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WEIGHTED SUMS OF INDEPENDENT IDENTICALLY DISTRIBUTED
RANDOM VARIABLES

By RALF ULBRICHT
Jena, GDR

We characterize the sequences (a;) of real numbers such that Y1 aifi
exists a.e. or in L, for all sequences of independent identically distributed
symmetric random variables with pth moment. Moreover, we also treat the
case sup| a:f;| < « a.e.

It is known that a sequence (a;) belongs to 1,(0 < p < ) if and only if sup| a;f; | <  a.e.
for all sequences (f£;) of independent symmetric 3-valued random variables, with sup E| f; |
< [1]. We give a similar characterization of the spaces ,, respectively /,..(1 < p < ®) by
sequences (f;) of independent identically distributed random variables. More precisely we
describe the following spaces of sequences of real numbers:

Ap={(a): 31 aif:  ex.ae. for all (f;) € D,}
A= {(w): 31 aifi  ex.in L, for all (f;) € ®,)}
A7 = {(a;):sup|aif;| < = a.e. for all (f;) € ®,}

where @, is the set of sequences (f;) of independent symmetric identically distributed
random variables on some probability space (£, ./, P) having pth moment. It turns out
that

Ap=A7 =,

Ab=1, forl=p<2
and

Ap=As=1],

Ap =l for2=p<om,

1. Notation and preliminary results. By /, we denote the space of sequences (a;)
with
X el < oo
and /.. is the space of sequences («;) such that
sup|af| i < o

where (a}) is the monotone rearrangement of (a;) (i.e., |af| = |af| = ---). The space
L,(0 < p < «) consists of all random variables f with pth moment, that is

E|f]7 < .

We denote by L] the subspace of L,, which consists of all random variables fwithE f=0
(p = 1). Lo is the space of all measurable functions. We define for a random variable f the
so-called tail function F by

: Fi(x) = P{f=x)}, X ER,.
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We now give some elementary lemmas.

LEMMA 1. Letl=p<q<2. Then
LCAPCALCASC L,
In the case2 <p < o
AL=A)=1,.

Proor. The inclusions
APCASCA; for 1=sp<w
are known (cf. [5]). Moreover if 1 < p < 2 by [7] it follows that
E|¥%, aifi|” < Tin| ai|” B[ fi]? = € Zin] 0] *.

Thus I, C A5. Let 1 < p < g < 2. Taking for the f}s g-stable random variables we obtain
from [4]

Az Cl,

In the case 2 < p < « we get l; CA5 from the inequality

(E|ZEn aifi] ) =< K, max((T2n| ac|” E| i)', Tn| | * E|£i] ) )
(Theorem 3 [7]). Taking for (f;) a Bernoulli sequence Khinchin’s inequalities assert
A Ch

Thus the lemma is proved.

LEMMA 2. If the sequence (a;) belongs to AS, A5, or Ay, then for any permutation 7 of
the natural numbers (a) also belongs to AS, A5 or A, respectively.

Proor. We only give the proof for the space AY. The other cases are analogous. Let
(a;) € AS and (f}) € @,. Then for any natural numbers %, I the inequality

P{| Thr anofi|> 9} = 2 P{| T, ifi| > 9}
is valid, where
k= infici< 7(3) and I, = supe=i=t  7(3)

(Theorem 2.3 [5]). Thus by our assumption (}’-; a.@»f) is a fundamental sequence in Lo.
The required result follows from the completeness of Lo and Theorem 2.4 of [5].

Because the o;’s tend to zero (this follows by taking Gaussian random variables) we will
henceforth assume that (| a;|) is monotonely decreasing.

LE~MMA 3. Let f be a nonnegative random variable. Then E f° < « if and only if
20 F¢(iVP) < 0. Moreover

Ef<Yeo B <Ef +1
This lemma can be proved by standard methods.

2. Characterization of the spaces A% and A%. To characterize the spacesAj and
A7 we need
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LEMMA 4. Let (g:) be a sequence of independent symmetric random variables and let
({) be a bounded sequence of real numbers. Then the existence of ¥, g a.e. implies the
existence of Y= {:gi a.e.

For the proof see [6]. We are now prepared to prove

THEOREM 1. If1=p <2 then
b C AD.
ProoF. It is only necessary to prove the theorem in the special case o; = i, i = 1,
2, .-+ . The general case follows from Lemma 4 by setting
g = i_l/pﬂ and {; = it

The special case can be proved by the Kolmogoroff’s 3-series test (cf. [3]) and is a known
result of Marcinkiewicz and Zygmund (see [2], page 115).
Before we can give the characterization of the space Ay we need the following lemma.

LEMMA 5. Let (a;) be a sequence of Ay . Then

lim a;f; = 0 a.e. for all (f,) € .
Proor. Fix (a;) EAS.
(1) First we prove that there exists a constant ¢ with
lim sup | a:f;| < c(E|f|?)” a.e.
for all (f;) € ®,(lim sup | a;f; | is a constant a.e.). On the space L we define a quasinorm by
$(f) = max((E|f|")"7, {o(sup | aifi|)),

where (f;) is a sequence of independent random variables, identical distributed as f, and
¢ is the usual quasinorm on L, ([8], page 38). By standard methods one can prove that L
" with this quasinorm is an F-space (see [8], page 52). Then the quasinorm ¢ is equivalent to
the usual norm on L, (closed graph theorem). Thus we get that

lim,. E|f*|?=0
implies
lim, . {o(sup;|a:f?|) = 0.
This yields |
lim sup| a;f;| < c¢(E|f1|?)'? a.e.

for all (f;) € @, with some constant ¢ = 0.
(2) In the second step of the proof we show

lim a;f; = 0 a.e. for all (f;) € ®,.

Assume there is a sequence (g;) € ®, with E | g, |” < 1, which does not satisfy the condition
lim a;g; = 0 a.e. Then there exists a constant & with 0 < # < ¢, such that lim sup | a;g:| >
to, where ¢ is the same constant as above.

We define a new sequence (f;) € ®, by

P{fi=t} = (to/c)'P{g = (to/0)t}, t€ (0, »)
and P{fi=0} =1~ P{fi>0}.
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Obviously E | f1|? = E| g1|? =< 1. For each natural number n we obtain
Yim1 P{|aigi| > to} = Yim1 (c/t)’P{| asfi| > c}
= (¢/tof” T P{|aifi| > ¢} < .

This contradicts our assumption lim sup | a;&;| > £ thus proving Lemma 5.

THEOREM 2. Let1 =<p < ». Then
b = Ajp.
ProOF. By the Borel-Cantelli lemma the supremum is finite if and only if the sum
X& P{|aifi| > t}

exists for some ¢ > 0 (cf. [1]). Then Lemma 3 yields the existence of the supremum for a
sequence (a;) of lp.. Thus

b CAp

holds.

We now show that the converse inclusion is true. We assume that the sequence (a;)
does not belong to /.. Then there exists a sequence of natural numbers (i) having the
following properties:

(1) 4% 1 < i1

@) | s, | = &/ (@K"7) E=12,....
If
Br=ii"/k k=12 ...
then condition 1 ensures 8, — . Using (ix) we construct a tail function F
~ 1
= f a<t= k=23, ...
F() G — i) or Br-1 B

for —fi<t=p

I
N =

1
=10
Zk(lk—lk—l)

A random variable f with this tail function is symmetrical and possesses a pth moment
because of (we define By = ip = 0)

21 FM) = Tier Tap <izpg F(E7)
=235 F(Br (B — Bi-)

~ 1 e b
S2BF(B) + Xi-2 %(ir — o1 (-li_kl; - (kli l1)“')

for —Br<t=—Br: k=23, ...

=B+ 2;".2%< o0,
By the monotonicity of the sequence (| a;|) and the second condition
F(la;| ™) = F@iP/k)  for i1 <i<ip
holds. Hence it follows
S F(lai| ™) = it FGP/R) i — 1)
=Yi11/2k

for each natural number n. By the Lemma 5 the required result follows.
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By Lemma 1, Theorems 1 and 2 the spaces Ay andAy are completely characterized.

THEOREM 3. The following relations are valid:

Al =A; =l 1=p<2
Ap=1 2=p<o
Ap = by

3. Characterization of the spaces Af. Before we can give the characterizations of
the spaces A5 we need

LEMMA 6. Let (a;) be a sequence of A5. Then there exists a constant ¢ such that for
each sequence (f;) € @, the inequality
E| Y% aifil?P<cE|A|?
holds.

Proor. Fix (a;) € A By symmetrization one can prove thatY 2 «f; exists in L, for
all sequences (f;) of independent identical distributed random variables with pth moment
and E f; = 0. Thus we define on L} a norm by

"f" = (E|2§°-1 Oliﬂlp)l/p.

Then L) with this norm is complete and thus the norm is equivalent to the usual norm on
L, (closed graph theorem). This proves our lemma.

THEOREM 4. The following relations are true:
Ab =1, for 1=p<2

Al=1l for 2=p<c,

ProoF. The case 2 < p < » was proved in Lemma 1, also
A5DU, for 1=p<2.

We now show the converse inclusion. For an arbitrary fixed natural number » we regard
the sequence (f7') € @, which is distributed with

P{fr=0} =27
and P{f? = — bY?} = P{f? = —b\/?} = % 1 -2

where b, = 2¥/72V" — 1)71,

Obviously E | f*|? = 1.
By Lemma 6 there is a constant ¢ with

c=2E|YZ aif7|P+1 foranyn.
Corollary 3.2 of [5] implies ]
’ c = E(sup;|a;f?[)?+ 1
= E(supi=n | a:f?|)” + 1.
Applying Lemma 3 we get
¢ = Y0 P{supiza | eif 7| > j'/7}

= Yo (P{aaf7| > P} + Yie P{|aif?] > j1P, SUpg=i-1| arf k| =j"")).
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Since the random variables f? are independent we obtain
cz|a|” + Lo Xike P{|eif 2| > 7} T1,2, Pl anfR| = j"7)

1 n o n .
z|a1|"+§2,»_22,».0P{|a,~f,~|>;VP}
1 n n
= |l + T Elafi|?

1
= 52:21 |a,~|”.
This proves Theorem 4.
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