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NECESSARY AND SUFFICIENT LIFETIME CONDITIONS FOR
NORMED CONVERGENCE OF CRITICAL AGE-DEPENDENT
PROCESSES WITH INFINITE VARIANCE!

BY MARTIN 1. GOLDSTEIN AND FRED M. HoPPE

Université de Montréal, and Cornell University and University of Michigan

The critical age-dependent branching process with offspring p.g.f. of the
form f(s) = s + (1 — §)"**L(1 — 5), 0 < a < 1, L slowly varying at 0, is
investigated. We generalize Kesten’s unpublished necessary condition to es-
tablish N.A.S.C. on the tail of the lifetime distribution for existence of a
nondegenerate normalized conditioned limit law and pose several related
questions.

1. Introduction. Let Z(¢) be a critical age-dependent branching process with life-time
distribution G satisfying G(0*) = 0,

f [1-G@#)]dt=p<o
0

and offspring p.g.f. of the form
f(s)=s+ (1 —38)""L(1 - s)

where 0 < « = 1 and L is slowly varying at 0. In [4] we generalized to such processes a
result of Slack [6], namely if 3 y > 0 such that

0) O] — G()] >0  as to

then there is a nondegenerate normed conditioned limit law. This condition is slightly
stronger than necessary, since, for example, if the offspring distribution has a finite variance
o’ (in which case necessarily « = 1 and L(0*) = ¢2/2) then

t[1-G@®)]-0

is both necessary [Kesten, unpublished] and sufficient [3]. The purpose of this paper is to
derive the necessary and sufficient condition in the general case.

In what follows F'(s, £) denotes the p.g.f. of Z () given Z(0) = 1, f,(s) the nth iterate of
f(s), and {X,} the underlying Galton-Watson process of generations. Also, if ¢ is not an
integer then occasionally ¢ will mean [£].

2. Results. The following are equivalent:
(A) lim, . P[(1 — F(0, 8))Z(t) = x| Z(t) # 0] = H(x), x>0,

where H is a proper distribution satisfying H(0") = 0;

®) i, L= FO.0 _

T A T 1;
. 1- ﬁ/n(o)
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PIZ(t) > 0, Xyysy = 0] _

C lim, o
© 1= 7u0) °
for some (and hence any) y > 0;
1= G0 _
(D) limg . =70

COROLLARY. (1) The limit in (A) has L.S. transform given by 1 — u(1 + u*)™"% (2)
(at/w)[1 - F(©O,t)]*"L(1 — F(0,¢t)) > 1 as t— .

The equivalence of (A) and (D) is the main assertion. We have delineated four
equivalent conditions for two reasons. First, (B) and (C) are intermediate steps in a rather
technical proof, and break the discussion into convenient sections. Secondly they contain
additional probabilistic insight. For example, (B) makes precise the intuitive statement
that at time ¢ the dominant generation will be ¢/u and hence the probability of extinction
of Z(t) will be essentially the same as that of X,,. We shall proceed by the following
sequence: (B) = (C) = (D) = (B) = (A) = (B).

After completing this work we were informed by V.A. Vatutin that he had shown (D)
= (A) by methods similar to ours. Since this part is similar to what we also did in [4] it
will only be sketched. The implications (A) = (B) = (C) = (D) are, however, the tnain
novelty of the paper.

We shall require some results concerning the asymptotic behaviour of the iterates fx
which may be found in [6];

limn—»oo an(l - ﬂl(o))aL(l - ﬁt(O)) = 1’

1 — fulexp[—u(1 — £.(0))]) _ u
lime 1 — £»(0) - 1+ w7’ u>0.

1)

It was shown in [2] that (1) implies
(2) 1 — f»(0) ~ n™"Ly(n), n— o
where L, is some function slowly varying at c. Therefore, rewriting (D) as
lim, ., #*°LTY(#)(1 — G(2)) - 0
and invoking the well-known property of slowly varying functions,
L1'(t) < t* asymptotically as n — o for any y > 0,
the connection between (D) and our previous sufficient condition (0) is apparent.
3. Proofs. Inthesequel,0<y,y <p n=I[t/(u+y)],n =[t/(u—y)], and G™* is the
k-fold convolution of G.
(B) = (C).
P[Z(t) >0, X, = 0] = P[Z(¢) > 0] — P[X, > 0] + P[Z(t) = 0, X;, > 0]
= P[Z(t) > 0] — P[X, > 0] + P[Z() = 0, X, > 0, X, > Q] + P[Z(¢) = 0, X, > 0, X, = 0]
‘< P[Z(¢) > 0] — P[X, > 0] + P[Z(t) = 0, X,,» > 0] + P[X, > 0, X, = 0]
= P[X(¢) > 0] ~ P[X, > 0] + P[Z(t) = 0, X,, > 0]
yielding
PlZ(t) >0,X,=0]< 1~ F(0, ¢t — (1 — f(0)) + P[Z(?) = 0, X,y > 0].
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On the other hand
P[Z(t) = 0, X, > 0] < P[X, >0 and each particle in generation n’ dies by time ¢]
=PX.,>0 and a fixed particle in generation n’ dies by time ¢]
= (1= f(0)G™(t).

We obtain
PlZt)>0,X,=0] _1-F(©,¢) 1-f(0)
L=fu0) 7 1=f0) 1~ f(0)

G (t) — 0 by virtue of the weak law of large numbers,
[1 - £(0]/[1 = £(0)] = [1 = (/W] by (2) and
[1-F(©,0]/1 - f(0)] > 1 by B).

1= G™@).

Taking the limit on ¢ and then on ¥’ | 0, keeping y fixed, (C) ensues.

(C) = (D). We shall use a subscript on P to indicate the initial population size. c, d,
D and M > 1 are constants to be specified and a, denotes [1 — £,(0)]™".
PZ(t) > 0, X,=0]
=P[Z(t) > 0, X, =0, da, = X; < Da. for all t/4p<Fk=<t/2u a.<
Xz/‘w = Man]
=Pla, < Xy4 < Ma,, da, < X, < Da, forall t/dp<k=<t/2u, X, =

0 and at least one of the particles in generations between ¢/4p and ¢/2u
has a lifetime exceeding ¢]

Zp[Ulsisda,,t/‘iu {Y, > t}]P[X,. =0 lXt/Z'l. = Da,,]P[da,, < X, < Da, for
all t/4p <k =<t/2u|a, < X4, < Ma,]Pla, < X4, < Ma,]
where {Y;} are independent random variables with distribution G. Therefore,

3) anP[Z(t) > 0, X, = 0] = anA,B.CoD,

where A, B,, C,, and D, are the respective probabilities in the product above.

By (C) the left side of (3) tends to 0 as n — o (¢ — ). We will show that each of a,D,,
C., and B, stays bounded away from 0 as n — o forcing A, — 0.

First consider

a.D, = ( n )P[i<§ﬂi"s@

= Xt/4,,,9é0 .
Qt/4n Qiyap Qg Qiyap

By (2),

a 4 Ve
A4y ut+y

and it is shown in [6] that the conditional probability converges to G (Mb) — G (b) where
G'is a distribution function with L.S. transform 1 — u(1 + ©*) "/~ For a = 1, G is exponential
" and for 0 < a < 1, evaluating the second derivative of the L.S. transform at 0 shows that
G has infinite variance. In either case G is not concentrated on a compact set so we may
fix M sufficiently large that G(Mb) — G(b) > 0. This shows that a,D, is bounded away
from 0. Next

C.<P[X,=da, forall t/4n==r=t/2|X,s = an]
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— P[Xi > Da, for some t/4u=<=k=<t/2u|Xys = Ma,]
= Py [Tn > t/44] — Pma,[Sn = t/4n]

where T, is the first time that X drops below da, and S, is the first time the X exceeds
Da,(equal to o« in case either level is not achieved). Notice that both S, and T, are
stopping times adapted to the martingale {X,}. Now

lim P[Xt/,;,t = Xxan IX() = an), x>0

exists as a proper, nondegenerate distribution. This can be seen by noting that H,(x) =
P[X,/s, < xa,| Xo = a,] has L.S. transform ¥, () = [1 — (1 — ¢x(u))a/4]*" when @, is the
L.S. transform of the conditional distribution P[X}/4, < xa,|Xy4, # 0]. It is shown in [6]
that ¢, — ¢ a proper, nondegenerate L.S. transform and therefore ¥.(u) —
exp[—b(1 — @(u))] which is also proper and nondegenerate. Hence if 6 > 0 is selected
suitably small, then for all large n

3
Z = Pan[Xt/4,L > San]

< P, [T. > t/4p] + Po [Tr =< t/4, Xi/sp > ]

= P, [T, > t/4u] + f 1dP,,
{Tpst/ 41X, q,>00,}

1
= Pa,,[Tn > t/4’1,] + 8_ Xt/4y dPa"
U ) (1ustrany

1
=P, [T, > t/4p] + — Xr, dP,,
n J(T,=t/4)

< P, [T, > t/4u] + d/s.

If we let d < 8/4 we have the bound
P, [T, > t/4p] > Y.

In a similar vein

1
Py [Sn = t/4p] = D f Xs, dPya,
an {Sp=t/4p}

=)
= Xi/ay dPpya,
Dar ) is</a0

M 1,
SB<ZlfD>4M’ .

using the criticality of {X,}. Combining the two bounds we have
C.> 1/4 for all large n.
Finally,
By = [fo-t2(0)1°* = [1 — azly/2.]>*

and this approaches exp(—KD) > 0 where K = [1 — (u + y)/21]"/* is the limit of a,/an-¢/2.-
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(We require y < p in this argument but by changing the intermediate points /4 and ¢/2u
the result holds for all y > 0).
As mentioned above this gives A, — 0 as n — . But A, = 1 — G(¢f**** implying that

axt log G(t) — 0 which is (D).

(D) = (B). This proof follows along lines identical to [4], Section 2, except that in
place of the Baum-Katz convergence rate used there we invoke an extension due to Heyde
and Robhatgi ([5], Theorem 1la, b). Although their more general result requires the
monotonicity of a certain slowly varying function, these theorems apply to our case and we
omit the details.

(B) = (A). This is identical to [4], Section 3.

(A) = (B). Let ¥ be the L.S. transform of H and set y. = exp[—u(1 — F(0, t))] for
u > 0 obtaining from (A)
1—F(y,t)

——l—F(O,t) =1-¥(u).

mt—-)oo
From Golﬂstein’s comparison inequalities [3],
(4) 1-f(s)—(1—s)G¥t)<1—F(s,) = 1—f(s) + 1 — 8)(1 — G¥(t))
substituting s = y,, then j = n’ in the left-hand side and j = r on the right and finally
defining the integer & = k(t) by the sandwich
fe(0) = y: < frs1(0)

we get using the finiteness of u that
1-Y@) .. . .1—fuxl0)
———— = lim inf, ———
“1-£l0

and
1 — fu+(0) 1= ¥ (u)
1-£00 = uw
Let 0 < 8 < % be arbitrary. Then if y and v’ are suitably small there is a f(y, ¥', 8) such
that if ¢ = ¢, then

lim sup;

1 = fupw + #(0) <1< 1 — fiyw+»(0)
1—farn(0) 77 1= fusr(0)

Only the extreme inequalities are not immediate. For the left one note that
1- f(t/y.)+k(0) - H(U’,).,.k_l 1- ﬁ+1(0)
1 — furx(0) =ntk 1= fi(0)
and by the form of f(s) and (1)
1 — fi+1(0)
1 - £i(0)

if i is sufficiently large. The product therefore exceeds (1 — 2/an)/?~" which converges to
. exp[—2y/ap] as t —> . Choosing y suitably small we get the desired inequality. The right-
hand inequality is handled similarly. It now follows that
1 — fie/w+2(0) _1- ¥ (u)

1 - fx(0) u

1-6= =144

=1- (1 - £(0)LA - f(0)) > 1 _azi

lim; e

so from (1)
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lixn,_,m(t/ﬂ)+k=[ u ]

k 1-¥(u)
or
. — — u : —
lim; .. t/k =uB  where B= [—1 ) ] 1.
But because [1 — £:(0)]/[1 — y:] — 1 we get, using (2) and & ~ t/uB, that
. 1- ft/n(o) _ 1/a
limeo 5= = (1/)

and therefore
1-F@©,¢ B
t—00 "~ s = —_—
1 - f,.(0) ®

The left side is, and hence the right side must be, independent of u. Call it K. To evaluate
K, from (4)

®) lim

- 1-Y(u).

L= fuly) 1= oy L= F )
1-F0,0) 1-F(0,0 1-F(0, 9

If § > 0 is arbitrary and if ¢ is sufficiently large and y’ sufficiently small then from (2) and
(5)

(6)

1—-98)K(1—-f(0)=1-F(,t) = (1+3K(1 - fA(0)).

Substituting this into the left side of (6) and taking limits on ¢ — o and thenon §, ¥ — 0
gives

K1+ Y=1-¥().
To obtain this expression we have made use of the definition of y, the convergence of
K/n’, and (2) in the form

1— ful(ye) ~ 1 — fv42(0) . [1 N E—v ]—1/a

1—-fx(0) 1-—fx(0) uB :

There is a similar inequality in the other direction and we finally get
\I,(u) = 1 - K_l[l + ﬂ_l]_l/a = 1 - u(l + Kaua)—l/a.

Let u — . ¥(») = H(0") = 0 and 8! — 0. Hence K = 1 and we get (B) as well as the
corollary.

REMARK. V¥ (u) is the same L.S. transform as obtained by Slack [6] in the Bienaymé-
Galton-Watson case.

4. Concluding remarks and suggestions for further work. The analysis (A) =
(B) suggests some possibilities for the age-dependent process which do not arise in the
Galton-Watson case, related to behavior when the lifetime distribution has a long tail.

Suppose that in condition (A) we permit H(0*) = go and H(®) = g. where possibly
go > 0 and g» < 1. The limiting L:S. transform ¥ will be defective at the origin with
¥ (0%) = g and also ¥ (») = go. In place of (B) we have

1-F(0,¢)
” 1- ft/n(o)

where K is no longer necessarily 1. We still have, however,

liIn;_, =K
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u

Y =1 - R

It follows that ¥ (0*) = 1 so g = 1 and the limit distribution is not defective. However

1
V(o) =1——=
(0) =1 %
giving
K=(1-qo)™%

There seems to be no reason a priori for excluding the case go > 0. In fact Vatutin [7]
has considered some cases when the process {Z(t) | Z(t) # 0} converges to a discrete limit.
It follows that

{1 = F(, 1)Z(¢) | Z(¢) # 0}

converges to a limit degenerate at 0 with go = 1 and K = oo, that is

lim l—F(O,t)_oo
t—00 1 —ﬂ/,.(O)
One of his assumptions is that
n(l — G(n)) —w

e 70
and it is reasonable to conjecture that there is a general equivalence between the
asymptotic behavior of
1-F(0,¢)
1 — f,,(0)

and n(1 — G(n))/[1 — £,(0)] which subsumes (B) < (C).
If we look at K < oo, then since

1 = fausu(0) ~ A7V*(1 = f£2,,(0))

we get
1-F(,?
1= ful0)

and defining A to make KA"* = 1 then heuristically the dominant generation at time ¢ is
At/p which is smaller than ¢/p suggesting that the long lifetimes depress the rate at which
the dominant generation grows. In a future paper we plan to study the distribution of
generations when the lifetime distribution has a long tail.

lim, = KAY*

Acknowledgement. We are grateful to Harry Kesten for communicating his proof
of (B) = (C) = (D) in case ¢ < o and Janos Komlés for reference [5].

REFERENCES

[1] BauMm, L. E. and Katz, M. (1965). Convergence rates in the law of large numbers. Trans. Amer.
Math. Soc. 120 109-123.

[2] Bosanic, R. and SENETA, E. (1971). Slowly varying functions and asymptotic relations. J. Math.
Anal. Appl. 34 302-315.

[3] GoLDSTEIN, M. L. (1971). Critical age-dependent branching processes; single and multitype. Z.
Wahrscheinlichkeitstheorie und verw. Gebiete 17 74-88.

[4] GoLDsTEIN, M. 1. and HopPE, F. M. (1977). Limit theorems for the critical branching process
with infinite variance. Stochastic Processes Appl. 5 297-305.

[5] HEYDE, C. C. AND RoHATaI, V. K. (1967). A pair of complementary theorems on convergence



CRITICAL AGE-DEPENDENT BRANCHING PROCESSES 497

rates in the law of large numbers. Proc. Cambridge Phil. Soc. 63 73-82.

[6] SLAck, R. S. (1968). A branching process with mean one and possibly infinite variance. Z.
Wahrscheinlichkeitstheorie und verw. Gebiete 25 31-38.

[7] VaTuTiN, V. A. (1976). Limit theorems for a critical Bellman-Harris branching process with
infinite variance. Theor. Probability. Appl. 21 839-842.

DEPARTMENT DE MATHEMATIQUES DEPARTMENT OF STATISTICS
UNIVERSITE DE MONTREAL UNIVERSITY OF MICHIGAN
CASE POSTALE 6128 ANN ARBOR, MICHIGAN 48104

MOoONTREAL 101
QUEBEC, CANADA



