NECESSARY AND SUFFICIENT LIFETIME CONDITIONS FOR NORMED CONVERGENCE OF CRITICAL AGE-DEPENDENT PROCESSES WITH INFINITE VARIANCE¹

By Martin I. Goldstein and Fred M. Hoppe

Université de Montréal, and Cornell University and University of Michigan

The critical age-dependent branching process with offspring p.g.f. of the form $f(s) = s + (1-s)^{1+\alpha}L(1-s)$, $0 < \alpha \le 1$, L slowly varying at 0, is investigated. We generalize Kesten's unpublished necessary condition to establish N.A.S.C. on the tail of the lifetime distribution for existence of a nondegenerate normalized conditioned limit law and pose several related questions.

1. Introduction. Let Z(t) be a critical age-dependent branching process with life-time distribution G satisfying $G(0^+) = 0$,

$$\int_0^\infty [1 - G(t)] dt = \mu < \infty$$

and offspring p.g.f. of the form

$$f(s) = s + (1-s)^{1+\alpha}L(1-s)$$

where $0 < \alpha \le 1$ and L is slowly varying at 0. In [4] we generalized to such processes a result of Slack [6], namely if $\exists \gamma > 0$ such that

(0)
$$t^{1+(1/\alpha)+\gamma}[1-G(t)] \to 0 \quad \text{as} \quad t \to \infty$$

then there is a nondegenerate normed conditioned limit law. This condition is slightly stronger than necessary, since, for example, if the offspring distribution has a finite variance σ^2 (in which case necessarily $\alpha=1$ and $L(0^+)=\sigma^2/2$) then

$$t^2[1-G(t)] \rightarrow 0$$

is both necessary [Kesten, unpublished] and sufficient [3]. The purpose of this paper is to derive the necessary and sufficient condition in the general case.

In what follows F(s, t) denotes the p.g.f. of Z(t) given Z(0) = 1, $f_n(s)$ the *n*th iterate of f(s), and $\{X_n\}$ the underlying Galton-Watson process of generations. Also, if t is not an integer then occasionally t will mean [t].

2. Results. The following are equivalent:

(A)
$$\lim_{t\to\infty} P[(1-F(0,t))Z(t) \le x \,|\, Z(t) \ne 0] = H(x), \qquad x > 0,$$

where H is a proper distribution satisfying $H(0^+) = 0$;

(B)
$$\lim_{t \to \infty} \frac{1 - F(0, t)}{1 - f_{t/u}(0)} = 1;$$

www.jstor.org

Received December 28, 1978; revised November 13, 1979.

¹ Supported by NRC grants A-9220 and A-4004.

AMS 1970 subject classifications. Primary 60K99; secondary 60J80.

Key words and phrases. Critical age-dependent branching process, regular variation, conditional limit law, lifetime distribution.

490

(C)
$$\lim_{t \to \infty} \frac{P[Z(t) > 0, X_{t/(\mu+\gamma)} = 0]}{1 - f_{t/\mu}(0)} = 0$$

for some (and hence any) $\gamma > 0$;

(D)
$$\lim_{t \to \infty} \frac{t[1 - G(t)]}{1 - f_t(0)} = 0.$$

COROLLARY. (1) The limit in (A) has L.S. transform given by $1 - u(1 + u^{\alpha})^{-1/\alpha}$; (2) $(\alpha t/\mu)[1 - F(0, t)]^{\alpha}L(1 - F(0, t)) \rightarrow 1$ as $t \rightarrow \infty$.

The equivalence of (A) and (D) is the main assertion. We have delineated four equivalent conditions for two reasons. First, (B) and (C) are intermediate steps in a rather technical proof, and break the discussion into convenient sections. Secondly they contain additional probabilistic insight. For example, (B) makes precise the intuitive statement that at time t the dominant generation will be t/μ and hence the probability of extinction of Z(t) will be essentially the same as that of $X_{t/\mu}$. We shall proceed by the following sequence: (B) \Rightarrow (C) \Rightarrow (D) \Rightarrow (B) \Rightarrow (A) \Rightarrow (B).

After completing this work we were informed by V.A. Vatutin that he had shown (D) \Rightarrow (A) by methods similar to ours. Since this part is similar to what we also did in [4] it will only be sketched. The implications (A) \Rightarrow (B) \Rightarrow (C) \Rightarrow (D) are, however, the main novelty of the paper.

We shall require some results concerning the asymptotic behaviour of the iterates f_{ii} which may be found in [6];

(1)
$$\lim_{n\to\infty} \alpha n (1 - f_n(0))^{\alpha} L (1 - f_n(0)) = 1,$$

$$\lim_{n\to\infty} \frac{1 - f_n(\exp[-u(1 - f_n(0))])}{1 - f_n(0)} = \frac{u}{(1 + u^{\alpha})^{1/\alpha}}, \qquad u > 0.$$

It was shown in [2] that (1) implies

(2)
$$1 - f_n(0) \sim n^{-1/\alpha} L_1(n), \qquad n \to \infty$$

where L_1 is some function slowly varying at ∞ . Therefore, rewriting (D) as

$$\lim_{t\to\infty} t^{1+1/\alpha} L_1^{-1}(t) (1 - G(t)) \to 0$$

and invoking the well-known property of slowly varying functions,

$$L_1^{-1}(t) < t^{\gamma}$$
 asymptotically as $n \to \infty$ for any $\gamma > 0$,

the connection between (D) and our previous sufficient condition (0) is apparent.

3. Proofs. In the sequel, $0 < \gamma$, $\gamma' < \mu$, $n = [t/(\mu + \gamma)]$, $n' = [t/(\mu - \gamma')]$, and G^{*k} is the k-fold convolution of G.

(B)
$$\Rightarrow$$
 (C).

$$P[Z(t) > 0, X_n = 0] = P[Z(t) > 0] - P[X_n > 0] + P[Z(t) = 0, X_n > 0]$$

$$= P[Z(t) > 0] - P[X_n > 0] + P[Z(t) = 0, X_n > 0, X_{n'} > 0] + P[Z(t) = 0, X_n > 0, X_{n'} = 0]$$

$$\leq P[Z(t) > 0] - P[X_n > 0] + P[Z(t) = 0, X_{n'} > 0] + P[X_n > 0, X_{n'} = 0]$$

$$= P[X(t) > 0] - P[X_{n'} > 0] + P[Z(t) = 0, X_{n'} > 0]$$
yielding

$$P[Z(t) > 0, X_n = 0] \le 1 - F(0, t) - (1 - f_{n'}(0)) + P[Z(t) = 0, X_{n'} > 0].$$

On the other hand

$$P[Z(t) = 0, X_{n'} > 0] \le P[X_{n'} > 0$$
 and each particle in generation n' dies by time t]
 $\le P[X_{n'} > 0$ and a fixed particle in generation n' dies by time t]
 $= (1 - f_{n'}(0))G^{*n'}(t)$.

We obtain

$$\frac{P[Z(t) > 0, X_n = 0]}{1 - f_{t/\mu}(0)} \le \frac{1 - F(0, t)}{1 - f_{t/\mu}(0)} - \frac{1 - f_{n'}(0)}{1 - f_{t/\mu}(0)} (1 - G^{*n'}(t)).$$

 $G^{*n'}(t) \to 0$ by virtue of the weak law of large numbers,

$$[1 - f_n(0)]/[1 - f_{t/\mu}(0)] \rightarrow [1 - (\gamma'/\mu)]^{1/\alpha}$$
 by (2) and $[1 - F(0, t)]/[1 - f_{t/\mu}(0)] \rightarrow 1$ by B).

Taking the limit on t and then on $\gamma \downarrow 0$, keeping γ fixed, (C) ensues.

(C) \Rightarrow (D). We shall use a subscript on P to indicate the initial population size. c, d, D and M > 1 are constants to be specified and a_n denotes $[1 - f_n(0)]^{-1}$.

$$P[Z(t) > 0, X_n = 0]$$

$$\geq P[Z(t) > 0, X_n = 0, da_n \leq X_k \leq Da_n$$
 for all $t/4\mu \leq k \leq t/2\mu, a_n \leq X_{t/4\mu} \leq Ma_n$]

 $\geq P[a_n \leq X_{t/4\mu} \leq Ma_n, da_n \leq X_k \leq Da_n]$ for all $t/4\mu \leq k \leq t/2\mu, X_n = 0$ and at least one of the particles in generations between $t/4\mu$ and $t/2\mu$ has a lifetime exceeding t

$$\geq P[\cup_{1 \leq i \leq da_n t/4\mu} \{Y_i > t\}] P[X_n = 0 \mid X_{t/2\mu} = Da_n] P[da_n \leq X_k \leq Da_n \quad \text{for all} \quad t/4\mu \leq k \leq t/2\mu \mid a_n \leq X_{t/4\mu} \leq Ma_n] P[a_n \leq X_{t/4\mu} \leq Ma_n]$$

where $\{Y_i\}$ are independent random variables with distribution G. Therefore,

(3)
$$a_n P[Z(t) > 0, X_n = 0] \ge a_n A_n B_n C_n D_n$$

where A_n , B_n , C_n , and D_n are the respective probabilities in the product above.

By (C) the left side of (3) tends to 0 as $n \to \infty$ ($t \to \infty$). We will show that each of $a_n D_n$, C_n , and B_n stays bounded away from 0 as $n \to \infty$ forcing $A_n \to 0$.

First consider

$$a_n D_n = \left(\frac{a_n}{a_{t/4\mu}}\right) P\left[\frac{a_n}{a_{t/4\mu}} \le \frac{X_{t/4\mu}}{a_{t/4\mu}} \le \frac{Ma_n}{a_{t/4\mu}} \mid X_{t/4\mu} \ne 0\right].$$

By (2),

$$\frac{a_n}{a_{t/4\mu}} \to \left(\frac{4\mu}{\mu + \gamma}\right)^{1/\alpha} = b > 0$$

and it is shown in [6] that the conditional probability converges to G(Mb) - G(b) where G is a distribution function with L.S. transform $1 - u(1 + u^{\alpha})^{-1/\alpha}$. For $\alpha = 1$, G is exponential and for $0 < \alpha < 1$, evaluating the second derivative of the L.S. transform at 0 shows that G has infinite variance. In either case G is not concentrated on a compact set so we may fix M sufficiently large that G(Mb) - G(b) > 0. This shows that a_nD_n is bounded away from 0. Next

$$C_n \le P[X_k \ge da_n \text{ for all } t/4\mu \le k \le t/2\mu \,|\, X_{t/4\mu} = a_n]$$

$$-P[X_k > Da_n \text{ for some } t/4\mu \le k \le t/2\mu \, | \, X_{t/4\mu} = Ma_n]$$

= $P_{a_n}[T_n > t/4\mu] - P_{Ma_n}[S_n \le t/4\mu]$

where T_n is the first time that X_k drops below da_n and S_n is the first time the X_k exceeds Da_n (equal to ∞ in case either level is not achieved). Notice that both S_n and T_n are stopping times adapted to the martingale $\{X_k\}$. Now

$$\lim P[X_{t/4u} \le x a_n | X_0 = a_n], x > 0$$

exists as a proper, nondegenerate distribution. This can be seen by noting that $H_n(x) = P[X_{t/4\mu} \le x a_n \, | \, X_0 = a_n]$ has L.S. transform $\Psi_n(u) = [1 - (1 - \varphi_n(u)) a_{t/4\mu}^{-1}]^{a_n}$ when φ_n is the L.S. transform of the conditional distribution $P[X_{t/4\mu} \le x a_n \, | \, X_{t/4\mu} \ne 0]$. It is shown in [6] that $\varphi_n \to \varphi$ a proper, nondegenerate L.S. transform and therefore $\Psi_n(u) \to \exp[-b(1-\varphi(u))]$ which is also proper and nondegenerate. Hence if $\delta > 0$ is selected suitably small, then for all large n

$$\begin{split} &\frac{3}{4} \leq P_{a_n}[X_{t/4\mu} > \delta a_n] \\ &\leq P_{a_n}[T_n > t/4\mu] + P_{a_n}[T_n \leq t/4\mu, X_{t/4\mu} > \delta a_n] \\ &= P_{a_n}[T_n > t/4\mu] + \int_{\{T_n \leq t/4\mu, X_{t/4\mu} > \delta a_n\}} 1 \ dP_{a_n} \\ &\leq P_{a_n}[T_n > t/4\mu] + \frac{1}{\delta a_n} \int_{\{T_n \leq t/4\mu\}} X_{t/4\mu} \ dP_{a_n} \\ &= P_{a_n}[T_n > t/4\mu] + \frac{1}{\delta a_n} \int_{\{T_n \leq t/4\mu\}} X_{T_n} \ dP_{a_n} \\ &\leq P_{a_n}[T_n > t/4\mu] + \frac{1}{\delta a_n} \int_{\{T_n \leq t/4\mu\}} X_{T_n} \ dP_{a_n} \\ &\leq P_{a_n}[T_n > t/4\mu] + d/\delta. \end{split}$$

If we let $d < \delta/4$ we have the bound

$$P_a [T_n > t/4\mu] > \frac{1}{2}$$
.

In a similar vein

$$\begin{split} P_{Ma_n}[S_n &\leq t/4\mu] \leq \frac{1}{Da_n} \int_{\{S_n \leq t/4\mu\}} X_{S_n} \, dP_{Ma_n} \\ &= \frac{1}{Da_n} \int_{\{S_n \leq t/4\mu\}} X_{t/4\mu} \, dP_{Ma_n} \\ &\leq \frac{M}{D} < \frac{1}{4} \text{ if } D > 4M, \end{split}$$

using the criticality of $\{X_k\}$. Combining the two bounds we have

$$C_n > 1/4$$
 for all large n .

Finally,

$$B_n = [f_{n-t/2\mu}(0)]^{Da_n} = [1 - a_{n-t/2\mu}^{-1}]^{Da_n}$$

and this approaches $\exp(-KD) > 0$ where $K = [1 - (\mu + \gamma)/2\mu]^{1/\alpha}$ is the limit of $a_n/a_{n-t/2\mu}$.

(We require $\gamma < \mu$ in this argument but by changing the intermediate points $t/4\mu$ and $t/2\mu$ the result holds for all $\gamma > 0$).

As mentioned above this gives $A_n \to 0$ as $n \to \infty$. But $A_n = 1 - G(t)^{da_n(t/4\mu)}$ implying that $a_n t \log G(t) \to 0$ which is (D).

- $(D) \Rightarrow (B)$. This proof follows along lines identical to [4], Section 2, except that in place of the Baum-Katz convergence rate used there we invoke an extension due to Heyde and Rohatgi ([5], Theorem 1a, b). Although their more general result requires the monotonicity of a certain slowly varying function, these theorems apply to our case and we omit the details.
 - (B) \Rightarrow (A). This is identical to [4], Section 3.
- (A) \Rightarrow (B). Let Ψ be the L.S. transform of H and set $y_t = \exp[-u(1 F(0, t))]$ for u > 0 obtaining from (A)

$$\lim_{t\to\infty} \frac{1-F(y_t, t)}{1-F(0, t)} = 1-\Psi(u).$$

From Goldstein's comparison inequalities [3],

$$(4) 1 - f_j(s) - (1 - s)G^{*j}(t) \le 1 - F(s, t) \le 1 - f_j(s) + (1 - s)(1 - G^{*j}(t))$$

substituting $s = y_i$, then j = n' in the left-hand side and j = n on the right and finally defining the integer $k \equiv k(t)$ by the sandwich

$$f_k(0) \le y_t < f_{k+1}(0)$$

we get using the finiteness of μ that

$$\frac{1 - \Psi(u)}{u} \le \lim \inf_{t} \frac{1 - f_{n+k}(0)}{1 - f_{k}(0)}$$

and

$$\lim \sup_{t} \frac{1 - f_{n'+k}(0)}{1 - f_k(0)} \le \frac{1 - \Psi(u)}{u}.$$

Let $0 < \delta < \frac{1}{2}$ be arbitrary. Then if γ and γ' are suitably small there is a $t_0(\gamma, \gamma', \delta)$ such that if $t \ge t_0$ then

$$1 - \delta \le \frac{1 - f_{(t/\mu) + k}(0)}{1 - f_{n+k}(0)} \le 1 \le \frac{1 - f_{(t/\mu) + k}(0)}{1 - f_{n'+k}(0)} \le 1 + \delta.$$

Only the extreme inequalities are not immediate. For the left one note that

$$\frac{1 - f_{(t/\mu)+k}(0)}{1 - f_{n+k}(0)} = \prod_{i=n+k}^{(t/\mu)+k-1} \frac{1 - f_{i+1}(0)}{1 - f_i(0)}$$

and by the form of f(s) and (1)

$$\frac{1 - f_{i+1}(0)}{1 - f_i(0)} = 1 - (1 - f_i(0))^{\alpha} L(1 - f_i(0)) > 1 - \frac{2}{\alpha i}$$

if i is sufficiently large. The product therefore exceeds $(1-2/\alpha n)^{(t/\mu)-n}$ which converges to $\exp[-2\gamma/\alpha\mu]$ as $t\to\infty$. Choosing γ suitably small we get the desired inequality. The right-hand inequality is handled similarly. It now follows that

$$\lim_{t\to\infty} \frac{1 - f_{(t/\mu) + k}(0)}{1 - f_k(0)} = \frac{1 - \Psi(u)}{u}$$

so from (1)

$$\lim_{t\to\infty}\frac{(t/\mu)+k}{k}=\left[\frac{u}{1-\Psi(u)}\right]^{\alpha}$$

or

$$\lim_{t\to\infty} t/k = \mu\beta$$
 where $\beta = \left[\frac{u}{1-\Psi(u)}\right]^{\alpha} - 1.$

But because $[1 - f_k(0)]/[1 - y_t] \rightarrow 1$ we get, using (2) and $k \sim t/\mu\beta$, that

$$\lim_{t \to \infty} \frac{1 - f_{t/\mu}(0)}{1 - \nu_t} = (1/\beta)^{1/\alpha}$$

and therefore

(5)
$$\lim_{t\to\infty} \frac{1 - F(0, t)}{1 - f_{t/\mu}(0)} = \frac{\beta^{1/\alpha}}{\mu}.$$

The left side is, and hence the right side must be, independent of u. Call it K. To evaluate K, from (4)

(6)
$$\frac{1 - f_{n'}(y_t)}{1 - F(0, t)} - \frac{1 - y_t}{1 - F(0, t)} G^{*n'}(t) \le \frac{1 - F(y_t, t)}{1 - F(0, t)} \to 1 - \Psi(u).$$

If $\delta > 0$ is arbitrary and if t is sufficiently large and γ' sufficiently small then from (2) and (5)

$$(1-\delta)K(1-f_{n'}(0)) \leq 1-F(0,t) \leq (1+\delta)K(1-f_{n'}(0)).$$

Substituting this into the left side of (6) and taking limits on $t \to \infty$ and then on δ , $\gamma' \to 0$ gives

$$K^{-1}[1+\beta^{-1}]^{-1/\alpha} \leq 1-\Psi(u).$$

To obtain this expression we have made use of the definition of y_t , the convergence of K/n', and (2) in the form

$$\frac{1 - f_{n'}(y_t)}{1 - f_{n'}(0)} \sim \frac{1 - f_{n'+k}(0)}{1 - f_{n'}(0)} \to \left[1 + \frac{\mu - \gamma'}{\mu\beta}\right]^{-1/\alpha}.$$

There is a similar inequality in the other direction and we finally get

$$\Psi(u) = 1 - K^{-1}[1 + \beta^{-1}]^{-1/\alpha} = 1 - u(1 + K^{\alpha}u^{\alpha})^{-1/\alpha}.$$

Let $u \to \infty$. $\Psi(\infty) = H(0^+) = 0$ and $\beta^{-1} \to 0$. Hence K = 1 and we get (B) as well as the corollary.

Remark. $\Psi(u)$ is the same L.S. transform as obtained by Slack [6] in the Bienaymé-Galton-Watson case.

4. Concluding remarks and suggestions for further work. The analysis (A) ⇒ (B) suggests some possibilities for the age-dependent process which do not arise in the Galton-Watson case, related to behavior when the lifetime distribution has a long tail.

Suppose that in condition (A) we permit $H(0^+) = q_0$ and $H(\infty) = q_\infty$ where possibly $q_0 > 0$ and $q_\infty < 1$. The limiting L.S. transform Ψ will be defective at the origin with $\Psi(0^+) = q_\infty$ and also $\Psi(\infty) = q_0$. In place of (B) we have

$$\lim_{t\to\infty} \frac{1 - F(0, t)}{1 - f_{t/u}(0)} = K$$

where K is no longer necessarily 1. We still have, however,

$$\Psi(u) = 1 - \frac{u}{(1 + K^{\alpha}u^{\alpha})^{1/\alpha}}.$$

It follows that $\Psi(0^+)=1$ so $q_{\infty}=1$ and the limit distribution is not defective. However

$$\Psi(\infty) = 1 - \frac{1}{K}$$

giving

$$K = (1 - q_0)^{-1}$$
.

There seems to be no reason a priori for excluding the case $q_0 > 0$. In fact Vatutin [7] has considered some cases when the process $\{Z(t) \mid Z(t) \neq 0\}$ converges to a discrete limit. It follows that

$$\{(1 - F(0, t))Z(t) | Z(t) \neq 0\}$$

converges to a limit degenerate at 0 with $q_0 = 1$ and $K = \infty$, that is

$$\lim_{t\to\infty}\frac{1-F(0,t)}{1-f_{t/u}(0)}=\infty.$$

One of his assumptions is that

$$\lim_{n\to\infty}\frac{n(1-G(n))}{1-f_n(0)}=\infty$$

and it is reasonable to conjecture that there is a general equivalence between the asymptotic behavior of

$$\frac{1 - F(0, t)}{1 - f_{t/\mu}(0)}$$

and $n(1 - G(n))/[1 - f_n(0)]$ which subsumes (B) \Leftrightarrow (C).

If we look at $K < \infty$, then since

$$1 - f_{\lambda t/\mu}(0) \sim \lambda^{-1/\alpha} (1 - f_{t/\mu}(0))$$

we get

$$\lim_{t\to\infty}\frac{1-F(0,\,t)}{1-f_{\lambda t/\mu}(0)}=K\lambda^{1/\alpha}$$

and defining λ to make $K\lambda^{1/\alpha}=1$ then heuristically the dominant generation at time t is $\lambda t/\mu$ which is smaller than t/μ suggesting that the long lifetimes depress the rate at which the dominant generation grows. In a future paper we plan to study the distribution of generations when the lifetime distribution has a long tail.

Acknowledgement. We are grateful to Harry Kesten for communicating his proof of $(B) \Rightarrow (C) \Rightarrow (D)$ in case $\sigma^2 < \infty$ and János Komlós for reference [5].

REFERENCES

- BAUM, L. E. and KATZ, M. (1965). Convergence rates in the law of large numbers. Trans. Amer. Math. Soc. 120 109-123.
- [2] BOJANIC, R. and SENETA, E. (1971). Slowly varying functions and asymptotic relations. J. Math. Anal. Appl. 34 302-315.
- [3] GOLDSTEIN, M. I. (1971). Critical age-dependent branching processes; single and multitype. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 17 74-88.
- [4] GOLDSTEIN, M. I. and HOPPE, F. M. (1977). Limit theorems for the critical branching process with infinite variance. Stochastic Processes Appl. 5 297-305.
- [5] HEYDE, C. C. AND ROHATGI, V. K. (1967). A pair of complementary theorems on convergence

rates in the law of large numbers. Proc. Cambridge Phil. Soc. 63 73-82.

[6] SLACK, R. S. (1968). A branching process with mean one and possibly infinite variance. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 25 31-38.

[7] VATUTIN, V. A. (1976). Limit theorems for a critical Bellman-Harris branching process with infinite variance. *Theor. Probability. Appl.* 21 839-842.

DÉPARTMENT DE MATHÉMATIQUES UNIVERSITÉ DE MONTRÉAL CASE POSTALE 6128 MONTRÉAL 101 QUÉBEC, CANADA DEPARTMENT OF STATISTICS UNIVERSITY OF MICHIGAN ANN ARBOR, MICHIGAN 48104