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MULTIPLE INTEGRALS OF A HOMOGENEOUS PROCESS WITH
INDEPENDENT INCREMENTS

By T. F. Lin

Soochow University

Let X(¢) be a homogeneous process with independent increments having
the representation X(¢£) = W(t) + [.xo xv*(f, dx), where W(t) is a Wiener
process with parameter o and v*(¢, dx) = v(t, dx) — tu(dx), where v(t, dx) is
a Poisson random measure with mean measure fu(dx). If the mth absolute
mean of X(¢) is finite, then [§ dX(4) [& dX(&) --- [ dX(tn) = {3™/0u™
exp{uW(t) + [ino log(l + ux)v*(t, dx) — %tu®s® — t [ewo [ux — log(l +
ux) Jp(dx)} Yu=o/m!.

1. Introduction. Let X(¢), ¢t = 0, be a homogeneous process of independent incre-
ments. Multiple integrals of X(¢) had been studied in [4]. We study here a different type
of multiple integral which is closely related to the stochastic integral equation

t
(1.1) Z(it)=1+ uf Z(s—) dX(s).

0

Equation (1.1) has been extensively studied. For examples, see [6], page 36, [2], page 448
and [8], page 453.

Let f(2), t = 0, be a process such that {X(v), f(v): 0 < v < s} is independent of X (¢) —
X(s) for s < t. Define the integral

(1.2) f f(s=) dX(s) = limn e Y=o f(tx) (X (tr+1) — X (%))
o

when the limit on the right-hand side of (1.2) exists in some sense, where T = T, = [2"¢]
(the integer part of 2"t), t, = t,» = k27", 0 < k < T, tr+; = ¢. If f(¢) is L*(R)-continuous in
t and EX?(t) < oo, then the integral (1.2) will exist in L2() sense. Let I°(t) = 1 and suppose
that I"(t) = [§ I""'(s—) dX(s) exists for each n = 1. We shall derive the explicit formulas
for I"(t), n = 1. In the case that X(¢) is a Wiener process with parameter ¢ = 1, I"(t) =
H,(t, W(t)), where H,(t, x) is the nth Hermite polynomial (see [3] or [6], page 38). If
X(t) = P(t) — t is a mean centered Poisson process, then I"(t) = K,(t, P(t)), where
K., (¢, x), n = 0, are polynomials whose generating function is (1 + u)*e™", u > —1, (see [5]).
In both cases, I"(¢) is a polynomial of X(¢). However, this is not true in general.

2. Multiple integrals. Let X(¢), ¢t = 0, be a stochastic continuous homogeneous
process with independent increments. To evaluate the m-multiple integral (m = 2) of X(¢),
we shall assume that E| X (¢) |™ < . There exist a Poisson random measure »((¢, dx) on R’
= R — {0} (see [1], Chapter VI) and a measure p(dx) on R’ such that

f x*u(dx) + f p(dx) < oo,
0<|x|<1 |x>1

For each Borel set A of R’, »(t, A).is a Poisson r.v. with parameter fu(A). Indeed, »(t, A)
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is the number of jumps of X(s), 0 < s < ¢, which fall in A. Let us denote v*(t, dx) = »(t, dx)
— tu(dx) and assume, for convenience, that EX(¢) = 0. Then X(¢) has a representation

X(@)= W)+ f

xv* (¢, dx)
R

where W(¢) is a Wiener process with some parameter o”. The characteristic function of
X(¢t) is

2.1) ‘ EeX® = exp{—Y4ts%0* + tf (e — 1 — ifx)p(dx)}.
-

From (2.1), we obtain that EX?(t) = ¢(¢® + K) where K = [rx*u(dx). Since E| X(t) |
< o, K is finite.
For each n,let A, = {x: 0 < |x| <n}, A, =R’ — A, and let

X.(t) = W(t) + J' xv*(t, dx).

A

Then it is clear that
(2.2) E|X(t) — X.(8)|* = tf 2*u(dx).

Ap

Since K is finite and A¢ decreases to ¢ as n — o, the right-hand side of (2.2) converges to
0 as n — . Therefore,

LEMMA 2.1. X, (t) converges to X(t) in L*(Q) uniformly in t-compact sets as n — .

Let n be fixed and | z| < 1/n. Then uX., (¢) is a semimartingale with jumps bounded by
| #| n < 1. The integral equation

t

(2.3) Zity=1+u f Z(s—) dX,(s)

0

has a unique solution. According to a theorem of Doléans-Dade (see [7], Theorem 25, page
304 or [8], Theorem 2-1, page 453), this solution is, when expressed in terms of »(t, dx),

u(dx),

Z,(t) = exp{uX,.(t) — Ytou® + f log(1 + ux)v(t, dx) — uf xv(t, dx)}
A, A,

(2.4)
= exp{uW(t) — Yhto®u® + f log(1 + ux)v*(t, dx) — tf [ux —log(1 + ux)]p(dx)}.
A An

n

Note that Z,(¢) is L*(®)-continuous in ¢. Hence the integral of Z,(s—) w.r.t. X, (¢) which
appeared in (2.3) will also exist in the L*(R)-sense.

Let I (¢) = 1 and define I% (¢) = [§ I%~'(s—) dX.(s), k = 1. There is no problem with the
existence of I% (t), k = 1, since it is not hard to see, inductively, that I77'(¢), £ =1, is L*(Q)-
continuous in ¢ By using (1.2), we can derive

t
BUAOL0) = (K, + o) | EUEOL0) ds
)
for k, j = 1, where K, = [4 x*u(dx). Repeating the above procedure, we have

(2.5) E(IL (&) L)) =0, k],
=t"K. + 0P/, k=]
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Therefore, Y.(t) = Y 5-0 u*I%(f) converges in L*(Q). It is also trivial that Y,(¢) satisfies
equation (2.3) in L*(Q)-sense. Hence, Y, (t) = Z,(¢) for |u| < 1/n. From this equality and
(2.4), we obtain

THEOREM 2.2, For each k =0,
2.2

ak
Ikt = {-&—JE exp{uW(t) _fou

+ J' log(1 + ux)v*(t, dx)
2 A

n

(2.6)
- tJ' [ux —log(1 + ux)]u (dx)}} /R
A, u=0
Now let I°(¢) = 1 and I*(t) = [4 I*"(s—) dX(s), k = 1. The reason for I*(¢), k = 1, to
exist is similar to that for I%(¢), k= 1.

LEMMA 2.3. For each k = 1, I%(t) converges to I*(t) in L*(Q) uniformly in t-compact
sets as n — oo,

Proor. We shall prove it by induction. Lemma 2.3 is trivial for 2 = 0, 1. Suppose that
it is true for 2 =j. By using the property of independent increments, (2.5) and (2.2), we can
derive
t

E{I'@t) - 1Y (0} = E{f I'(s—) dX(s) — f Ii(s-) dX, (8)}2
0

(]

< 2E{f [I/(s—) — Li(s—)] dX(s)}* + 2E{f Ii(s—)d[X(s) — X (s)]}?
0 0

<2(®* + K) f E{I/(s) — Ii(s)}* ds + ZJ’ E{Ii(s))? dsJ’ **u(dx)
0 0

A
< 2(o® + K) f E{I/(s) — Ii(s)}? ds + 2t/*' (K, + az)jf 2u(dx) /(G + D).
0 AS,

Consider the right-hand side of the last inequality as n — c. The first term tends to 0 by
the induction hypothesis. The second term converges to 0 since A}, decreases to ¢. Clearly,
these two convergences are uniform in ¢-compact sets. Therefore, Lemma 2.3 holds also for
k = j + 1. This proves Lemma 4.3.

For each n, let

Pnj= f xv*(t, dx), j=1, gn;= f x'p(dx), j=2.
A A,

n n

From (2.6), it is clear that IZ is a polynomial of W(¢), pn,j, 1 <j <k, quj, 2<j<k. Let fi
denote this polynomial, that is,

(2.7) Il = fe(W(), Py + ¢ Prks Qn2y ***5 Quk)-

Identity (2.1) and the assumption that E|X™(¢) | < « imply the existence of [r/|x|™p
(dx) which in turn implies the convergence of

limp e f x*u (dx) = f x*u (dx), 2<k<m,
A R’

n

lim, e f x*v* (¢, dx) = f x*v* (¢, dx), 1<k<m.
A R’

n



532 T. F. LIN

The last convergence is in the L'()-sense and is uniform in ¢-compact set. Therefore,
[e(W(t), Dn1s *** Dnks Qn2s ** *» Qn,k) Cconverges at least in probability to f. (W(¢), p1, - -+,
Pk, @2, - -+, qr) for each k < m, where

(2.8) pPr= f xfv¥(t, dx), 1<sk<sm, q= J’ x*u (dx), 2<k<sm.
R’ R’

This fact, together with Lemma 2.3, implies that both sides of (2.7) converge. Although
they might converge in different senses, their limits must be equal almost everywhere.

Therefore, we obtain

THEOREM 2.4. The k-multiple integrals of X(t), 1 <k <m, are
I*t) = fu (W), p1, + -, Pr, G2, +++5 Q)

where p;’s, q;'s are defined in (2.8). Or, formally, I*(t) = {(3*/3u*)exp{uW(¢) — to’u?/2 +
Jr log(1 + ux)v*(t, dx) — t [r [ux — log(1 + ux)]u(dx)}}u=o/k\
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