = p is well known, e.g., [ Y1], while the case 0 < p < 1 seems new, inasmuch as the
v”[Z] have not been considered before in this range of p’s.)

5.3 PROPOSITION. There are constants C,, depending only on p, 0 < p < o, such that
for any stopping time T

(5.3) lorlZ]llr < | Sr[Z] |lzr = Cv#(Z].

5.4. Suppose now that both Y and Z are local L%integrators. Then, by 5.3, so are
S[Y] and S[Z]. The first inequality of the proposition below yields upon integration
E [T1dlY; Z]| = E(S7[Y]-S7[Z]) < | SrL Y12 | Sr[Z] |22, so that [Y; Z] is a local

L'-integrator: when T reduces both Y and Z to global L%-integrators, the expression is
finite by 5.3. As such, it has a Doob decomposition

[Y; Z]1=[Y; Z]” +(Y; 2),

the oblique bracket being defined as ([Y; Z]). For Y = Z, one obtains the previsible
square function

s[Z]1=1(Z; Z)"2

PropPosITION. (Inequalities of Kunita-Watanabe [KW1]). For any two L°-integrators
Y, Z, any two Z., X Borel ([0, ®))-measurable processes U, V, and any stopping time T,

T T 1/2 T 172
f UvV|dlY, Z]| = (f U%d[Y; Y]) (f V[ Z, Z]) a.s.,
(; OT 172 ’ T 1/2
f UVld{Y;Z}ls(f U%d{Y; Y}) . (f Wd{Z;Z}) a.s.;
0 0 0

T T 1/2 T 1/2
and fUV|d(Y;Z)|S(f Uzd(Y;Y)) (J V2-d(Z,Z))

when Y, Z are local L*-integrators.

ProOOF. [M5]. Abbreviate [Y; Z]5 = [Y; Z]r — [ Y; Z1s. Expressing the fact that the
polynomial p(A) = [Y + AZ; Y + AZ]! is positive for any two rational instances s, ¢, yields

[Y,Z]i = ([Y; YIO)VA(Z; 212

For U = Yu,- (¢, t.+1] and V = Yuv;- (¢4, tiv1] with w;, v; € %, summation and Schwarz’
inequality yield the first inequality for these special U, V. But then these generate %, x
Borel[0, «), so the first inequality holds in general by DCT. The other two inequalities are
proved the same way.

CoroLLARY. S[Y + Z] = S[Y] + S[Z] and similarly for s and ¢. Also, for 1/r =
1/p+1/q

= [|Sr[Y]|leell SrLZ] e

L

J |d[Y; Z]|

and similarly for s and o.

In preparation of It6’s formula, we establish a technical result;

5.5 LEMMA. Let T be an a.s. finite time and X a l.cr.l. adapted process such that
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| X|% < 0 a.s. Then

T
(5.5.1) J’ Xd[Y; Z] =lim ¥ Xs, , (Ys, — Ys,_)(Zs, — Zs,_,),
0
T
(56.5.2) f Xd{Y;Z} =lim}i-0 Xs,_, (Y-s,— Ys_ ) (Z_s, — Zs,_,).
)
The limits exist in L° and are taken as the random partition y: 0= S; = S; < ... <5,
= T of [0, T] is refined. The convention Xs, = Xo, Ys, = Yo =2Zs, =Z, =0

is used.

ProoF. Note that the integrals on the left exist (4.4). Polarization reduces the situation
to the case Y = Z. As d(Z%) = —2Z_dZ + d[Z, Z], 4.5 yields

T T
j Xd[Z,Z]=j X(d(Z?) — 2Z_ dZ)
0

0

=1lim ¥ Xs_, (Z% — Z%_, — 2Zs_,(Zs,— Zs,_,))
=lim Y Xs,_, (Zs, — Zs,_,)~.
This proves (5.5.1). The proof of (5.5.2) is more complicated. Write
S Xs,_, » (Zs,— Zs,_ ) =Y. (Xs,_, + Ts._i<sss, (02)*) + Yi Xs_(Z_s, — Zs_,)*
+ 2% Xs,_,+(Z_s, — Zs,_WZs,— Z-s))
=Y {Xs,_, » Ts,_,<s<s, (8:2)%}
=I+II+1III+IV.

The first sum converges to [§ Xd[Z, Z]’ by 4.5. The second sum is the sum in question, so
it is left to be shown that IIT and IV converge to zero in L° as the partition is refined. This
is easily seen for IV: let T', T%, - - -, be stopping times such that all the jumps of Z before
time T occur on the union of their graphs. As [Z, Z]4 =¥ (Ar, Z)* < » a.s., there is an N

such that /

(*) o (XF + X#).Y ((AZ): s # Th, ..., s# Tn}) <e.

We may assume that yo: 0 < Ty =< T, = ... = Ty < T. For any partition y refining vo,
po(IV) < €. The remaining sum III can be estimated with Schwartz’ inequality by
172 1/2
|III| = 2(2 {X.zgl_l (Z-s, — Zsl_l)zi S; e ‘Yo}) (Z {(Zs, — Z-s‘)zi NS ‘Yo})
1/2

1/2
+ 2(2 (Z_s,— Zs,, )“’) (z ((Zs,— Z_s): Si & W}) = III, + IIL,.

The first factor of III3 is dominated by 4([Z, Z]r + ¥, (Zs, — Zs_,)*) and so stays bounded
in L° (2.2). The second factor goes to zero as sufficiently many of the T, are included in
Yo, by (*). Say T, ..., Tn are needed to make po(IIl;) < e. The second factor of III; is
dominated by ([Z, Z]%) < Sr[Z]. Its first factor tends to zero if o is refined so that Z_g,
— Zs, — 0. This can be done since Z has no oscillatory discontinuities (2.5), e.g.,
by insisting that if S;_; € yo then S; < inf{¢ = S;_; |Z, —Zs_, | < 8} and letting § | 0.
The proof is finished. It is worth noting that III — 0, which reads after polarization:

5.6 COROLLARY. lim, Y (Y_s —Ys,_,)(Zs,—Z-s)=0in L°
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5.7 CoROLLARY. For any as finite time T,
671 [Y,Z2]"=[Y, 2", (Y, Z}"=(Y,Z"}, and (Y;Z)"=(Y,Z");
and for any bounded previsible process X,

(6.72) [Y,X*xZ]=X+[Y,Z],{Y, X Z)}
=X«(Y,Z}, and (Y,X+Z)=X+(Y,Z).

Proor. (5.7.1) follows from 5.1 and is identical' with (5.7.2) when X is the stochastic
interval [0, T']. Linearity and the usual monotone class argment yield (5.7.2) in general.

5.8 THEOREM. (It¢’s formula). Let D C R be open and convex, F: D — R of class C?,
andZ=(Z',...,Z%) a vector of L"-integrators with values in D such that the paths of Z
and Z_ stay in D at all times. Then F(Z) is an L°-integrator, and for any a.s. finite time
T
T . T .
F(Z.)dZ* + JE + % J’ Fo(Z_) d{Z°, Z*},

0

F(Zr) = F(Z) +J’

0

where 5 = JE[Z] = Sozs=r (AsF(Z) — Fu(Z_,)AZ°%), the sum converging a.s. absolutely.

Proor. Let r, | 0, B, the ball of radius 7. > 0 and center zero, and let D, be an
increasing sequence of relatively compact open convex sets with union D such that D, +
B, C D,+1. On the compact set D,, F is the difference of two convex functions of class C?
(merely subtract c-Yx?% with ¢ > 0 suitably large). The idea is to establish the theorem
with D and Z replaced by D, and Z" = Z.[0, T,), respectively, where T, = inf{# Z, € D, }.
Noting that Z" = Z up to and excluding time T, and that 7, 1 © by assumption, the
formula will follow for all times T' (4.2). In other words, we may assume that F is C? and
convex in a neighborhood D + B, of D, D bounded. Now, for any partition y: 0 < Sy < S;

< .o

S (F(Zs) — F(Zs, ) — Fu(Zs, | )(28 — Z%,_.))
— Y (F(Zs) — F(Z-s) — Fa(Z-s)(Z8 — Z°5))
= Y (FulZs) — Fiu(Zs, )28 — Z%)
+ 3 (F(Z-s) — F(Zs,.)) — FaulZs,_)(Z%, — Z5_)).

The left-hand side converges to p’;[Z ] as vy is refined. Assume for the moment that F'is of
class C°. Then F%, € C? and F4(Z) is an L’-integrator (5.1). The first sum on the right then
converges to zero in L° (5.6). The second sum on the right can be written as

% Y, Fin(Zs, V2%, — Z8,_)(Zbs, — Z8,_) + Y 0(Z_s, — Zs,_,)*

i

and converges to % [§ Fu,(Z_)d{Z% Z*} by (5.5.2). To get rid of the assumption that F
belong to the class C? note that every convex F € C*(D + B.) can be approximated
uniformly on the compact set D, together with its first and second derivatives, by smooth
convex functions. Merely convolve F with a positive smooth approximate identity having
support in B.. Itd’s formula persists in the limit by the DCT.

5.9. The non-classical term % [ F”d{,} in It6’s formula deserves some attention.
Suppose Z is increasing. Then it is the sum Z = Z° + Z/ of a continuous r.c. process and a
process constant between jumps. By 5.5, {Z, Z} = [Z%, Z°] =0, so that [Z, Z], = [Z/, Z/],
=Y {(AsZ)*: 0 < s < t}. Taking differences shows that the same observation applies to
processes Z of finite variation. We shall see later that every L’integrator Z is the sum
Z = M + V of a local martingale M and a process V of finite variation, so that {Z, Z} =
{M, M}. Furthermore, M has a decomposition M = M° + M/ into a continuous local
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martingale M° and a r.c. martingale M~ that has the same jumps as M and {M’, M’} = 0.
So (Z,Z} = {M°, M°} owes its existence to the ‘continuous martingale part of Z’.

5.10. Itis worth noting that the very definition of [ Z, V] contains the classical formula
for integration by parts: When V is of finite variation then {Z, V} = 0 by 5.4 and [Z, V]
=[Z, V]’ = AZ * V. Hence

ZV=2Vo+Z+«V+V_=x2Z.

6. Local time. The results of this section will not be used later on, except for the
information that the L”-integrators form a vector lattice. Of course, this fact can be derived
as well from 2.6 with a small effort. The section is based on the little smoothing trick in the
proof of It6’s formula 5.8. It turns out that, in dimension d = 1°, it can be used to more
general effect. We follow Meyer [M5].

Consider a convex function F on the line. It is necessarily continuous, differentiable at
all but countably many points, and is the indefinite integral of a unique left continuous
function £ Let e, be a positive smooth approximate identity with support in [0, 1/x]
and [ e,(x) dx = 1, and let F;, f, = F, be the convolution of F, f with e,: F.(x) = [
F(x — y)en(y) dy etc. Note that f, 1 f pointwise, with sup,| f»(x) | bounded on each compact
interval.

Consider the equation

T
Fu(Zr) — Fu(Z) = f f(Z_)dZ + A%
0

of (5.1), T a.s. finite. As n — oo, fgfn(Z_) dZ converges to fgf(Z_) dZ by the DCT. Hence
T
F(Zr) — F(Z) =f f(Z_) dZ + A¥,

0

where A" = AF[Z] is an increasing process, as the limit of such (cf. 5.1). Note now that A ¥
depends only on the measure y = F”: it will not change if an affine function is added to F.
It is therefore justified to rename A" by A*. Taking differences of convex functions and
identifying jumps as in 5.1 yields:

6.1 PROPOSITION. Let Z be an L’-integrator, and let i be a signed measure of finite—
but not necessarily totally finite—variation on the line. There exists a r.c.ll. process A*
= A*[Z] of finite variation such that

T
F(Zr) — F(Z) =J' f(Z-) dZ + A
0

for any left-continuous distribution function f of u, any indefinite integral F of f, and any
a.s. finite time T. A" is the sum of a r.c.1l. pure jump process J* = J*[Z] of finite varia-
tion given by

J’tL = ZOssst {AsF(Z) - f(Z—s)AsZ}y

the sum converging a.s. absolutely, and a continuous process C* = C*[Z] of finite
variation, which is termed the local time of Z at p. When p. is positive, A, J, and C are
increasing. We have Ay = Jy, Co = 0, and the maps u — J*, u — C* are linear and

® This restriction is due to the lack of the author’s knowledge about the Choquet theory of the
convex cone of convex functions on R, d > 1. It is probably also the wrong cone to consider.

S The convention to consider left-continuous cumulative distribution functions is in accordance
with [IM]. cf. also Yor [ Y3].
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isotone. For any a.s. finite time T,
A*[ZT]1=(A*[Z]DT and CH[Z7]=(C*[Z])T"
If n is Lebesgue measure \ then
ANZ1=12,2), JDZ]=Yo==lDZ):, C =(Z,Z}.

Suppose pn is a sequence of measures such that u. (g) — p(g) for every bounded right-
continuous function of compact support. Then

At — A® Jtn = JH, CH — C*

uniformly on every compact interval, a.s.

Proor. Only the very last statement is not obvious. Choose the l.c. distribution
functions f, f, of p, . and their integrals F, F, to vanish at zero. Then f, — f pointwise and
F, — F uniformly on every compact interval. By the uniform boundedness principle
sup-| fn(2) | = sup [Z. |dun | = g(2) < =, so that sup|f.(Z-) | < = a.s. for any a.s. finite time
T (2.5). By 44, 4.1, and the DCT, A* — A* a.s. uniformly on [0, T']. From this, the
convergence of J* and C* follows immediately.

6.2 PROPOSITION. For any locally bounded Borel function g let gu denote the measure
with density g and base p. Then

C#[Z])=g(Z_) = C'[Z].
Proor. When g is continuous and p = A then this is just It6’s formula. Thus

T
GEM =f g(Z_)dCc™  as.
0

for g, h continuous and T a.s. finite. Now there is a sequence 4, of continuous functions
such that 4,A — p in the sense of proposition 6.1; for example if p = 0 set &, = d(u * e,)/
d\. Thus

T
(*) Cc% =f g(Z_)dC* as.
0

if g is continuous. A monotone class argument finishes the proof: if g, satisfies (+) and, say,
increases to g then g.u — gu in the sense of 6.1, and the DCT shows that g satisfies (+).
Taking ' g = B and observing that dC does not charge the countable set [Z Z_] yields

6.3 COROLLARY. Suppose p is carried by the Borel set B. Then the random measure
dC*[Z] is carried by the set [Z € B] N [Z- € B}, a.s.

6.4 CoroLLARY. When p is Dirac measure €. we write C* for C*; dC* is carried by
[Z = Z_ = x] and does not charge the interior of that set, a.s.

PrOOF. Let S be the nth time that Z equals x, T = inf (¢ > S, Z, % x}. Then Z = x on
(S, T), and due to the local nature of the stochastic integral (4.2), f(Z_) * Z is constant on
that interval. So is clearly F'(Z), hence the difference A* and its continuous part C*.

The process L*[Z] = 2C*[Z] is called the local time of Z at x. As 2(Z — x) \v 0 and

| Z — x| differ by an affine function, L* is given by

t
|Z,—x|=|Z,—0|+2j [Z- > x] dZ + 2J3[Z] + Li.
[1)

6.5 PROPOSITION. For any as. finite time T, the maps x — (A%), x = (J%), x —
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(C%) from R to L° are Borel measurable, and

A%EJ(A?)‘u (dx), J’%Ef (J7)p (dx), C“TEJ (C?) p (dx).

ProoF. By linearity, it suffices to assume that p is positive and carried by a bounded
interval (a, b). For any such v let f*, F* denote that l.c. distribution function and its
indefinite integral which vanish at @ — 1. Then

f(z) = f f(z)v (dx) and F’(z) = f Fev (dx).

The theorem of Fubini applied to u and counting measure yields

Jhr = ZOSSST {F"(Zs) - FM(Z—S) - fF(Z—s)(Zs - Z—S)}

- f 205357‘ {(F<(Zs) — -- -} 14 (dx) = f Jrp (dx) a.s.

It suffices therefore to prove the integral decomposition for A4%. Consider the equation
T
(*) Feen(Zr) — Fon(Zo) — f feen(Z-) dZ = AF .

(]

Since f<** — % and F*"* — F%"* uniformly as x — y, x — A%"" is a continuous map
from [a, b] to L°. Now

T T
f f f<(Z-) dZ p(dx) = f e(Z-) dZ.
0 0

This is evident if u is discrete and follows in general by approximating f*** uniformly by
", v discrete. Integrating (*) now yields

Agen = J' Aoy (dx),

and taking the limit as in 6.1 results in

Ay = fA’%u (dx).

6.6 Proposition. The LP-integrators form a vector lattice under pointwise operations.

Proor. TheformulaeYVvVZ=Y+0Vv(Z—-Y)andYAZ=Y+Z—Y v Zshow that
it suffices to prove that 0 v Z is an L-integrator when Z is. Now 0 vV Z =0 VvV Z; +
[Z->0] * Z + A~. Clearly [Z_ > 0] * Z is an L"-integrator. Thus|Af||.» < o for all ¢, and
the increasing process is an L”-integrator (3.1). This exhibits 0 v Z as the sum of three L”-
integrators.

7. Structure of LP-integrators. We shall now show, as promised earlier, that an
L’ integrator Z is a semimartingale M + V. The decomposition Z = M + V is, of course,
not unique. The question arises whether the local martingale M and the process of finite
variation V can be chosen to be L?-integrators when Z is one, p > 0. This and the problem
of how to characterize the L”-integrators, p > 0, amongst the L-integrators go hand-in-
hand with the problem of finding a manageable replacement for the unwieldy upper gauge
G?. For p = 1 there are some easy, well known [Y1, 4] answers:

7.1 THEOREM. Let_Z be an L*-integrator, 1 < p < o, and Z = Z + (Z) its Doob
decomposition. Then Z and (Z) are LP-integrators; in fact, there exist constants C,
depending on p alone such that, for any stopping time T,

(7.1) v4lZ] = CoyhIZ] and v41(Z)]= GlZ).
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Proor. Note first that the measure mz = EdZ is o-additive and of finite variation, so
that Z has, indeed, a Doob decomposition (3.4 or 3.9.4). The jump of Z at zero is in ¥*, so
we may subtract it and assume that Z, = 0. For p = 1, there is nothing to prove (3.4).
Assume then that p > 1, and let M be a bounded r.c. martingale with || Mz ||z, < 1. Suppose
for the moment that Z is bounded on [0, 7). The first two processes on the right of

Z™T =Z_+MT + M_+Z" + M_x(Z)" + [Z, M]"

are then uniformly integrable martingales vanishing at zero, and the penultimate process
has expectation at T' E (M7(Z)r), since (Z) is previsible (3.3.1). Hence

EMr(Z)r) = E|[M, Z]r|+ E|M1Zr| < ||Se[M] >, | St[Z] ||z~
+ | Mr||ze, || Z2 |leo
= (CHMYIIMICED + 1)yo(Z])
= (CRICHICHY + 1)Wy4[Z] = Cp-yEIZ].

Hence || (Z) 7| » = Cpy%[Z]. The restriction on T can now be lifted by observing that both
sides increase with 7. Now let X be a previsible process of absolute value one such that
|d(Z)| = Xd(Z) (3.3.2). Then X+Z = X+Z + X+(Z), and the same estimate applies and
yields )

Y2 ] = v7X(2)] = |(X*Z) 7 |lo» = Gy [X+Z] = Gy [Z].

The other inequality follows by subtraction.

Let 7” denote the vector lattice of L”-integrators, equipped with the distance functions
dist(Y, Z) = y4,[Y — Z], and .#” the linear subspace consisting of the local martingales in
J*. The proposition says that .#” is a complemented subspace of 77, if 1 < p < ». For
0 =p < 1itis not even clear whether .#” is closed. Let us also introduce the spaces 7%,
M of processes, resp local martingales, that are global L*-integrators: v [Z] < o, and
the spaces J7%,., 44, of local L”-integrators, and local martingales in 2, respectively.
Again, 4% C 7£ and 4*,, C T7%,, are complemented subspaces, if 1 < p < c.

When Z has a Doob decomposition Z = Z + (Z) into two L*-integrators, the task of
finding a manageable replacement for G is reduced to finding one for GZ, since G (X)
=|f|X||d(Z)||r is reasonable enough (3.3). Again, the case p = 1 is simple and known
[G2, M6, Y1, 4 and 5]:

7.2 THEOREM. Let M be a local martingale. In order that M be an LP-integrator it
is necessary and sufficient that S[M] be one when 1 < p < ; when 0 < p < 2 a sufficient
condition is that M be a local L*-integrator and s[M] an LP-integrator. In fact’, there
are constants C,, ¢, depending on p alone such that for any stopping time T

(7.2a) Co'[S2IM] |l < Y2 [M] < C, || Se[M] s, 1=<p<oo,
(7.2b) CoU|SrM] || < Y2 [M] < cp||s2[M][s, O<p=2.

Consequently (2.7), for X previsible

y

1/2
(7.28) GC;'GY(X)=G¥(X) = C,GM(X) with Gi,”(X)=H ( J X*d[M, M])

LP

1=p<ow

"These inequalities are well known, albeit in different forms. For p = 2 they make Meyer's
integration theory work [M5]. For 1 < p < =, they are the reason that Meyer’s || - l|z,-norms [M6] are
relevant and useful. cf. also [Y1].
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/2
(Jr X% (M, M))

Proor. The barred inequalities follow from the unbarred ones and (2.7). The ine-
qualities on the left are but a repetition of 5.3. The second inequality of (a) is easy if p>
1: Let X € #7 with | X| = 1 and let N be a bounded martingale with || Nz||.» < 1. Then, by
54,

126)  GMX) = (c,,

PAL
) if O<p=2.
LP

T
E((X*M)r-Nr) = E[X + M, N]r < EJ |d[M, N1|

0
= | SrIM] I+ | SzINTl|es = [| ST[M] ||oCS® CE? || N ||
= G, ||Sr[M]||ze.

For p = 1, the inequality in question follows similarly from Fefferman’s inequality

T
(7.2¢) E f |d[M, N]|< C||Se[M]|lz:- | N7 llamo
0

where || N [|smo = inf{c: E ((No — N-s)*| #s) < ¢* for all stopping times S} < 2|| Na.||.-.. For
completeness’ sake we furnish a proof of (c), following Meyer [M5]. Write S = S[M], so
that S* = [M, M]. By Kunita-Watanabe (5.4),

T T
f |d[M, N]| < 22 f (S- + S)2SV2| d[M, N]|
0 0

T 172 T 1/2
= 21/2<f S-+ S)_ld(Sz)) . (f Sd[N, N]) .
0 0

Now S§?=2S_ * S +[S, S]= (S- + S)+S, or (S- + S)"'d(S? = dS. Concerning the second
factor, integration by parts (5.10) gives [ [N, N]r dS = [N, N1zSr = [T [N, N]- dS +
foT Sd[N, N1J, so that [ Sd[N, N] = [T (N, N]r — [N, N]-) dS. Let T, = inf{s: S, > ¢}.

Using the classical formula
T Sy
f XdS = f Xr, dt,
0 0

which one checks for intervals X = [0, U] first and extends to all X by a monotone class
argument, and using Holder’s inequality we obtain

T
E f |d[M, N1|=< 2VX(ESr)"? ( f j [0=¢=S7I(N, Nlr — [N, N1 )r, dP dt)2.
0

Now [0 = ¢ = Sr] € %1, and taking conditional expectations with respect to Sr, we see
that the double integral on the right is majorized by | N7 ||%um0-[ [ [0 < ¢t < Sr] dtdP =
| N”||sso- ESr. Hence (c) follows, with C =2

We turn to the one remaining inequality, the one on the right in (b). Note first that
s[M] exists, since M is assumed to be a local L*integrator (5.4). Suppose then that
0<p=2ando=|sr[M]]|.r < ®». We may assume that sr[M] is bounded and that both
[M, M]" — (M, M)" and M7 are global L'-integrators. This restriction can be removed
later by the observation that arbitrarily large* such times exist (3.9.3), and that both sides
of the inequality depend isotonically on 7. Now set s = s[M 7] and M = s%*2/2«M7. Then
(M, M) = (M, M)*®2(M, M)7 (5.7.2). Integration by parts gives (M, M)*? =
(M, M)(p—2)/2. (MM) = (M, M)(p—2)/2* (M, M) + (M, M)-* (M, M)(p—2)/2 > (M, M)(p—2)/2*
(M, M) = (M, M). Thus (M, M)r < (M, M)?* and E[M, M]r < o”, and so y¥[M] =<
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(C5™*)20P%, Now My = (s® P« M) = sF P2 My — (M_xs*P/%)r < 2M%s¥P/%. With
Holder’s inequality and Doob’s maximal inf:quality this results in E| Mr|? =
4”EM¥"S‘;2_")/2 < 47 "M*T"i‘ c,17(2—17)/2 < 8” " MT ||i20p(2—p)/2 < SP(Y‘A’T[M])pop&.—p)ﬂ <
82(C3"*)P/?.gP = c.o”. The same estimate obtains for X*M, whenever X € #r with | X|
= 1, and so, finally, y/.[M] < c,-0, as desired. The argument is adapted from Garsia [G2].

Almost every result on the structure of J7, .47 and the existence of solutions to
stochastic differential equations, topics that concern us during the remainder of the paper,
is a consequence of the following deep and powerful lemma.

7.3 MAIN LEMMA. Let Z = (Z%, ..., Z%) be a vector of right continuous adapted
processes with left limits, and let T be a stopping time such that dZ° Rr — LP(P) is
bounded for 1 = a < d. For 0 < p this reads

Y2[Z2% P] <, l<a=d.

If 0 < p < q < 2 there is a measure P’ equivalent to P and with bounded derivative g =
dP’/dP such that the stopped processes Z°" are global LY(P’)-integrators:
YHZ* P'] < oo, l=a=d.

In the range 0 < p < q < 2, there exist constants Cpqq depending only on p, q, d such that,
for some choice of P’, the following inequalities hold:

(7.3a) Y9[Z% P’'] < Cpga-v%[Z%; P], l=a=sd
(7.3b) 0=<g=<Cuya; andwith g =g '=dP/dP’

(7.3¢) &’ ey = Cpgas 1/r+1/q=1/p,
(7.3d) &’ ey = Cpgas. r/p=q/(q —p),
(7.3e) 1 lerey = Cogall fllLeer, | measurable.

Proor. There is a deep factorization theorem by Maurey [M1] and Rosenthal [R1]
stating the following. Let » be a measure, 0 = p < ¢ = 2, and U: L*(v) — L?(P) a
continuous linear map; then there is a function ® = 0 in L'(P), 1/r + 1/qg = 1/p, and a
continuous linear map V: L*(v) — L9(P) such that U factorizes as

UX) =2-V(X), X € dom(U) = L*(»).

Moreover, if p > 0 there are constants m,, depending on p and g alone such that, for some
choice of @, V,

(@ llzrer-ll Viig < mpg | Ul

Here | U/, is the modulus of continuity of U, || U||, = sup{ || U(X) ||l»@): || X |laom@) = 1},
and || V||, similar.

A close look at the proof of this theorem reveals that it uses only the structure of the
finite-dimensional subspaces of the domain of U, L™(») in the quote above, and that it
actually applies as well when the domain of U is a space C(K), K compact. To apply it in
the situation at hand, let K denote the closure of the stochastic interval [0, T in the
compactification £ of B (2.4). The vector lattice £ r of functions on K that is generated by
the extensions via uniform continuity of the constants and the functions in % 1 is dense in
C(K), due to the theorem of Stone-Weierstrass. The continuous linear map X — [ XdZ*
from 2 ¢ to LP(P) can be extended to a continuous linear map U*% C(K) — L?(P), and to
this we apply the theorem. We restrict the map V* C(K) — L7P) provided by the
theorem to % r and arrive at the following situation: There are continuous linear maps V*
A1 — LYP) and functions 0 = ®* € L"(P), 1 < a < d, such that

" P “Lr(p) =1 and dZ%X) =®*. V*X), XERT
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and
| Vello = mpqv5[Z° P] if p>0.

Now set g =c(1 + ®' + ... + ®¥)7% where the constant c is chosen so that P’ = g-Pis a
probability measure. Then if X € £ with | X| =1

‘ f dZ4(X)
(*)

dP' =c J' | (@%)~".dZ*(X) | *dP

= VU | fp = emiav7[2% PD?

and so y%[Z“ P’] < ». The case p = 0 is established, and we may turn to the inequalities
(7.3) for 0 < p < g =< 2. The first order of business is to estimate the constant c. Set G =
1+ +...4+ D% so that

cl= J' GdP = 1.
Let s > 0 be such that P[G = s] = % and P[G =< s] = %. Then

cl= f GdP = s/2,
(G=s)

and
s72 < J' G™dP < f Q1+® +... +0H)dP = (d+1)2% s= ((d + 1)2%+) 79",
[G=s]

Hence c is majorized by a universal constant depending only on p, g, d. This proves (b).
Inequality (a) follows from this and (). As g’ = g7' = G, [ g"7%dP =< (d + 1)2% and (c)
follows, and that in turn implies (d):

j g dP’ = j g""7g’™ dP = j g"7dP since r/p—1=r/q.

Finally, (e) follows from this and Holder’s inequality with conjugate exponents ¢/p and

r/p:
p/q p/r
ff” dP = f ffg’ dP’ < <J’ I dP') <J' g"/"dP’) .

Helpful as this lemma is, in reducing the L”-theory to the L*-theory—which is in general
much easier to handle—, it leaves room for improvement. For one thing, one would like to
find a measure P’ that works for all times 7. Also, one might expect estimates similar to
(7.3a-e), of P’ and y4[Z; P’] in terms of the size of Z as an L°(P)-integrator.

No numerical expression of this size has been given so far. -We correct this omission
now. First, for any f € L°(P) and 0 < A < 1 set

A fl:=inf{c:P[|f]|>c]=A}.
This is nothing but the nonincreasing rearrangement f*(A) of f. Next set
YoNZ] :=sup{j;\|:J‘XdZ:l:X€9?T,|X|§1}, 0<A<l1.
The answer to the second question raised above is in the next statement. Its proof follows

the lines of proof of (7.3a-e), making use of the quantitative version of the Maurey-
Rosenthal factorization forp =0and 0 < ¢ = 2.
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7.3.1 COMPLEMENT. Let Z be an L°(P)-integrator and 0 < q = 2. For any stopping
time T there exists a measure P’ equivalent with P such that dP’/dP € L™,
¥4[Z; P') = infi (1 = N7V(1 + By 3V[Z P)),

and

MNdP/dP'] = (1 + Bw‘;*i[Z; P))? for0<A<1.
The constants B) depend on A only. A similar statement holds for vectors of L °-integrators.

Concerning the first question raised above, there is a positive answer as well. It is due
to Dellacherie (oral communication; see also [D4]).

7.3.2 COMPLEMENT. Let Z be an L°(P)-integrator and 0 < g = 2. There is a measure
P’ equivalent with P such that Z is an L?(P’)-integrator.

Proor. For each integer instant n let P, = g,P be such that y4[Z; P,] < . Next find
a, > 0 such that ¥, P[g;" > a,] < « and then ¢, > 0 so that ¥ a.c, < . By the Borel-
Cantelli lemma, ¥, c,g:" < ® a.s. Set g = ¢(¥ c.g.")"", where c is chosen so that P’ = gP
is a probability. Evidently, P’ meets the description.

Note that this argument destroys the control over the size of Z as an L?(P’)-integrator
offered by 7.3 and 7.3.1. Here is a first application of the lemma showing how it can be
used to reduce the L”-theory to the L-theory. Again, only the case 0 < p < 1 is new (cf.
e.g., [E1]).

7.4 THEOREM. Let Z be an L*-integrator, 0 < p < . Then so is its maximal process
Z*. In fact, there are constants C, depending on p alone such that
(7.4) 1Z7 o = Cp-v5[Z]

for any time T and any p € (0, »).
(For p = 1 this is due to Meyer [M6].)

PRoOF. For p = 0 this follows from 2.4, and 3.1. For p > 1, it is still easy: In the Doob
decomposition Z = Z + (Z), both components are L?-integrators (7.1). From Doob’s
maximal inequality,

1Z%le» < p/ (P — V) || Zr|ler < p/(p — 1)v2[Z] < p/(p — 1)-C{ Y2 [Z].

Also, by 3.3, [ (Z) || > < || [T1d(Z) |l o = Y5L[ | d(Z) |1 = ¥2[(Z)] = CSPy2IZ].
Now consider the remaining case 0 < p < 1. We choose ¢ = 2 and d = 1, and let P’ be the
measure provided by Lemma 7.3. Then

"Z?'"Lp(m = C,‘,é‘?e)"Z?'"Lz(p')
=C-C{*Yi[Z P = C-Cv2[Z; P).
7.5. Note that this together with previous results yields the martingale inequalities of
Burkholder-Davis-Gundy [BDG] and Davis [D1]:
(7.5a) IIM‘T""LP = Cp " ST[M] "Lp, 0< p= 2,
with C, = C/*CJ™. And with C, = coaefe
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(7.5b) |M%||er = Cp || Sr[M]|| v, l=sp<oo.
The inequality (b) has the converse
(7.5¢) | Sz[M]|zr = cp || MF||2e, l1=p<oo.

Forp > 1, ¢, = C$PCH® will do. The case p = 1 is one of Davis’ inequalities [D1]. A proof
of (7.5¢) at p = 1 can be found in [M5, page 105]. See also Garsia [G2].

The next application of Lemma 7.3 shows the long-promised identity between L°-
integrators and semimartingales. For a direct proof see [M5].

7.6 THEOREM. A process Z is an L’ integrator if and only if it is a semimartingale;
in fact, then there exists a decomposition Z = M + V where V is right continuous of finite
variation with V, = 0 and the local martingale M a local L*-integrator.

ProoF. Since we know that a semimartingale is an L-integrator (3.9.1), only the
converse needs to be shown. Let T be any a.s. finite stopping time, choose ¢ = 2, and let
P’ = gP be the measure provided by Lemma 7.3 (cf. 3.9.2), let ZT = M’ + V' be the Doob
decomposition of the L*(P’)-integrator Z” with respect to P’, and denote by G the r.c.
bounded P-martingale E (g | #). Clearly

M’ G=G_+M' + M'+G + [M’; G]

is a square-integrable P-martingale. Now once G- reaches zero it stays there a.s. As G.. =
g >0as., GZ" is finite at all finite times a.s. and G='+M’G exists by 4.4. Hence

M = G%(G+M') = (GZ+(M'G) — (G=-M")*G} — G=+[M’, G).

This exhibits M’ as the sum of a local L*(P)-integrator martingale and the finite variation
process —G='+[M’, G]. Hence ZT = M’ + V' is of the same description. Repeating the
process with Z replaced by Z — Z7, etc., finishes the proof.

7.7 PROBLEM. Suppose Z is an L”-integrator, 0 < p < 1. Can the decomposition Z = M
+ V be chosen so that M and V are LP-integrators?

A r.c. process V of finite variation has a unique decomposition V = V¢ + V" 4+ V7 into
a continuous process V*, a process V?" all of whose jumps occur across the graphs of
predictable stopping times, and a process V7* all of whose jumps occur at totally inaccessible
stopping times. All three processes are of finite variation, the two pure jump-processes are
right continuous and constant between consecutive jumps. The question arises whether
there is a similar decomposition for the complementary class of L’ integrators, the local
martingales. And since the decomposition Z = M + V of an L integrator is not unique, the
same question can be asked about the L’ integrators themselves. Let us begin with the
local martingales. If one wishes to end up with a unique decomposition, one evidently has
to define what is to be meant by a pure jump martingale with predictable or totally
inaccessible jumps. Since a martingale with a jump at a totally inaccessible time 7' cannot
be constant before reaching 7T, one cannot define a jump martingale as one constant
between jumps. The right definition is this

7.8 DEFINITION. A local martingale M is a pure jump local martingale if {M, M} =
0, equivalently [M, M]=[M, MY .1t is said to have purely predictable or totally inaccessible
jump times, respectively, if [M, M] does.

7.9 THEOREM. Let M be a local martingale. There exists a unique decomposition M
= M° + M’ + M’ into the sum of three local martingales: M* is continuous with M§ =
0, M*" is a local pure jump martingale with previsible jump times, and M’" is a local
pure jump martingale with totally inaccessible jump times. Furthermore, [M¢, M°] =
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{M, M}, [M”", M""] = [M, M”" and M’ is constant between jumps, and [M’*, M’"] =
[M, M)“. There exist constants C,, 0 < p < oo, depending on p alone such that for every
stopping time T

79) VoM 1= Coyh MY 4 M) < Gy M v4[M*] = Gy (M1,

PROOF. Step 1, uniqueness. Suppose M + M + M’ = M° + M’"" + M’* are two
such decompositions. Then M¢ — M® = (M’?" — M) + (M’" — M’%) = L’P" — /% The
square function of the left-hand side is continuous, while the one of the right-hand side is
constant between jumps. By 7.2, both sides vanish. Then L’”" cannot jump across any
predictable time, since L’ does not, and so is continuous, has square function zero, and
vanishes as well.

Step 2, taking care of M""". Let Sy, S, . . . be the predictable times at which M jumps,
and let X € 2 be the union of their graphs. Then M’ = X+M has square bracket
[M, M}* and is a local pure jump martingale with predictable jumps. Incidentally, the
middle inequality in (7.9) is satisfied with C, = 1. We need to worry only about the local
martingale M — M’", whose only jumps can occur at totally inaccessible times. In other
words, we may henceforth assume that the jumps of M occur at the totally inaccessible
times T, T, . . ., whose graphs do not intersect.

Step 3, the case p = 1. Let T be a stopping time with y4[M] < o, and let J, denote the
process Ar, M".[T A T,, ). It is a process of finite total variation | Arar M| and an LP-
integrator with y%[J,] =< ||Azar, M ||r». Let J, = L, + V, be its Doob decomposition.
Clearly, V, is continuous (3.3). Hence [L,, L] = [Jn, Jn] = 8umd 2, and

[E; Ln, 2; Ln]T = 2; (AT"MT)2 = [M, M]jT

If N—> o, S7[Y% L.]— 0in L” (5.3), thus Y 5-: L, exists in 7. Actually, it is a martingale
M in 4P with [M"", M"] = [M, M} and v3{M’*] < CI*CPdyE{M]. Since Y%, L,
converges uniformly (7.4), the difference M° = M —M’* has continuous paths, and the
statement follows, including the inequalities, at least up to time 7. The global decompo-
sition can be obtained using the uniqueness and the fact that 7 can be chosen arbitrarily
large.

Step 4, the case 0 < p < 1. Let T, T, be as above. Choosing ¢ = 2 and d = 1, we let P’
= gP be the measure provided by Lemma 7.3, and denote by G the r.c. P-martingale
E(g|#). Let M" = M’ + V'’ be the Doob decomposition of M” with respect to P’. Then
M’ = M’ + M"" and as in the proof of 7.6 we may write

MT = (GZ'«(M"G) — (GZ'M")*G} — G+[M", G]1 + M"" + V".

The second term is continuous, so is the sum M’ of the first and second term, and then so
is the first. It is a local P-martingale M with [M°, M= {M',M"} = (M, M} " <[M, M]".
Hence yH{M*] < C;"* || sr[M] |l =< C-C5F || Sr[M] |p2y = CCEIy5[M; P'] < C.
C3*v5[M]. We define M’" as M — M*, check the desired properties, and let T — . The
case p = 0 is simpler and is left to the reader.

PROBLEM. For 1 < p < 0, M’" is the sum in .4 of martingales that are continuous
except for one jump. Is the same true for all p > 0? For 1 < p < o, the decomposition

Z=M+ V=M +MP+M"+V+ VP4

of an L”-integrator can be made unique by requiring that the finite variation process V be
previsible with V, = 0; and then one has control over the size of the six constituents:
Y7[M*] = Cpy%[Z], etc. This is not so anymore if p < 1. However, some parts are unique:
M- is the same for all decompositions, as Step 1 in the previous proof shows, and there is
control. The sum M”" + V" = Z/ is unique, with y%[Z""] < C,y%[Z], because this
process equals X*Z, where X is the union of the graphs of the predictable times where Z
jumps. And then V° + M’ + V7" is unique, controlled in size by Z.
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7.10 THEOREM. Let 9 denote the family of Doob processes Z = Z+ (Z) such that
both Z and [ |d(Z) | are bounded. Then 2 is dense in I% for 0 =< p < © and 2 N M5 is
dense in M% for 1 < p < co.

Proor. Case 1, p > 1. To approximate Z = Z + (Z) € I%, let S announce T = inf{¢
J6]d(Z)|>n}. Asn— », S — », and Y2[(Z) — (Z)5] = G ([S, )) — 0. That is, the
component (Z) can be approximated arbitrarily closely by (Z)® € 2. To approximate Z,
we find a sequence y, of bounded functions converging in L? to Z.. The bounded r.c.
martingales Y, = E(y.| #) converge to Z in J% by 3.8.

Case 2,0 =<p < 2. Choose T'= o, d =1, g =2, and let P’ = gP be the measure provided
by Lemma 7.3, and g’ = g ' = dP/dP’. Given € > 0, let Y € 9[P'] such that y.[Z — Y; P’]
< e. Then y4[Z — Y; P] = C}}{?.e. Now Y is a global L%P)-integrator for any q < o,

because for X € #, | X| =1
2q/p p/2 2-p/2
dP/) .<J‘ g/2/(2—p) dP/)

[|[ xarsap= [1.ow avr= ([ |[ xar

= CHEY (y¥EP[Y]) < oo,
By Step 1, Y can be approximated in the stronger norm of 7 2[P] by an element of Z[P].
The triangle inequality yields the claim. -
Case 3, approximating martingales for 1 =p.If Y = Y + (Y) € 2 approximates M €
MY as close as € >0, 1 = p < oo, then y2[M — Y] = C{V e.

PrOBLEM. Is 2N .#% dense in 4% for 0 <p <1?
The next proposition extends results established previously for p, ¢ = 1 [M6, E1, Y2].

7.11 PROPOSITION. Let Z be an LP-integrator,p, q >0 and 1/r = 1/p + 1/q. Then Z
is an L’-integrator, and every left continuous process X with ||| X|%||Le < « is dZ-r-
integrable. In fact, there are constants Cp, depending on p, q alone such that, for any
stopping time T

(7.11) Y X*Z] = Cpg | X% o v [Z].
PROOF. Since y{X+*Z] = {GZ(| X|-[0, TN}V = {GHX*.[0, T}V = y7[X**Z],

we may assume that X is increasin_g. The proof will be broken into several steps.
Step 1, the caser = 1. Let Z = Z + (Z) be the Doob decomposition of Z. Then

vo[X+Z] = CY* | (JSX*d[Z, Z1)"* |ur < C|| Xr-Se[Z] |lor < C| Xr|lLo- CF¥ - C ¥4 [ Z].

Also, y7[X+(Z)] = | Xr-[§|d(Z) | |- < || X1||Lo- CS"-¥5[Z]. The two inequalities result
in (7.11).

Step 2, the case r < 2, p = 2. The second estimate above stays unchanged. The first is
replaced by

T 1/2
Y7[X * 21 = (GA(X - [0, T]))/" < CI . H ( f X% d(Z, Z))
0

LI’
o o 1/p
=c|Xr - (Z; 2)¥ v < c|| Xr||po - (f ([Z; Z])5® dP)

= c| Xzl Cyi2 | Se[Z]||er = || Xrllio - € - CF¥ CTVYE[Z]).

Step 3, the case p < 2. Note that the r.c. version Y of (X”)?? is an L’-integrator with
vy2[Y] = || X7||¥*. Let P’ = gP be the measure provided by Lemma 7.3, so that both Y7
and Z” are L*(P’)-integrators, and let Z7 = M + V be the Doob decomposition of Z” with
respect to P’. For F previsible with |F|<1,g" =g,
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1/r T r 1/r
j FXdV (J'(f X|dV|>g dP) s(j(XT-f |dV|> -g’dP')
0 0
2r/p p/2r (2-p)/2r
(o ([ e ()
(p—nr)/2r T 2 1/2
< (J'Xw/(p—ri dP) . <f<f IdVI) dP/) . (C1(;7223d)1/r
0
C

p/2q
( f (xgr)? dP') YAV P'1= C - GHLY; P/
X C§Vy%[Z; P'1< C - (CIB°)*P(v45Y, PIY/*y%4[Z, P]
= C|| Xr||zawy - Y2[Z; P).

L"(P)

< ()"

In a similar way,

T T 2r/p p/2r
f FX dM f FXdM dP’) &’ | 2re-o@
0 0

T
J FX dM
0

L2/p(P")

Now if 2r/p = 1, equivalently ¢ = p, we estimate the last expression as in Step 1 by

T 1/2
< f X2 d[M; M])

= C - || Xz - Se[M]||pznpy = C - | X¥7|88py - | Sr[M] |22y
= C - (Ci)"*" - YRY; PV - v4[Z, P]1= C - | Xr||eov7[Z, P

7.2a)
Cirip

L¥/p(P")

If, on the other hand, 2r/p < 1 then we use the estimate of Step 2: Since (2r/p)™' = 27" +
(2q/p)7,

T
J' FX dM
0

p/2r
= (f Xr - (M - M){H*P dP’)

p/2q 1/2
= (f (X9P)* dP’) . <j (MM)TdP'>

= (y#lY, P'])?9 . C{* . y5[M; P’]
= C(CSE™)*Pla(ya[Y; P))*/91CEVv4[Z; P
=C - | X7l - v7IZ].

L2/p(PY)

Adding these estimates results again in (7.11).

ProBLEM. If1/p + 1/q =1/r,is every Z € 7, the product of a Z, € 7% with a Z, €
J2? (The answer is affirmative if Z is continuous.) Is 7% the exact class of multipliers
from J% to I5? That every Y € J% is an (J%,7 %)-multiplier follows from the next
result. (For J%, 7% )-multipliers see [Y1], for p, ¢ > 1[Y2].)

7.12 COROLLARY. IfYE IJ%andZE€ TP thenY - Z€ J",1/r=1/p + 1/q; there are
constants C,, such that for any stopping time T,

(7.12) Y%[YZ] = Gy + Y‘;’[Z] - y7lY]
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Proor. Write Y . Z=YoZo+ Y-+ Z+Z_+ Y +[Y; Z)]. Then || Yo;Zo |- <v%[Z]
- YZ2[Y]. The second and third terms are controlled in a similar fashion by the last result
and 7.4. The last term is controlled by Corollary 5.4 and 5.3.

7.13 COROLLARY. IfZ is an LP-integrator and q > 1 then Z? is an LP/%-integrator, and
there are constants Cp, such that for any time T

(7.13) #1271 = G 5121,

ProoF. Write Z? = Z + qZ%"' * Z + increasing (5.1). The first term is an L*/9-
intregator. As (Z?7')% € L’V (7.4) and p~' + (p/(q —1))"' = (p/q) ", the second term
belongs to .#7/7 by 7.11. To estimate the increasing term, simply integrate.

7.14. As another application of the factorization Lemma 7.3 we show that the integral
X * Z can be evaluated pathwise when the integrand X is left continuous and has no
oscillatory discontinuities. This fact has important applications to stochastic differential
equations and Markov processes.

THEOREM. Let Z be an L'-integrator and X a r.c.Ll. process with| X |} < o« a.s. for all
t > 0. Then for almost every w € Q, (X_ * Z),(w) is, on every bounded mterval 0=ss=<t{
the uniform limit of the r.c.ll. processes

Yi(w) = X-o(w)Zo(w) + Yiz1 Xerp(w) (Zoats, (@) — Zoar(w))
where TG = 0, T%, = inf{t > T7:| X, — Xpx| = 27"}. In fact
St | Y = Y|} <o  as.forall t>0,
and if Z is an LP-integrator, 0 < p < «, then
Y YP[Y"™ = Y"]<0  and  FPuu ||| Y = Y |F|1r<®  forall t
Proor. Fix ¢ = 0. As X has no oscillatory discontinuities and | X |* < » a.s,, T — «
a.s. as i — o, Let'
X"=X_o.[0] + XXp - (T?, Tl
Then | X_ — X"| < 27" uniformly on B = € X [0, ®) and Y" = X" » Z. Now let P’ be a
measure equivalent to P and such that Z* is a global L'(P’)-integrator. Since
T GEP (XM = X7) - [0, 8]) = B GEP' (272 - [0, 8]) = 4 3, 27"Yi[Z, P'] < o,
(2.7) and (7.4) apply and show that | X_ * Z — Y"|¥ = | (X- — X") » Z*|% — 0 a.s. In fact
IZ1Y™ = Y [ ey < oo

The second statement follows from 7.3.e.

8. Stochastic differential equations. Let Z = (Z°)*"~? be a d-vector of
L °-integrators with Z, = 0 and (F3)%=}::% an e X d-matrix of functions on #°. The
problem is to find an e-vector X = (X°)*="" "¢ of L °-integrators satisfying the initial
conditions X¢ = C® € #°(Fy; P), and dX® = Y2, Fo(X, ..., X¢) dZ° In matrix notation
this is
(8.1a) X=C+FX_*Z

There is a vast literature concerning (8.1a) in the classical case that some of the
components of the driving force Z are sure and theothers Wiener processes, e.g., [Al, F1-
2, GS2, 11, M3], to name but a very few. The existence and uniqueness of solutions of
(8.1a) with general semimartingales driving was essentially settled by Doleans-Dade [D4],
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after work in this direction by Kazamaki [K1]. See also the concurrent work by Protter
[P4, 5, 7]. Emery [E1] and Protter [P7] have investigated the dependence of the solution
on C, F, and Z, and their Markoff character [P6]. Meyer [M6] and Yor [Y1, 2, 4, 5] have
added to the scope of the problem and developed the proper topologies to be used in this
context. See [DM] for a survey.

To describe these topologies, we paraphrase two recent results. (1) Suppose Z is an L°-
integrator and | C, = C|* — 0 locally in L”. Then the solutions X,,, X corresponding to
these initial conditions do the same: | X,» — X|* — 0 locally in p-mean. (This means, of
course, that | X, — X|*r — 0 in L” for arbitrarily large* stopping times T it has been
termed weak-local convergence by Protter [P7]. It is natural to consider this mode of
convergence as Z and then the X,, might have unexpected huge jumps at any time 7.) A
similar statement governs the dependence on F (1 < p; see [E1]). (2) If Z,, - Z weak-
locally in #” then X,, — X in the previous sense (1 < p; see [P2]). We shall not try to
generalize the last quoted result to 0 < p < 1, since the topology of .#” seems too strong.

The purpose of this section is to review the general theory with emphasis on, and
generalizing it to, the case 0 < p =< 2, and to add the following facts. If C,, —» C in the
previous sense then X,, — X weak-locally in .#”; and similarly for F. There are a priori
estimates on the size of the solution and the rate of convergence of the iterative method.
The latter estimate is good enough to show that the solution can actually be evaluated
pathwise. This fact has an interesting application in the theory of Markoff processes.

All the results quoted have been obtained by Picard’s iterative method. For this to
work, F has to be Lipschitz. Meyer [E1] has observed, though, that the correspondence X
— FX need not be of functional type; all that is needed is that

For every e-vector X of r.c.l.l. adapted processes FX is an e X d-matrix of

(8.1b) r.c.L.l. adapted processes;

The left-continuous version FX_ of FX depends progressively on X_; i.e.,
X7 = YT implies (FX_)T = (FY-)7 a.s., for all stopping times T}
(8.1d) |FX - FY|*<K . |X — Y| for some constant K.

Here as henceforth | X |, | FX|, etc. stand for Y5 | X®|, Yas| (FX)%|, etc. Similarly, v5[X]
=Y y7[X®]and [Z; Z] = ¥ [Z°; Z*], etc. When the system is written in the form (8.1a) it
makes sense even when the vector C is not a constant process. We agree on

(8.1c)

Z is a d-vector of L?-integrators and the components of C and FO0 are

(8.1e) L?-integrators, 0 < p, ¢ < ce.

As usual, the system (8.1) will be solved by starting with an L-integrator X°—arbitrary,
e.g., produced by a good guess—and showing that the iterates
X" =C+FX*+Z

converge to a solution X. To have a quantitative expression for the mode of convergence
it is convenient to use a notion of Emery’s [E1]: for any L’-integrator Y and stopping time
S set

Y¥:=[0,8)Y+ Y-s[S,0) and y%Z[Y]:=y[Y 5]
The r.c.l1. process Y~ is an L%integrator when Y is:
(8.1-) vIs[Y] = CovilY]
for universal constants C,. In fact, yZs[Y]"? = vyi[Y]"? + |AsY|1? = (1 +
(2C§9)0)y3[ YT,

8.2. THEOREM. Suppose p = q = 0. There is a unique solution of (8.1) in #°. It is a.s.
the uniform limit on compact intervals of the iterates X". In fact, for any as. finite
stopping time T
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(8.2a) Yo | X" — X" |$ <  as.

Moreover, when C and FO are local Li-integrators, 0 < g < o, then for arbitrarily large
stopping times T both L :=|||AZ|%7| = < » and

8.20)  yir[X — X' = (Som y2r[X™ — XP])1 Ve
=T I X' = X*r|le<», g>0.

The constant c is of the form o + BKL with a and B depending only on q, d, e; while cr
depends on q, d, e, and the product KZ.

The point of the estimate (8.2b) is this. If after running the iterative scheme for a while
the change from X" to X"*' is small when measured by ||| X"*' — X" |*1||1s, then X"*' is
close to the solution, with the deviation in #7, y27[X — X"*'], bounded by e® 7| | X"*' —
X"|%z|| Lo. Below, we shall give a bound for ¢ in terms of the size of Z in .#7.

ProoOF. We assume d = e = 1. In higher dimension the proof is practically identical, a
bit more cumbersome without offering any new insight.

(8.2a) follows easily from (8.2b): C and FO are L*(P’)-integrators for some equivalent
measure P’ (7.3.2). By (8.2b), E’ ¥ | X"*! — X" |*r < o for arbitrarily large times 7. This
clearly implies (8.2a). By 4.4 and the DCT, X := X° + Yo (X' — X") solves (8.1) and is
an L’-integrator. We defer the uniqueness.

Let us prove (8.2b) next in the case ¢ = 1. There are arbitrarily large times U so that
CY and F0V are global L%integrators and the jumps of Z are bounded on [0, U),|AZ|*y
= L = const < oo, say. It will suffice to produce stopping times 7' = U arbitrarily close to
U and satisfying (8.2b). It is thus permissible to assume that A yZ = 0, replacing Z with
Z7Y, if necessary; this will not alter the iterates on [0, U) (4.3).

To start with, let Z= N + A be a decomposition into a local L*integrator martingale
N and a process A of finite variation (7.6). With A =[4KCY*(C{* + 1)]™* set

Jo=Y {AN:s=t,|AN|>\/2} = 27'[N, N].

J is a local L'-integrator (5.3), and so N — J has a Doob decomposition N — J = M + B
(3.9.4). As B is previsible and | A(N — J) | = A/2, we have | AM | < X. We write V=A + J
+ B, so that Z =M + V, and we abbreviate: W = § |dV|. Next, we define a partition of
[0, U) by Ty = 0 and

Tpor = U A inf(t > Ty : [M, M}, >N+ [M, M}y, or W.>A+ Wg}.

Clearly T 1 U a.s. The fact that | AM | = A permits an estimate of the effect of the map Y
— Y’ := Y_ * Z across any one of the open intervals (R, S) = (Tx_1, T%): since Y5 =
Y_ % Z75 (4.3),

y2s[Y'] = v4[Y'] + GZ (R, S]Y-)
= y4[Y']1+ GY¥(R, S1Y-) + GF" ™ (R, SIY-) + Gy (R, S]Y-)

S] 1/2
(1) = y3[Y']+ CF* (f Y2 d[M, M])
(R Ly
S)
+ A Yoslzo + I J' | Y_|dW
(R Ly

SvRIY' T+ CONI Y |2s]lee = vR[Y'] + v2s[Y]/2K,
with C = 2A(C{'* + 1). Thus, with C® = C + L,
2) YE[Y'1 = v2%[Y'] + | AsY |2 = v&[Y'] + C® ||| Y25 1o,

and
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(3) Y5,[Y' 1= kC?|| Y| %7, || 1o

This shows in particular that the stopped iterates (X")7* are global L?-integrators, provided
the initial one X° is. For instance,

@) YRIX' 1= v%,[C] + RKC® ||| X° | *7, |0,

and this is finite: since A’ = (C — X°) + (FX° — F0)_ * Z + FO_ + Z, (3) yields
B 1A%, Jlee = ||| C = X°| %1, |l2e + RKC® ||| X° |27, ||za + RC® ||| FO| 27, |10 < co.

With these inequalities, the stage is set for the proof proper of (8.2b). Applying (1) to A" :
= X" — X" = (FX" — FX"')_ + Z, we obtain

vZs[A] = y&[A™] + 1/2y2s[A™71], for n=1.
An iteration stopping at n = 1 with the use of (1), and a summation yield, in turn,
yis[A"] = B0 27yA[A™] + 27KC || A° |25 | 1
and
(6) Yre1 Y2s[A"] = 2 3ier vE[A™] + KCV ||| A° |25 o
Now
Y4[A"] = yZs[A"] + [|AsA" ||ze = y2s[A™] + KL ||| A" |25 |z,
and therefore, with ¢; = 2KL + KC® and ¢, = 2(1 +KLCY?) = ¢y,
Yrm1 Y4[A™] = 2 Yre1 vR[A™] + ||| A% 25 o
Recalling that R = T,—; and S = T} we see by induction in & that
VRIX = X' = 5o v, [A7] = co- e | A% 2 e = €| A% 21, | 2o,
where ¢ = ¢, + 1. With ¢ = ¢ - In C#"), we arrive finally at
G Yin[X — X' = Tnes y4n,[X™ — X" ] = e ||| A% | 27, |2,

which is finite by (5). For ¢ = 1, (8.2b) is established with 7= T, and cr=k. If0 < g < 1,
one notes that M is a local L*-integrator and replaces [M, M] by (M, M) in the definition
of the T}, using (7.2b) instead of (7.2a) in the estimates. The details are left to the reader.

Only the uniqueness assertion of the theorem remains to be established. For this and
later use we put together (4), (5), (7), and (8.1-), choosing X° = C and shiftingy27,[X'] to
the right-hand side. We get, with ¢’ = ¢ + 1,

(8:2¢) Yin[X]1= e {y2r,[C]+ K7'||| FO |27, |lus}, q>0.

To establish the uniqueness from this, we employ a trick of Emery’s [E1]. Let (C, F, Z) be
another system (8.1), driven by the same L’-integrator Z, and let X be any solution
of it. Then Y = X — X solves the equation Y = D + GY_ + Z, where D = C — C +
(FX — FX)_ + Zand GY = FX — F(X — Y). Since GO = 0 and Y equals its iterates, an
application of (8.2c) and (3) gives

(8.2d) Yir,[X — X1= e {y21,[C — C1 + ||| FX — FX|*1, e},
where ¢” = (¢’ + 1)(1 v 2Y97!), In particular, when C = C and F = F then X — X is
evanescent on each of the intervals [0, T%); the solution is unique. Even when C and FO are

merely L°-integrators this argument works. We see to it that they become L'-integrators
for some new measure and conclude that | X — X|*y = 0 a.s. for arbitrarily large times U.

8.3. Information about the size of Z as an L”-integrator, 0 < p, can be turned into an
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estimate of the constant cr:

COROLLARY. For any € > 0 and instant u there exists a stopping time T = u with
P[T < u] < € such that

(8.3b) Yir[X = X' = ||| X' = X°|2r||e + Epo,

(8.3c) v2r[X]1= {(y2r[C] + K7Y||| FO|*7||1e} - Epg,

and

(8.3d) y2r[X — X1 = {y2r[C — C]1 + || FX — FX|*r||1e} - Epq

whenever X is the solution of another system Y = C + FY_ = Z driven by Z. The E,, are
functions of the form

Ep(KZ; u; €) = exp[(a + BKYL[Z])® - €7]
with a and B depending only on p, q, d, e.

ProOF. Again we assume d = e = 1, and we start with the case p = 1. Set L =
(€/2)7PCyE[Z], and take for the stopping time U of the previous proof the time U =
u A inf{t:|Z,| > L}. Then P[U < u] = €/2. .

For the decomposition Z = N + A we choose the Doob decomposition. This gives us
control over y4[N] and y2[A] in terms of y%[Z], for any stopping time T (7.1). Since
[M, M]=2[N, N], we get control of y4[M] (7.2a) and then of y7[V] = || Wr| L-. After all
is said and done, we end up with an inequality

I [M, M1 \eo v || Wrll» = «'¥5[Z],

where ' is a constant depending only on p through the constants of 3.5, 7.1, and 7.2. The
time 7 sought will be one of the T.. Now, whatever &, we have [M, M]r, = A’k/2 or Wr,
= Ak/2 at any point of [T, < U], so that

P[T. < UT"? = {AE/2)™ + (\k/2) Ja'yE[Z] = 4N 'R V2a'yE[Z).

Choosing T = T} with & = (4\"'a’y2[Z]2"P¢7/P)? we have P[T < U] = €/2 and thus
P[T < u] = e. (Note that we can always decrease € a bit, thereby improving the estimate
and turning the expression for % into an integer.) Now note that % and the constants c, ¢/,
¢” of 8.2 are of the form (a + BKvy4[Z])e '/, and insert % and L as specified above into
(8.2b-d). The inequalities (8.3b-d) result.

The case 0 < p < 1is reduced to the previous one by a change of measure (7.3), familiar
by now.

8.4. REMARKS. (1) Suppose the correspondence X — FX is pathwise; that is to say,
a.s. X.(w) = Y.(w) implies FX.(w) = FY.(w). This happens, in particular, in the frequent
case that F is of functional type: FX = f o X for some Lipschitz function f:R°— RY X R®.
Then each of the iterates X" can be evaluated pathwise a.s. by 7.14, and then so can the
solution X, by (8.2a). Let us go into this in detail. We start with X° = C. Whenever the
algorithm provided by 7.14 and used to compute C + FX” * Z converges uniformly on
each bounded interval, we set X"*! equal to its limit. Else we set X"*' = 0. Wherever C +
$(X™*' — X™) converges uniformly on compacta, we set X equal to that limit; else we set
X = 0. Evidently, we obtain every path X.(w) of the solution via progressively measurable
operations from the paths C.(w) and Z.(w). The exceptional set, where convergence does
not take place, is negligible for every measure with respect to which C and Z are L’
integrators. We shall give an application of this to Markoff processes in 8.7 below.

(2) Suppose FX = f o X is of functional type® with f merely locally Lipschitz. For every

8 A restriction for convenience’s sake; it can be replaced by adopting a proper notion of a local
Lipschitz correspondence X — FX.
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initial value C there is then a stopping time { = {¢ and a solution X = Xcof X = C +
fX)-*Z on [0, {) such that lim {|| X, ||:¢ 1 {} = = a.s. on [{ < »]. {is called the life time or
time of explosion of X. Both X and ¢ are unique.

It will suffice to give a sketch of the proof. For each n let f" be a global Lipschitz
function that coincides with f on the ball B, in R° that has radius n and is centered at the
origin, and let X" be the solution of X = C + f"(X_) * Z. By uniqueness, X™ = X" up to the
first time T, at which X™ leaves B,,, for m < n. Then { = sup T}, and X = lim X,, satisfy
the description of the statement. A problem arises: How do { and X depend on C and f?

(3) Inequality (8.3d) has the version

(8.4d+) NX = X|*zllze = (11 C = Cl2r|leo + || FX — FX|*1 |10} Epq.

This does not permit us to conclude that the solutions X™ of Y = C™ + FY_ * Z converge
almost surely pathwise to the solution X of Y = C + FY_ * Z when the paths of C™
converge uniformly to the paths of C, ||C — C™|%||.- — 0, not even when the C™ are
constant on B = Q X R.. Is it true, nevertheless? Clearly, if ¥, | C™*' — C™|# < 0 a.s. for all
t then Y| X™"' — X™|} < » a.s. for all ¢ as well: with a suitable change of measure we
arrive at Y ||| ™' — C™|*r| L #) < ® and apply (8.4dx).

(4) Assume again that FX = f(X) is of functional type, f Lipschitz and of class C**',
Suppose C depends k-times differentiably on a parameter u € R", in the sense of Frechet
and with respect to the metrics d_7(X, Y) = ||| X — Y |%7|zs, T € - Then the solutions X*
= C* + FX"  Z depend k-times differentiably on u, with respect to the metrics d_7, T
arbitrarily large. In fact, the kth derivative D*X“ can be computed pathwise from
(C% ..., D*C% Z) as the solution of a differential equation driven by Z. As in (3), this does
not imply that the paths X*(w) depend differentiably on C*(w) in some suitable space of
functions on R... Problem: Do they ever?

NOTE ADDED IN PROOF. P.-A. Meyer has recently given the answer: always. The proof
consists in the application of an old lemma of Kolmogoroff’s to (8.4d+). The details will
appear in an article on stochastic flows on manifolds by P. A. Meyer, forthcoming
Séminaire de Probabilités de I'Université de Strasbourg, Lecture Notes in Mathematics.
Springer, Berlin.

8.5. THE EULER-PEANO METHOD. The fact that the solution X of (8.1) can be evaluated
pathwise from C and Z is of evident interest in principle, e.g., in linear filtering theory. For
computational purposes its demonstration in 8.4(1) is not too helpful, though, since two
consecutive limits are involved; this makes error analysis very hard, if not impossible.

The Euler-Peano method of little straight steps offers better prospects in this regard,
involving as it does only one limit. Moreover, because of its progressive nature it seems
more appropriate to, e.g., the filtering problem in the first place. Emery [E1] has proved
that it does, indeed, converge to the solution, in probability. We shall now show that this
method, with a suitable and natural choice of the subdivision, actually furnishes an
algorithm for the pathwise computation of the solution, complete with error estimates.

We resume the assumption that F is a pathwise correspondence. The natural and most,
economical choice of subdivisions for the Euler-Peano scheme is this: Given a § > 0, set S,
=0, Yo = Co, and

Spr1 = inf{t > S,: | C; — Cs, + (F(YS")_ * (Z — Z")),| > 8},
Y=Ys,+C—Cs,+ F(YS")_+(Z—Z%) on (S, Sp1].

In other words, the prescription is not to proceed with a linear approximation until a
certain time has elapsed or the driving term Z has changed a given amount, but to wait
until its effect C, — Cs, + {5,(FYS")_ dZ is large enough to warrant a new computation.
Then reassess and start from there. It is clear how to program an electronic device so that
it will compute the §-approximate Y = Y? above progressively and pathwise as it receivés
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the signals C:(w) and Z;(w).

THEOREM. Assume p = q = 0 in (8.1). Then the 2 "-approximates Y*" converge a.s.
uniformly on bounded intervals to the solution X of (8.1). In fact, for any as. finite
stopping time T

(8.5a) SAX—Y"|f <o as.

Now assume p # 0 # q. Then for every instant u and € > 0 there exists a stopping time T
= u with P[T < u] < e so that

(8.5b) Y27[X — Y?1=6 - Ep(KZ; u, €)

for every Euler-Peano approximate Y%, § > 0.

Proor. We start by showing that S, := sup S, = » a.s. To this end, set
’H:=Y Hs, + [Sn, Sn+1) + Hs, - [S«, )

for any r.c.Ll. process H, and denote by Y the solution of ¥ = C + F(°Y)_ * Z. Clearly Y
= Y on [0, S.). Let t > 0, M > 0, and split the interval [—M, M] into finitely many
subintervals of length less than /3. If w € [| Y|# = M] then as. the path of the L°-
integrator Y crosses each of these intervals at most finitely many times before ¢ (2.5), and
50 S.(w) > ¢. Hence S. = © a.s., and Y = Y. We start now Picard’s iterative scheme with
X° = %Y, and observe that X! = Y differs from X° uniformly by less than &. The second
statement is now immediate from (8.3b), and the first is established from this routinely
along the lines leading from (8.2b) to (8.2a).

8.6. ExaMPLE. Let Z be a single L’-integrator. There is then a unique solution E =
E[Z] of the equation X = 1 + X_ * Z, called the exponential of Z. It has an explicit
representation as

E, =" P8 1 (1+ AZ)e™,

the product converging a.s. uniformly. Indeed, using dE = E_ dZ and d{E, E} =E*
d{Z, Z}, Ito’s formula yields

t t
InE = f E~'dE + Yoze= {AIn E — EZ'AE} — 1/2 f EZd{E,E)
0 0

= Z¢ - 1/2{Z, Z}¢ + Zossﬁt {ln(Es/E—s) - ASZ])

the sum converging absolutely. Now E,/E_; =1+ A;E/E_; = 1 + A,Z, and the formula
follows by exponentiating.

8.7. ON THE MARKOV CHARACTER OF THE SOLUTIONS. We shall use the language of
Blumenthal-Getoor [BG] but leave the finer details such as augmentation at infinity to
the reader.

(1) Suppose the d-vector Z of L°-integrators is also a (temporally homogeneous) Markov
process with translation operators 6,:Q — @, s € [0, x), Z; ° 0, = Z,.s, and field of
probability measures {P*:z € R?}. Let f:R® — R** be locally Lipschitz, and denote by
X/(w, x, s) the special version produced by 8.4(1, 2), of the solution to X = x +
f(X2) = (Z — Z°). Set Xiw, x) = Xi(w, x, 0). We want to show that the process Y, =
Yiw, x) = (Z(w), X(w, x)) € R? X R® is a Markoff process on the enlarged probability
space & = Q X R® with o-fields 4 = %, X Borel (&°), translation operators

O:(w, x) = (05(w), X;(w, x))
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and field of probability measures
PP=P°Xe, y=(z2,x) ER?XR"

The explicit constructio.: of X,ii(w, x, 8) = Xps((Zulw): s = u <t + s), x, 5) =
X:((Zy ° 05(w): 0 < u < ¢t), x, 0) shows that X, .(w, x, s) = Xi(6,(w), x), thus

Xl+s(w; x) = X¢+s((0, Xs(w’ x)) S) = Xl(os(w)) Xs(w) x))‘
Consequently §, has the required property

Y, =Y, - 0.
It is left to be shown that the Markov property holds, to wit
EX (@ Yus|%)=E"(p° Y)
a.s. for any continuous bounded functionp onR? X B¢ andy = (2, x) € R? XR°. Now
P(Yers(w, x)) = 9(Z:(0(w)), Xe(0:(w), Xs(w, x)))

depends measurably on the two arguments 0,(w) and X,(w, x). If it were a product of the
form

f(0:(w), Xs(w, x)) = f1(0:(w)) - folXs(w, x))
then its conditional expectation with respect to % would a.s. have the value
foXulw, x)) « EXO(fi(+)) = EV“2(f(-, )

at any (w, x) € . The same applies to sums of such products, and the usual monotone
class argument results in

E’(@ ° Yuus| %) (w, x) = EV (9(Zi(+), X+, -)),

as desired.

(2) The instant s in the arguments can be replaced by an %-stopping time S, showing
that if Z is strong Markov so is Y. Also, when Z is a Hunt process, Y will be as well. If the
lifetime 7 of Z is not infinite, an obvious stopping argument will result in the corresponding
statements. These matters have been dealt with in detail by Protter [P6]. Note here that
the identification of semimartingales with L’-integrators renders superfluous some labor
concerning the uniqueness of decompositions Z = M + V with respect to the various
measures P~

(3) Problem. Express the semigroup of transition probabilities of Y,

Qdp, y) = E’(@(Y1)), p € CR? X R®)

and its generator in terms of F and the corresponding objects for Z.

(4) Given a Markov process Z with values in R¢, the problem arises when its components
are L’-integrators for each of the P>, Work on this is'in progress by Protter and Sharpe
[PS]. See also [J1] for Z with stationary independent increments.

(5) Now suppose in addition that Z has independent increments. Then E?*f is indepen-
dent of z € R? if f is a function of the process Z — Z, alone. For ¢ EC(R®), ¢(X.(-, x)) is
such a function, and so, with P* = P° X ¢,,

E¥@Xis) | F) = EX@(X0)):
(@, %, 8, E*:x € R°, X,) is a Markov process in its own right. Again, if Z is strong Markov

or a Hunt process then so is X.
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