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LIMIT THEOREMS ON ORDER STATISTICS

By JozeF L. TEUGELS

Katholieke Universiteit te Leuven

Let F belong to the domain of attraction of a stable law with parameters
o and p. Let X, X;, - - - be a sample from F. Put | X, | < | X |< ... <|X.|. We
consider the asymptotic properties as n — o (and & — ) of the ratio of order
statistics (X + -+ + Xt/ | Kooin |-

1. Preliminary results. Let X;, X,, - - -, X, be a sample of size n from a distribution
F on (—oo, +0) which belongs to the domain of attraction of a stable law, i.e. for x — o

(1) 1- F(x) ~p{xL (x)}_a
F(—x) ~ q{zxL(x)}™

where 0 <a<2,0<p=1,p+ q=1and L is slowly varying (s.v.) at infinity. We exclude
the case a = 1.
To unify the statements of forthcoming theorems, we introduce

V={O if 0<a<1

2) u if l<a<?2

where p is the mean of F.

IfS,=Xi+ X, + ... + X, then (1) implies that for a sequence a, > 0, a, — o,
a,'{S, — nv} converges weakly to a stable law with parameters « and p [4, page 574], [5,
page 46]. We can in fact take a, such that as n — o

n{l - F(an)} —> p.
Solving for a, we obtain
3) an ~ nl/aL*(nl/n)

where L* is the s.v. function conjugated to L [6, page 25] [3].

LEMMA 1. Assume (1) and (3) hold. Then

) n{l — F(a.,x)} — px™*, n— o, x>0,
? {nF(anx) —ql|x|™ n— o, x<0;
(ii) Llll__l;';((lg)dyﬁlia, O<a<l, v— ®©
(i) flwll__l;(("vy))dy—»ail, l<a<?2 vow®
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A crucial role will be played by a truncated part of the characteristic function of F. To
abbreviate the writing we introduce the notation (¢ € R, y > 0).

y
Yy +f (e —1) dx™ 0<a<l,

) E.t,y) = >
y o +f (e™ — 1 —itx) dx @ l<a<?.

0

LEMMA 2. Assume (1) and (3) hold. Then asn— o andu<0<v

n{] e““dF (a,w) — 1 — ?} — —K,(u, v, t)

n

where
PE.(t, v) + qE.(—t, —u) O<a<l,
K. (u,v,t) = wif
DPE.(t, v) + qE.(—t, —u) + — [pv'™ — q(—u)*™] l<a<?2.
PRrOOF.

(i) 0<a<1l. LetI, = 4 e dF (a,w). Then
I,=- j (™ —1) d{1 — F(a.w)} — {1 — F(a,v)} + {1 — F(0)}.
0
Similarly let
0
1, Ef e™ dF (a.w).
Then
0
II, = f (e — 1) dF (a,w) + F(0) — F(anu).
Hence by Lemma 1 (i)
0
n{l = I, — II,} — pE.(t, v) — qf e™ -1 d|w|™+q|u|™
(ii) 1 < a < 2. Using the same abbreviations as in (i) we can write

I, =—- f (€™ — 1 — itw) d{1 — F(a.w)} — {1 — F(a.v)}
0

+{1-F()} — itf wd{l - F(a,w)}.

0

However by an integration by parts

o

f wd{1 — F(a,w)} = v{l — F(a,v)} — al [1 - F(v)] dv +J [1 - F(a, x)] dx.
0 . v

" Jo



870 JOZEF L. TEUGELS

Similarly
0

0
II, = J (e™ — 1 — itw) dF (a,w) + F(0) — F(a,u) + itf w dF (a,w)

u
where

u

0 0
(6) f w dF (a,w) = —uF(a,u) _alj F(v) dv +f F(a,x) dx.

—00

From here the calculations are similar as for case (i) except for the last term in (5) and (6).
But

° "1 - F(axvy)
[1 - F(a.x)] dx =v{l — F(a.v)} f —
J: , 1= F(a,v)

which is handled by (iii) of Lemma 1.0

2. Main limit theorems. Let us order the r.v. of the sample according to increasing
moduli

X=X - =|X].
We investigate first the limiting behaviour of the hybrid characteristic-distribution function

() Xn(t, ) = E{e™ | Xy pi1| < 3}
where SP =X +X+ - +Xs—(n—kw

LEmMMA 3. Assume (1) and (3) hold. Then as n— o fory = 0.

x i a y — ___]'_____ 7 v—u(k—l}e—K,x(—v,v,t) dv—a
e " (- 1)! :

0

Proor. It follows from (27) in [1] that for y = 0

— 1 —_ 1 Y
& '1'—‘);,('n ik X»(t, y) = f {1 - F@) + F(=v)}* Y ()™ dF (v)
) 1]

8)

0
+ f {1-F(-v) + F©)}*"Y@)*™ dF (v)

where (v = 0)
Y) =y, t) = e""”f e dF (x).

Change ¢ into t/a, and y into @,y in x.(¢, ¥). Replace v by a,v in both integrations. As
n— o, (n — k)!/n! ~ n7* Hence

limy o x(ai any) - —lim, ... f (n[1 = Fa,v)
n 0
+ F(=ant)]* ¥ (@nv)™* d{n[1 — F(anv)]}

0
+ limpe J {n[1 — F(—a,v) + F(a,v)]}* Y (—a,v)"* d{nF(a.v)}.
-y
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But (v=0)

o[t o)) =afi - e [ o) = i

in view of Lemma 2, and the fact that by (3) n/a2 — 0. For v=0as n —
¥(@.0)" ™ - exp{—K.(-v, v, )}.
Collecting terms we obtain the result. 0
For 0 < a < 1 Lemma 3 can be found in [1, page 384] with slightly more technical proof.

For 1 < @ < 2 our result is more useful than the corresponding statement in [1].
The main r.v. under consideration will be

1 ~ ~ ~
Tn,kE — {Xl +X2+---+X,._k—(n—k)v}.
IXn—k+1|

THEOREM 1. Assume (1) holds where o € (0, 1) U (1, 2). Then asn — o
E{exp it Toi} — {pE.(t, 1) + qE.(—t, 1) + 0a—g—1 (p—qity™
where § = min(1, [«]).

Proor. Clearly

. S& ® Sk Y ” t
Ejexpit——— 1t =| E{e“7, | X n|Edy}=| xu|—), andy).
[} 0 any

I n—k+1 |

Soasn— o

E{exp it Tni} — — (IT—IT)! fo y""""”eXP{ —Ka<—y, y,§ )} dy™.
However by an easy calculation one can show that for y>0
K,,<—y, » ﬁ) =y K(-1,1,0
from which the result is immediate. 0
The most remarkable fact which follows from Theorem 1 is that 7, converges in

distribution to a random variable T (say) which is the sum of % independent r.v. all
distributed as 7. The r.v. T} has characteristic function

-1
E[e""] = {pEa(t, 1) + gE.(—-t, 1) + 0—aT (p— q)it} ,
a—
where the expression inside the brackets is an entire function of the possibly complex
valued variable ¢ [2]. Also as ¢ = 0, E,(0, 1) = 1. Hence T} has an analytic characteristic

function and in particular has moments of all order. For example

ETi=——(p-q)=v
l1—a

a alp—q)\*
VarT1=2_a+( w_1 ) EB.

By a standard diagonalisation argument we obtain:
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COROLLARY 1. Assume (1) holds. Then there exist sequences k, and k), tending to
infinity such that

(i) kn' Ton, —pv;
(ii) (Bk;l)_l/z[Tn,k;, - Yk’n] -9 '/V(O) 1)7
Motivated by the above corollary we try to find “best-possible” sequences %, for which we

obtain convergence to a degenerate or normal law.

3. Conditions on k for degenerated or normal limit law. In general we try to
determine constants ¢, = ¢z, and d, = dnx, such that d;'{T,s, — c.} converges in
distribution either to a degenerated or to a normal limit law.

Clearly, under

c,=ky
(L) { g%
a degenerate limit will appear; under
c.=ky
<N> o 25

a 40, 1) will be found.
To facilitate the arithmetic we are forced to introduce some notation

o nalt) = E{exp [ Ts - cn]} (t€R)
7 itx
(10) J=du(t, y) = J: y exp(y - ) dF (%) R y=0)
(11) gsg,,(y>=i{ & +3}
d,|\n—Fk y (y=0)
and
(12) 6 = dult, y) = e,

Using again (8) we see that

) * t
= p—itlen/dy
Poi(t) =€ ) J; Xn <y a dy)

or
' 00
Pni(t) = _(k—l)'nTk)’j {1-F(y)
(13) : *Jo

+ F(=3)}"Yon(t, )} * d{F(y) — F(-y)}.

We now successively transform the integral on the right. First put

(14) s=1-F(y)+ F(—y)= H(y) (y=0)
and
(15) 1-F(y) — F(-y) = K(y); (y=0)

we denote by H' the inverse function of H so that H ‘(s) = y. In a similar fashion as in
Lemma 1 we obtain
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LEMMA 4.
' H(uy)
. - — —- -1 .
i) IfB>a—1 then i uf ) du— (B—a+1) as y— o
(i) ifB<a—1 then J; uﬂlé((lg;) du— (a—B-1)" as y— o

1
ceey K(uy) pP—q
- 8
(iii) fB>a—1 then A u b1l )du—>B 1 as y— oo,

(iv) s=H(y) ~yL™(y) asy — = is equivalent to
y=H'(s) ~s*L*(s™*) as s—0.
We have from (13)

! ! ;
Pri(2) =(k——1—)!'l(n_—WJ Sk_l{d)n(t, Hi(s))}"™* ds.
! R

Let {p,} T and {g.}7 be sequences of positive constants to be chosen shortly. Change s into
2 by the substitution

(16) S = qn + pra.
Then
(1-9,)/pn
17 Qnp(t) = It ] L(2) {¢n(t, )}/ (1 — 8)}* * dz
—4,/Pp
where
(18) L = n!pa(g:)* (1 — gu)"™*/(k — 1)!(n — E)!
and

k-1 nk
Iz) = 1+£ﬁz} 12 .
qr 1-g¢»

It is easy to show that I»(2) will have a “useful” limit for n — o, k— w and n — k — o only
if we put

k—1 k—1)(n—k
(19) &= ﬁ=i(T)_(';—)3—)

so that g,./p, — ©, (1 — @.)/pr — .

LEMMA 5. Ifn— o, k— o, n — k — o then with (19)

(i) Li— (Va2m)™
(ii) I(2) — exp{—2z"/2} uniformly in compact z-intervals.

Proor. (i) Follows from (18) and Stirling’s formula; (i) We follow Smirnov [7, page
95]. It is easy to show that

-1 -1
Iz = —2h(z) {1+ 2221 {1-2_ .1 |
. qn 1-— qn
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Since I,(0) = 1, we find
. -1 -1
I(z) = exp— {J v 1+£fv 1- Dn ve dvg.
o Qn 1 - Qn

P/ = (k= 1)72 and p./(1 — ga) =< (n — k)72
Hence the result. 0

But

If we can find the limiting form of the remaining expression
(20) I = {¢n(t, )/ (1 — 8)}"™*
the limit of @..(¢) is readily obtained. However we have to restrict ourselves to compact

intervals. To see that this is allowed we first prove:

LEMMA 6. There exists a constant C, independent of k and n so that for n — © and
k—>oand T>0

(1—q,)/Pn
Je=1 J L(2){$n(t, y)/(1 — 8)}" " dz < CT%;

T

-T
J.=1 f L(2){én(t, )/(1 — 8)}"™* dz < CT 2

~4qn/Pn

Proor. We only prove the result for /.. Returning to integration with respect to s we
find

1
Je =-(m!”i—n_7)! fq o, "7 {gn(t, H'($)))" ™ ds.
However by (10) and (12)
|6n(t,y) | = F(y) = F(=y) =1-H(y) =1-s.
Moreover since s = q, + pr T, (s — q.)%/(p.T)? = 1. Hence

1 n! ‘
PIT?* (k —1)!(n — k)!

1
|| = J s¥71(1 — s)"*(s — gn)? ds.
1]

Now use (19) and some standard properties of the beta function to find that |J.| <
T72(1 + 0(1)) where 0(1) - 0 asn — o and k2 — . 0

We now determine under (L) or (N) for what sequences {k,}I; converges as n — o
where s = g, + p.z and where | z| < Z where Z is an arbitrary but fixed constant.

We first remark that the estimations of Lemma 4 are applicable if s — 0 or if ¢, — 0
since p,/q. — 0. This means that 2 = o(n).

LEMMA 7. Under conditions (L) or (N), g.(y) = 0 as n — o, k — o, k = o(n),

uniformly in z, | z| < Z.

Proor. If (L) holds, then g =,—l—%—k; +k_';' where n — k — o and ky — o. If (N) holds,
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then

vk v

as well. 0

We turn to the term oJ. As in the proof of Lemma 2, we have to rewrite /. If we want to
deal with the two cases 0 < a < 1 and 1 < a < 2 simultaneously, we need to introduce the
following function which will be fundamental in the (N) case

1
J {(p—q)u‘“—K(uy)}du if 0<a<l,
[

H(y)
(21) e(y) =
* - K(uy)} .
- —-qQu*— du if l1<a<2.
fl { (p—-29q) () a
We obtain after straightforward algebra that
1 ait/dap _ —it/dy itv isp—gq s
J=1—{e“"[1—-F(y)]+ e "“"F( y)}+yd,,+d,,1—a dnp(y)
. y ’
+ % (L™ — 1][1 — F(x)] — [~ "% — 1]F(—x)} dx.
" Jo
The two functions
| .
(22) T = mu(t,y) = - {“/[1 = F(y)] + e™/*F(~y)}
and
d, 7 . .
(23) =t y) = ﬁf {[e"™”™ = 1][1 - F(x)] — [e"**”% — 1]F(-x)} dx
1]

are helpful in rewriting J in the form

. 2
= (1-— S 1= M (v . pP-q__ (L
24) J=(1 s){1+1_s[1 W"+sd,,<y+1—as sp(y)) (d,.)‘u"]}'

We estimate in turn m,, y, and—l—i; . Recall that under (L) or (N), d, = » as k — .

a. m(t, y).
From (22) we have

2 .
smalt, y) = {1— F(y) + F(—y)}{l —% (di) + o<d;2>} + ;‘if (1= F(y) - F(-y))

or

_L L itEy) 1 e\
Wn(t,y)—l"'a:m 2<dn) + o(d=")

o it 1/t\

b. u.(4,y).
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In an entirely similar fashion by Lemma 4

1 . 1
pn(t, y) = v____H(yv) dv + 2 v? K(yv) dv + o< k )

,  H(y) 2d, J,  H(y) d:
(26)
_ 1 it p—q
“3—atagz—at oW
c. s/(1-s).

From the definition

-1
SN LI F P9 Y S L O
1-s 1-q. Qn 1-gqg-.

But ¢./(1 — q.) = (k — 1)/(n — k); hence

1/2 -1
(n—k)i—(k—1)=z{(”_1)(k_1)} {1 Pn z} )
1—s n—=Fk

Hence for | 2| < Z uniformly as n — o, k — o, k = o(n)

@7 (n—k)-—s——(k—1)=z{ nk
1-s

n—

172
k} 1+ o(1)).

We now evaluate the limit of I5. Since for n — o, 2 — «, & = o(n) both g - 0 and
J/(1 — s) — 1 we can write that I; converges iff

J o 1}

-8

Expand e and use (24) together with the estimation obtained in a and b above.
Collecting terms according to powers of ¢, we obtain

1-s d.
s(n—k) Xa(y) s(n—k) 1 a
1-s d, 1-5s) d:2—«a

R.(t,y)=(n— k){e“"‘" T

converges.

2

LAY PR I
2{(n kg® —2g

(28)

o 28(r = ) Xa(y)

s(n—k) 1 s(n—Fk) 1
+O(g 1-9 d_ﬁ)+0< =) 71:)’

_pP—q_ v _K(y)
Xn(y) 14 p(y) + s H(y)'

where

2
Denote the coefficient of it in (28) by A, (¢, y); that of —% by B, (t, ¥) and the maximal o

or O term by C,(¢, y) so that
2

R.(t, y) = itAn (¢, y) —% B.(t, y) + O(G (¢, ¥)).
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LEMMA 8. (i) Assume the conditions (L) hold.
Then as n — x, k — o, k = o(n) uniformlyin z, |z| < Z
R.(t,y) = 0.
(ii) Assume the conditions (N) hold.
Choose k, in such a way that v @ — 0, «/k-,,p (y) = 0 and

s/—{—gg; - (p- Q)} — 0  where k,/n=H(y).

[t 1/t\ «
Rn(t, y) b d l(ﬁ)yz —§ <E) E—_(x.

Proor. (i) First, X,(y) =5 —= — (p = q) + 0(1) = p(3) +§ while (n — k)g = v +

Then as n — «

v(n — k)/(ky). Note that p(y) — 0 as y — o. Hence

_s(n—k) v(in—k) v(n—~k).
An(t, y) = 21 —3) {y—p(»)+o(M)}—v YT Ty
. (n—Fk)s 1 .
The last two terms combine to vm . ; . Applying (27) we find that A,.(¢, y) — 0,

since y — .
For B, (t, y) the last term tends to zero by (27). The first yields

(n— k)g* = v*/(n — k) + 2gv/(ky) + v*(n — k)/(ky)".

For the last term we note that ky* =n. (%)yz. But % ~sandy ~ s Y2L*(s~"*) by (iv)
of Lemma 4. So sy* ~§yz ~ gl=¥eL *(s71/*) 5 oo since a < 2.

Finally, the second term yields by (27) again
s(n— k) v g
21 =s) £X.(y) g{y +o0(1) + sy} v s

But g/(sy) = y/[(n — k)sy] + »/(ksy?) — 0 since (n — k)sy ~ nsy ~ ky — » and ksy’ —
oo since sy — oo,

The terms in C,(¢, y) have already been estimated.

(ii) Now ¢, = ky while d, = B«/I_e. Hence after some algebra

s(n — k) (p—q K(y)) Ut s(n—k) 1
- - ——p(y) +tr—————~.
1—s)vE\l—@ H(y) (1-s)VE (1-s)VEy

BA.(t, y) =

As

s(n—k) JE n "
= Vk+2{——=} (1 +0(1)) +0(1)
1 - s)Vk {” - k}

vk
by (27) we have to choose % in such a way that\/zp(y) — 0, v—y— -0 and«/i(p -q -

K(y)
m) — 0. Hence BA.(¢t, y) — yz.

The estimations for B, (¢, y) and C,(¢, y) are similar and are omitted. 0

It is now easy to finish the proof of the following theorem.
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THEOREM 2. (i) Assume (1) holds. Then for any sequence k, — ® for which k, =
o(n) asn — .
1

7 Lnk, >PY.

kn

(i) Assume (1) holds. Take any sequence k, — » for which k, = o(n) as n — « such
that for y defined by

K
kafn = (JL()YS  VEfy—0,  VEp(y) -0, Jk?{(p—q)—%}—»o.

Then
(BRn) V*{Top, — kny} =0 MO, 1).

Proor. (i) Let ¢ > 0 be arbitrary. Then with Lemma 6
T

| P, (&) = 1| = |Js| +|J-| + . IIJ L(z)I;dz — 1'

-7
2C r 1 (7 . O
=—+ I Ilf L(2);dz — — e ?dz | +2— | e #2da.
T -T 2@ J-r 2a Jr
1 o —22/2
Now choose T > vC/e and such that Jte dz < ¢&. Then by Lemma 8
27

| @rx,(£) — 1| < Be.

(ii) The proof is similar and is omitted. 0
COROLLARY 2. If F is continuous and symmetric then as k, — » such that k, = o(n)
asn— o

@) }:— Tn,kn —p0;

n

2—a
Proor. This follows from p = ¢, K(y) =0,»=0and p(y) =0.0

. okn |7
(ll) Tn,kn —>g -/V‘(O, 1).

4. An example. Theorem 2 can be applied to stable laws, to some Pareto and
extreme value distributions, etc. In all these cases, a sequence k, can be more or less
specified.

THEOREM 3. Assume that as x — ®

[1 —F(x)=px™+ bx** +o(xF)
F(—x) =qx™ + b'x™** + o (x™*F).

wherea € (0,1) U (1,2),0<p=<1,p+qg=1,0<B=<aandband b real constants. Then
the conditions of Theorem 2 (ii) are satisfied if k, = o(n") where

) 28 2(1-a) )

/" = <1
mm{a+2ﬁ, 2—a} if 0<a
a+28’2+a

28
a+ 28

2
y= min{ A 2 } if 1<a<?2, v#0

]
=4

if l<a<?2, v
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ProoF. (i) 0 < a < 1. Since H(x) = x* + (b + b)x™* + o(x™¥) as x — o the
solution of k/n = H(y) with respect to y is

—1/a k
y = (k/n)Y {1+o(;)}.

Now » = 0; we only have to verify the other two conditions. K(y) = (p — q)y™* + (b —
b)y ™" + o(y™*) yields

: (P=g@+(B=8)y*+0(y™*)] _ "
‘/E{(p 9 - 1+0(y "% } = VRO,

This tends to 0 if
k ﬂ/“
vk <;) —0 orif k=o{n¥¥},

Now V& p(y) — 0. Let A be fixed and positive. Then

_p-gq__1 [ Jp—q)f’ . "
p(y) T yH(y)J; K@) dv VHG) Av 1+ O(v ))dz‘)

or
(] =Ciy™ + Coy*.
Hence x/zp(y) — 0if

k=0 {n2ﬁ/(a+2ﬁ)} and k= O(nZ(l—a)/(Z—a)).

(i) l<a<?2.
k —1/a k k 1/a
Again y = <;) {1 + o(;)} so that VE&/y ~ «/Z(;) — 0if & = o(n¥“*?), Remark
that this condition can be dropped if » = 0. The estimation of

VE{(p - @) — K(y)/H(»)}
yields again vky™ — 0 as in case (i). Finally

-1 b
R By«
e() 1+O(y“’)J: OO u™ du
yielding again vk y ™ — 0.0

5. Some remarks.

(i) The statistical interpretation of Theorem 1 is surprising. For if we use T, as an
estimator of y then T,:/k is asymptotically unbiased and has asymptotic variance B82/k.
Looking back at the definition of 7, we realise that throwing away more outliers
diminishes the asymptotic variance.

(ii) A possible explanation for the independence occuring in Theorem 1 is as follows:
all order statistics not smaller than | X,—+: | subdivide the original sequence {X;}? into %
disjoint pieces that are exchangeable and identically distributed. Formally let 7o = 1, and
form=1,2, -+, klet T, = inf{(j > Trs:| X;| Z | Xnorr1 |}

Then let Yy = {X;+|Xotr1|™, Tn <j < Trsi) form=1,2, ---, k —1and ¥, = {X;-
|Xn—k+l I_l, T, < _]§ nand1= _]< Tl}

The sequence { Y,}/ is then exchangeable. In the limit for 7 1 o the distribution of ¥
will not depend on k.
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(iii) It is quite clear that the theorems in this article give some properties of estimators
that can be used for the two parameters a and p in a stable law or more generally for a
distribution in the domain of attraction of a stable law.

(iv) Theorems 2 and 3 seem to us the first examples of results dealing with the
asymptotic normality of ratios of order statistics. Perhaps a more refined analysis of the
Berry-Esseen or of the Edgeworth type might illuminate the role played by the slowly
varying function L and as such by the sequence {&,}.
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