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REGULAR BIRTH TIMES FOR MARKOV PROCESSES

BY A. O. PITTENGER'

University of Maryland Baltimore County

A random time R is called a regular birth time for a Markov Process if
(i) the R-past and R-future are conditionally independent with respect to
X(R) and (ii) the post-R process evolves as a Markov process, perhaps with
different probability laws. In this paper we characterize each regular birth
time in terms of an earlier, coterminal time L. It is shown (Theorem 4.2) that
to the post-L process R appears as an optional time, perhaps with dependency
on pre-L information and on a certain invariant set.

1. Introduction. The essential feature in the definition of a Markov process is the
Markov property and that has two distinct aspects. First, at a constant time ¢, past and
future are conditionally independent given the present. Second, the process viewed from
time ¢ onward behaves like a Markov process following the same transition probabilities.
As the study of Markov processes progressed, it was noticed that certain random times,
called optional or stopping times, also have both of these properties, and this feature was
isolated as the strong Markov property. It is not true that all Markov processes possess
the strong Markov property, but virtually all of any interest are strong Markov.

Now an important subclass of stopping times, the terminal times, can be viewed roughly
as the first entrance times of sets, and it was natural to investigate properties of analogous
times which can be viewed as last exit times from sets. These investigations were spurred
by Chung’s work on boundary problems of Markov chains [2] and by Meyer, Smythe and
Walsh’s paper [9] on coterminal times (L) in which it was shown that the post-L process
evolves according to a new semigroup. In [10], and subsequently in [5] and [8] by
completely different techniques, it was shown that coterminal times also possess the
property of conditional independence of past and future given the present.

In [7] Jacobsen and Pitman obtained for discrete time and space Markov chains a
characterization of all the random times R possessing both properties described above:
conditional independence of past and future given present; and for which the post-R
process evolves according to a semigroup, not necessarily the original one. In essence, they
showed that preceding any such time R there is a coterminal time L so that, from the
perspective of the post-L process, R looks like an optional time with possible dependence
on pre-L information and on a certain invariant set. Since post-L processes are strong
Markov, it is to be expected that their positive optional times would have both properties,
but it is surprising that these are essentially the only such times.

In this paper we extend that characterization to general strong Markov processes in the
form stated in Theorem 4.2. As the reader may suspect, there is a bit of o-algebraing
necessary to state and prove Theorem 4.2, but most of the key ideas are fairly intuitive.

To facilitate reading this paper, we give a brief outline here. In Section 2 we specify the
underlying process and give some basic terminology. Regular birth times are defined as
are entrance laws and probability measures whose definition involves entrance laws.

Since the proof of Theorem 4.2 relies heavily on some splitting properties of coterminal

Received April 25, 1979; revised July 14, 1980.

! Written while on sabbatical leave at the University of British Columbia.

AMS 1970 Subject Classifications. Primary 60J25; secondary 60G40.

Key words and phrases. Strong Markov processes, strong Markov property, regular birth times,
coterminal times.

769

G]
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ% )2

The Annals of Probability. EIN®RN

WWww.jstor.org



770 A. O. PITTENGER

times, these results are included in Section 3. However, the reader is advised to skip lightly
through this section on a first reading as the arguments involved are rather technical.
With that machinery in place, we establish in Section 4 the easy half of Theorem 4.2 by
starting with a coterminal time L and defining different kinds of new random times based
on L which also possess the strong Markov property. That these modifications are
exhaustive is the theme of the remainder of the paper.

If R is a regular birth time, then associated with R is a semigroup {H;, ¢ = 0}. In Section
5 we define A as the set of x for which H*, the probability on path space generated by the
H-semigroup, is absolutely continuous with respect to P*, the probability on path space
generated by the P-semigroup. It is then possible to define a Radon-Nikodym derivative
M, which turns out to be a multiplicative martingale, and which can be used to construct
a coterminal time L preceding R. In essence, L marks the time at which a path enters A,
and stays in A, thereafter.

The tools of Sections 3 and 5 are combined in Section 6 to complete the proof. The
details are involved but the idea is to use the strong Markov property at L and at R to
establish properties of p = R — L as given in Lemma (3.8).

Section 7 puts the key result of [7] into the context of this paper. Finally, we present in
the Appendix an extension of Walsh’s result on perfecting a multiplicative functional, a
result which was used in Section 5.

2. Notation. Let X be a right Markov process with Borel semigroup (P;, ¢ = 0) and
which is defined on a Borel subset of a compact metric space (E, E). We assume an isolated
absorbing point A in E. The assumption means that for each initial distribution u, there
exists a right continuous, strong Markov process (X#, F;) on E with semigroup (P;). The
o-fields F; are the usual right continuous completions of the minimal o-fields F¢= o(X, 0
< s =< ¢t), and it is assumed that P°(A) is Borel measurable for A €
F%. We do not require left limits in this paper, but branching points may exist. However,
all initial measures will put zero weight on the set of branching points, so that P*(Xo.+ € A)
= u(A). For a complete discussion of these matters see [4].

The “past plus present” of a random time R is defined as the o-field F(R) generated by
F(S) N {S = R} for all stopping times S. (F(S) is the usual o-field associated with stopping
times, and the notation is consistent with the definition given here.) F(R) was introduced
in [10], and Getoor and Sharpe [5] noted that FF(R) measurable random variables coincide
with functions of the form Z(R), where Z is an optional process—i.e. Z(t, w) is measurable
with respect to the o-field on [0, ©) X € generated by {(t, w):S =<t < T, S and T stopping
times}. (See [3] for the exposition of these ideas.) It is easy to see [10] that if R < S then
F(R) C F(S) iff R € F(S), and from Getoor and Sharpe’s observation, or from [10], X(R)
€ F(R).

The R-future of a process will be denoted as G(R) and is defined as §7'F.

Terminal times T are stopping times ({T < ¢} € F) with the property that T'= ¢t + T8,
on {T > t}. Coterminal times L were defined originally by Meyer, Smythe and Walsh [9]
using killing operators. However, the more appropriate random time is what was called in
[9] an exact coterminal time. In this paper we will use the latter time, dropping the
adjective exact and using Getoor and Sharpe’s definition [6]:

(2.1) L = sup{t:(¢, w) € H},

where H is an optional, homogeneous set. Optional means Z;(w) = 1x(t, w) is optional, and
homogeneous means Z;..(w) = Z,(0;w). (See [6] for a discussion of this point.)

We should note here that in [6] Getoor and Sharpe are concerned with the harder
problem of characterizing random times R which possess only the property of conditional
independence, and their methodology is quite different.

There are some random variables frequently associated with a coterminal time L. First
are the random times L(t) € F, defined by

(2.2) L(¢) =lim, sup{s < u:(s, w) € H},
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so that L = L(t) on L < ¢. Next is the terminal time
T = inf{t > 0:(¢, w) € H},
and the key relation is L = s iff L(¢) = s < t and T8, = .

NotaTioN 2.3. To conserve letters, the usual expectation of a function on a set,
E*[g(w), A], will be denoted as P*(g, A). The reader should have no difficulty distinguishing
between functions and sets.

Next we have

DEFINITION 24. Suppose (H;, ¢ = 0) is a nearly-Borel semigroup on (E, E) which
supports a right continuous, strong Markov process with respect to (F,) for each initial .
A family of probabilities (s, s > 0) is called an entrance law (of mass one) with respect
to Hif QS°H¢ = Qs+t-

Just as a probability P* is defined on path space by the semigroup P, so a probability
@ can be defined on path space using an entrance law @, and the associated semigroup H,.
If the entrance law is indexed by x, we denote the probability on path space by @*.

Now let R be a random time with F(R) and G(R) defined as above. Then

DEFINITION 2.5. R is a regular birth time if )

(a) F(R) and G(R) are conditionally independent on {R < «} given X(R) for each P~*,
x€E.

(b) there exists a family (@3, s = 0, x € E) of entrance laws with respect to H such that
@*(A), A € F?, is nearly Borel measurable in x and

P[0T | F(R)] = @®T) as. P, x€E.

To simplify notation we will call (R, @, H) a regular birth system. If Q5 = H;, we will
simply write (R, H).

As an example, (T, P) is a regular birth system for stopping times. A more esoteric
example is a coterminal time L; in [10], see also [5] and [8], it is shown that there exist a
semigroup K and entrance laws D* so that (L, D, K) is a regular birth system. We should
note that (2.5b) was expressed in [10] in the equivalent form

(2.6) PHA,L <t 60;T]=PA,L<t J DXO (¢ — L, dy)H’ ()],

where A € F(L).

One further comment about (L, D, K) is necessary to verify that the assumption in (2.4)
of nearly Borel measurability is no restriction in the context of this paper. It was shown in
[9] and [10] that KF(A) = P*(X, € A | T = »), where T is the terminal time associated
with L. Then g(x) = 1 — P*(T = ») is excessive, since {T = o} = im[{T-0, = x}, s | 0],
and the assumptions of strong Markov and P Borel suffice for g to be nearly Borel
measurable ([4, Section 9]). To show K is nearly Borel, it thus suffices to show that
P*(I1% fi(X,,), T = ) is nearly Borel, where the f; are continuous. To show this, we set n
= 1 for simplicity and define A(x) = [ ae™"*[ f(X;+r), T'-0; = ] dt. Then it is easy to check
that A is a-excessive and hence nearly Borel. Since P*[ f(X;), T = «) = lim[A(x), a 1 ], the
verification is complete.

We include one other observation. If (R, @, H) is a regular birth system, then by
assumption the probabilities @ support a right continuous, strong Markov process (X,
t > 0), where the restriction ¢ > 0 is essential, since the Blumenthal 0 — 1 law may fail with
respect to Q. However, it is true that paths are right continuous at zero:

LEMMA 2.7. Suppose (R, Q, H) is a regular birth system. Then for each x € E a.s. P*
on {R < ©} @ ®[w’:lim X.(w') = X(R(w))] = 1.
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3. Measurability Results. Before beginning the proof of (4.2), we need to develop
some results on splitting o-algebras at coterminal times. These results are essential for the
proofs in Sections 4 and 6, but are a bit unmotivated at this point. The reader probably is
well advised to skip the proofs the first time through.

LEmMMA 3.1.  Let L be a coterminal time and R any random time. Then

{L=R}F(L) C {L = R}F(R).

ProOF. Suppose S is a stopping time. Then
FON{S=L}N{L=R}=FS)N{S=R}N{S<L=<R),

and it suffices to prove the last set coincides with an F(R) set on {L < R}. But that is
immediate from {S = R} € F(R) and

{(L<r<S=R}={(L,<r<S=R<T}n{L=<R)}
since T, = r + T°4, is a stopping time, and thus the first set on the right is in F(R).

There is an analogous result whose proof we leave to the reader: Suppose T'is a terminal
time and R any random time. Then {R < T}G(R) D {R < T} G(T).

REMARK 3.2. R. Getoor has observed that (3.1) holds for L the end of an optional set.
All of the following also hold for such times, but our implicit interpretation of L shall be
as a coterminal time.

We now define a post-L c-algebra as follows. Let U be a random time. Then

DEFINITION 3.3. F(L, U) =06(01'Fs N {s< U}, all s=0) and
F(L, U+) = Neso F(L, U + ¢)
We can now split F,:

LEmMMa 34. {L=t}F,={L<t(F(L) v F(L, (¢t — L) +)).

Proor. From (3.1) {L = ¢} F(L) C {L < t}F,, and it follows that L A ¢is F, measurable.
The sets 2'F, N {s <t + e — L}, 0 <&, are generated by right continuous functions of the
form g(u, w) = f(X(L + u)), f continuous, on the set {u <s=<t+¢— L}. Taking 2™ < ¢ and
L, as the usual 27" discrete skeleton of L, g can be written as the limit of f(X(¢ + u©)) on
{L» = t:}, i.e. of {L =< ¢t} F.+2. measurable functions, proving the inclusion in one direction.

Conversely, F, N {u <L} C F(L) and f(X(u)), L < u <t + ¢, is the limit of F(L, ¢ + 2¢
— L) measurable functions f(X(u — t,-1 + L)) on{L<u=<t+¢g L, =t, <t +¢}.

An analogous assertion holds for F(L + t):
LEMMA 3.5. F((L+¢t)+)=F(L) v F(L, t +).

PrOOF. Again F(L) C F(L + t), and for one inclusion it suffices to examine f(X(L +
u)) = lim f(X(¢x + u)) on {L, = t, u + ¢, < t + 2¢}. This shows the right hand side of (3.5)
isin F(L + ¢ + 2).

Conversely if S is a stopping time, F(S) N {S= L+ t+¢} = (F(S) N {S=<L}) v (F(S)
N {L <S =L +t+¢}), and we need only consider the second part. But with A € F(S),
L, as before and r rational, the proof reduces to observing that the sets AN {L<r<S8
=L + ¢t + €} can be expressed as limits of sets of the form A, N {L<r<S}N{S<t, +
t+¢, L, = t:}, A; € F,, which are in F(L) v F(L, t + 2¢) by (3.4).
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The last o-field result necessary for Theorem 4.2 is

LEMMA 3.6. Suppose R = L + p, where {p <t} € F(L + t), all t. Then
F(T)YN{L=R}=F(L)N {L=R}
and
F(R+) N {L<R} = (F(L) v F(L, p+)) N {L<R}.

ProOOF. The first assertion is immediate from the definitions. For the second, F(L) C
F(R) and again we assume f continuous and examine f(X(L + s)) on {s<p + ¢ 0 < p}.
This will be the limit of f(X(¢; + s)) on {tx + s< L + p + 2¢, L, = t, 0 < p}, and since
p € F(R), the limit will be in F(R + 2¢).

The proof in the other direction reduces to sets of the form AN {L<S=<L +p +¢,
0 < p}, with A € F(S) and S a stopping time. The argument this time is based on

AN{L<S<r<t+p+eL,=t,<r}
EFL+r+e—t)N{Lo=ta<r}N{r—t.—e<p}
CFWL) Vv FL,r+e—t)N{r—t—e<p}

C F(L) v F(L, p + 2¢).

The next set of results concerns representations of random times in terms of pre- and
post-L dependence. These results are necessary for the statement and proof of Theorem
4.2, but again the reader might defer their proofs until later.

LEMMA 3.7. Suppose H is a bounded (F(L) v F(L, t — L)) measurable function. Then
for each initial measure u there exists an F X F measurable function G such that
(a) H(w) = G(w, rw) as. P*
(b) G(-, w’) is F(L) measurable
(c) if Lw) < t, G(w, +) is F(t — L(w)) measurable.
ProOF. On {¢t = L} the function G(w, w’) = H(w) will do, and we restrict our attention

to {L < t}. On this set H is {L < t}F, measurable by (3.4). Using a monotone class
argument and functions of the form

G(w, 0’) = Yo lie,.p (L) [Th-0 14,(X) [1#%41 14, (X (8 — L(w), 0")),

we will have H(w) = G(w, 8.») for a determining class of (s(L) VF}) N {L <t} measurable
functions. Suppose for such H,, H, 1 H. Then using G.(w, ) = max(Gi(w, '), k < n) we
have H,(w) = Gu(w, 8. w) and G,(w, w’) 1 G(w, &’). Since all three properties are preserved
under monotone limits, we have the lemma for o(L) vV F{ measurable functions. The
assertion for general H is immediate, although the G obtained is not necessarily unique.

Finally, we come to the last, and essential, measurability result.

LEMMA 3.8. Suppose L<R and {R <t} isin F,N {L <t} for all t > 0. Then for each
u there exists a non-negative F X F measurable function p(w, w’) such that

(a) R(w) = L(w) + p(w, Orw) a.s. P*
(b) p(-, ') € F(L)

(c) p(w, +) is an optional time.

Proor. Let R, be the 27" skeleton of R and define A, :(w) as 1 on {R, = ¢} and 0
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elsewhere. Using (3.4) and (3.7) we can find a {0, 1} valued function g, »(w, »’) such that
(3.9) R p(w) = gnr(w, Orw) a.s. P*,
Since L < R, we can modify g, :(w, w’) by setting it equal to 0 on {#, < L(w)} and without
affecting (3.7 b) or (3.7 c). Similarly, we can assume that g,(w, w’) = 1 implies g, , (w, ©’)
= 0,/ > i, without changing (3.9) or the measurability properties.
Define
o Enrlw, w) =0, all
Gnlw, ) =
Yi-1 tegnr(w, w’)  otherwise

and note L(w) =< Gn(w, w’). We then have R,(w) = G(w, 0.0), Gu(-, w’) € F(L), and, by
virtue of the modifications of the g, ,

{w":Gr(w, w’') < £} € F(t — L(w)).

Then G(w, w’) = lim inf G,(w, ') gives R(w) = G(w, 0z ) and p(w, w’) = G(w, w’) — L(w),
with o — 00 = oo, is the p of the assertion: (a) and (b) are immediate and (c) follows from
{w:p(w, w) <t} = {w:Gw, w') <t+ L(w)}

€ F(t + L(w) — L(w)) = F,.

4. Regular Birth Systems. Suppose L is a fixed coterminal time and (L, D, K) its
regular birth system as given in Section 2. Suppose p(w, w’) is a positive F X F measurable
function such that p(., w’) € F(L) and p(w, -) is optional. Then (R, K) is also a regular
birth system, where R(w) = L(w) + p(w, 6z0). To see this we note that p(w, f.w) satisfies
the hypotheses of (3.6), and we need only use sets in F(R) of the form A N 07'A, N {s =
p(w, OLw}), A € F(L). Then

P[A, 02'As N {s < p(w, 0:0)}, R < 0, 85"(I")]
= P[A, L < oo, DXP[A,, {s < p(w, w’) < 0}, 0,4,.,T']]
= P[A, L <, DXP[A,, {s= p(w, 0’) < w}, KX¢)(T)]]
= P[A, 07'A; N {s < p(w, 010)}, {R < 0}, KX®(I)].
We should comment that a monotone class argument is necessary to justify the last
equality; the proof, however, is omitted (cf. [1, 1.8.16]).
Suppose another R is defined by setting R = L on Ao N0 T, where Ao € F(L) and
T’y € Fo, and equal to infinity otherwise. There then exists a p(w, fzw) with the properties

of (3.6) such that Ao N 07'T = {w:p(w, fr0) = 0}. Hence with A € F(R) N {R =L} = F(L)
N {R = L}, we have

P[A,R <, 07'T] = P[A, L < ®, Ao, DXV[Ty, T']].
If we define
DT, I']
DTT,]
with 0/0 = 0, then it is easy to see that
P[A, R < 0, 0%'T] = P[A, R < oo, @®(T")]

and that the @** define entrance laws with respect to the semigroup K of L.
There is one further possibility. Suppose I'1 C {L < )} is also an invariant set. Let R,
-be defined to be zero on I'; and infinite elsewhere; let R be one of the preceding examples;
and set R = max(R;, R). Then {R < o} =T'; N {R < «}, and the above analysis works for
R, provided we condition K and D:

Q') = = D*(T" | To),
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(41) B, t,f) = PLfX) | (T10 (T = )]
' @*(I") = D[ | C1 N TY)].

K and @ will also be nearly-Borel measurable.
The foregoing completes half of the proof of the following:

THEOREM 4.2. Let R be a random time. Then R is a regular birth time, and (R, @, H)
a regular birth system, for X iff there exists an invariant set I'y and a coterminal time L
=< R, and thus a regular birth system (L, D, K), such that I'1 C {L < »} and for each p
" there exists a p(w, w’) =0, a Ao € F(L) and a Ty € F, so that
(@ R=o as. P*onT§

(b) R(w) = L(w) + p(w, Orw) as. PtonI
(¢) p(-,w) EF(L)
(d) o(w, +) is an optional time

(e) Ao N BTy = {w:p(w, OLw) = 0} a.s. P~
The post R process evolves according to K, the K semigroup conditioned on T'; as in (4.1).
On {L < R < 0}@*® = K*® gnd on {L = R}Q*"® is a D*® conditional probability as
in (4.5).

As an example of the need for conditional entrance laws, suppose X behaves like two
dimensional Brownian motion on (—1, 1) X (—o, ©) and elsewhere like a compatible
diffusion with drift away from the y-axis. Let L be the last hit of the positive y-axis. Define
0z'T, = {at time L, X exits to the right from the positive y-axis} and I'; = {X ultimately
stays in the positive right half plane}. If R = L on I'; N z'T and is otherwise infinite,
then R will be a regular birth time whose entrance law is that of L conditioned by I'o N
T'; as above.

If the post-R process evolves according to the original semigroup, then, as the reader
will learn in the next section, L = 0 and by the theorem, R must be an optional time. (I';
has full measure.) We record this as

COROLLARY 4.3. Suppose R is a regular birth time. Then R evolves according to (P;,
t = 0) iff R is an optional time.

Finally, it follows from (4.2) that the only semigroups associated with regular birth
times are those obtained by conditioning the original semigroup on an invariant set and on
the set {T = x}, where T is a terminal time and, by Getoor and Sharpe’s result [6], the
first hit of an optional, homogeneous set. (The reader might compare this with Theorem
2.3 in [7]. See Section 7 below.)

5. Construction of the coterminal time L. Suppose now that R is a regular birth
time with entrance laws @*® and semigroup H. The idea behind the construction below
is that if H is related to a regular birth time, then H must be absolutely continuous with
respect to P, and the Radon-Nikodym derivative can then be used to define a coterminal
time L which will precede R. Intuitively, L is the first regular birth time compatible with
the semigroup H.

Recall that P is assumed Borel and H nearly Borel. Let {A.} be a measure-determining,
countable collection of F° sets and let & = (), 8 = 8(m) be sequences of decreasing positive
numbers. Define

S(e, 8, n) = {x:H*(An) = &, P*(A,) <8}
S(,8) =U, S, 8,n), S =Nn S, 8(m)),
S =U,S(e(r)).
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Then it is easy to show the following:
LEmMMA 5.1. Ap = S° = {x:H* << P*}. Note that A, is a nearly Borel set.

We wish to show that if x € Ao, then H* puts full measure on paths which remain in A,.
This is reminiscent of [1, III], but the hypotheses are different, and we provide details.
Since S is nearly Borel, we can approximate its hitting time by hitting times of compact
sets. Let K C S be compact, x € Ay, and T = inf{¢t > 0, x, € K}. Hence X(T) € Kand T
>0 a.s. P* for x € A,. Suppose for some ¢ > 0 that H*(T < o, X(T') € S(¢)) > 0. Define

{A (mm = {w:n is the smallest index such that X(T') € S(e, §(m), n)}
A(m) = Ny Ny A(m, n)87'(A,).

It then follows easily that
limy H*(t < 0, A(M)) = e H(T < o, X(T) € S(e))

(5.2)

and
limy P*(T < 0, A(m)) < limy §(M)P*(T < o, X(T) € S(¢)).
Thus,

LEMMA 5.3. For every x € Ao, H(T; < ) = 0.

Define M.. as dH*/dP*, so that M., is a P* equivalent version of a limit of sums of terms
of the form (H*®(A,)/P*®(A,))14 (w). That is, there exists an F measurable random
variable M which coincides P* a.s. with M., on {w:X (0) = x}, all x € A,. It is easy to check
that M, = P*(M.| F,) is a Radon-Nikodym derivative of H* with respect to P* on FF; and
using (5.3) that for A, € F;, A, € F,

PAs, 057As, M- (Mi08,)] = PAs, 05'As, Ms).

Thus, we can take a P* version of (M,) which is a non-negative, right-continuous uniformly
integrable martingale and which is also a multiplicative functional. Furthermore, M, = 0
if ¢ > Ts since

0=H*(Ts < ©) = P*(Ts < 0, M..) = P*(Ts < », Ms)

implies Ms = 0, P* a.s. on {T's < «}, and once a non-negative martingale hits zero it stays
there.

The function M above can be defined for all w, but we can modify it by setting M, (w)
= 0 for all £ =0 when Xo(w) & A,. This definition is compatible with the M, used above
and obviously gives us a multiplicative functional:

(5.4) M,= M, M,_°0;, a.s.

We would like to perfect the multiplicative functional by invoking [12]; unfortunately
those results require 0 < M, =< 1 and in fact need not be valid in our case. By modifying the
proof, however, we can obtain Lemma 5.5 below. To avoid too much dancing on the head
of a null set we relegate the proof to an appendix.

LeEMMA 5.5. There exist a set of I' € F and F, measurable functions M, such that for
all initial measures p, P*(I') = 1 and on T

M,=M,-M,_s00,, 0<s<t=o

Furthermore M, is right continuous except possibly at s = 0. For Lebesgue almost all 0
<s<t,M; o0, = M, ;°0;. Finally M,_, (6,0) = 0if 0 < r < t and x;(w) & Ao.
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We drop the bar and simply refer to M, in the following discussion. Let
H= {(t’ w) :Xt E AO or linlsTt Mt—s°0s = 0}’
where the second condition implies the limit exists. Since X;,,(w) = X;(f,w) and, using s
=u+r, M, 2050 = M;_,°0,°0,0, H is an optional, homogeneous set. Then by the results

cited in Section 2, L = sup{¢: (¢, ) € H} is a coterminal time. If L’ = sup{¢: M6, = 0}, we
have

LEMMA 56. L'=LonL’ <,

PROOF. Suppose r < L. Then either there is a ¢ > r such that X,(w) & Ao or M;_s°0;
— 0 as s 1 t. In the former case M,_,°6, = 0 and M.°0, = (M;_°0,)(Mx0,) = 0, while in the
latter case

Mm°0r = (M —r°0r)(Mt—s°0s)(M°°°0t) -0
as s 1 t. Either way L’ = L.
If L <r<L' <t then M;_,°6, = 0 but M,;_,°8, — 1 as s | r. Thus, let £, = inf{s > r:

M, _°0,=0} <t,and r < s <t. It follows that 0 = M, o0, = (M6, )(M,o_s°0 ), implying
M, —s°0; =0, and thus r < L.

6. Completion of the proof of Theorem 4.2. Assume (R, @, H) is a regular birth
system and let P = P* be fixed. We can use the ideas of Lemma 3.4, a monotone class
argument and the strong Markov property at R to show

LeEMMA 6.1. Suppose A € F; v F(R). Then

P(A,R<1t0;T)=P(A, R<t H*T)).

Now the observation which justifies Section 5 is in
LEMMA 6.2. P(X(R +t) & Ao, any t>0) =

Proor. By virtue of (5.3) once the process is in Ao, it stays there according to the H
laws. Hence if suffices to show P(R < ¢, X; € A§) = 0. But by (6.1) it follows that with A
€ F,;

P(A,R < t, H¥I')) < P(A, 6;'(T)) = P(A, P*(I)).
Using the construction of (5.2), with X (¢) replacing X (7'), it is then easy to see
eP(R<t, X(t) € S(e)) = limy S(M)P(X(t) € S(e)) =0,

completing the proof.
Now bring in the multiplicative martingale M, the coterminal time L and the time L’ of
Section 5. Since

P[R<r<L']=P[R <r,0;\(M.. = 0)]
= P[R < r, H*"(M., = 0)] = 0,

we can conclude L < R a.s. on R < .

Choose an F% measurable version which is P equivalent to R and which we denote as
R. Then if R, is the 27" skeleton of R, R, is also F¢ measurable. Consequently for fixed
= k27" there is a {0, 1} valued function f with domain the usual product of countably many
copies of E and such that for a given sequence of times ri, rz, -+ -, Rp(w) = & iff f(X;,,
X.,, --+) = 1. Writing f as f(X;, r < tx; X.., u = ;) it follows P a.s. that

P[R, = t;| F,,] = PX*%(Cr(w))
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where

Cr(w) = {0":f (X (@), 7 < tr; Xu—y, (@), u= &) = 1}.

Using (6.1) we have for A € F,,
P[A, R, = t,0,'(T')] = P[A, R, = ty, H**(I')]
(6.3) = P[A, PX%(Ci(w))- HX®(I')]
= P[A, P*%(Cy(w), T)].
From the last equality and A € F;,, it follows that P a.s.
HX,(T') = PXu)(I'| Cp(w)).
Since X (¢,) € Ao a.s., for P almost all X ()
1, (@) = PX@(Ch(w))-Mx(w')  as. PX®.
Substituting this into the last line of (6.3) gives
P[A, 6,(T"), R, = ] = P[A, PX® (G, (@) - P*** (M., T)]
= P[A, 6;}(T"), PX%(C} (w)) - M8, 0]
and P as.
1;,1(Ry) = PX)(Cr(w)) - Mo0,,0.

We may assume, by a redefinition of the ¢, and R, if necessary, that P[L’ = ¢, some &
and n] = 0. If A(k, n) = {w:PX®(C,) > 0}, then we can rewrite the last equality as

(Ro=t:} =Ak,n) N (L' <t} Pas,

where the restriction on the ¢, avoids the issue of whether M, (6;w) > 0 when L’ = ¢.
Suppose we could define R, such that R, = R,on L’ <o, R, | Rand {R<t} €EF.N{L
< t}. Lemma 3.8 then establishes the existence of the p of Theorem 4.2, except for (4.2.e).
The invariant set I'; is lim{6; (I’ N {M. > 0}), t 1 o], I the set described in (5.5) and the
Appendix, and R is indeed infinite on I'{ almost surely P.

Since R agrees with B on I';, the rest of (4.2) follows once we define R, and establish
(4.2.¢). Recalling the L(t) from (2.2) we define I'(1, n) = A(1,n), ' (k+ 1,n) = A(k + 1, n)
—U[A®(, n) N {L(te+1) =6}, 1 =< k],

B = {th wET(k,n)N {L=t)
r o if no such &

and
R,=min{R!,1<i<n}.

Since L = L(t) on L < t, it is easy to see R}, is well-defined and R, = R} a.s. on L’ < oo,
Since R, decreases with n, R, = R,, thus defining the desired R = lim R,.

It remains to show p satisfies (4.2.e.), and in the discussion below it suffices to assume
P-equivalent, F% measurable versions of R, L and p. From (3.1) we have {L = R} € F(R),
and thus for A € F(L)

P[A,L=R<®,0;'T]=P[A, L =R <, @®T)]
©4) = P[A, L < o, DX®({':p(w, w’) = 0}, Ty, T)].
If follows that P a.s.on L < o
(6.5) Q*Y()-DXPTy, {p = 0}) = D¥(T, Ty, {p = 0})

for allT' € F%. Let Ao = {w:DX‘L’(i‘l, o = 0) > 0}, which is in F(L). From (6.5) it is easy
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to show that for fixed x the D* measure of I'; N {w’:p(w, w’) = 0} is the same for almost all
w € Ao which satisfy (6.5) and have X (L(w)) = x. Since {p = 0} is in F3., it follows that for
each & > 0 there exists a countable family {T,, I', € F?} such that for each such w and x
we can find a I', so that (6.5) holds with an error of at most ¢ when I', replaces {w’:p(w,
') = 0}. But the same I, then works for all such w associated with a common x. Hence
using (2.7) and a union of sets of the form {X, € A,} N T, it is possible to define a I'(¢) in
F? so that there is at most an ¢ error in (6.5) for almost all w in {L < ©} N A,. Finally Ty
= lim inf I'(¢), the limit along a sequence ¢ | 0, gives an F{, set which has no error.
Reverting back to (6.4)

P[A,07'T, L = R < ] = P[A, L < 0, Ag, DX (I, T, T9)]
= P[A,07'T, L <o, T N Ao N 67'T]

or, Pas., {w:L =R <o} =T1NA;N0OL'T) on L <. We can then redefine p by setting
p(w, w’) =0 for (w, ') € Ag X I'g and equal to its original value elsewhere, thus completing
the proof of (4.2).

7. The Markov Chain Case. The inspiration for the preceding was [7]. The key
result there was expressed somewhat differently, and it is only fitting that we indicate how
that expression can be obtained from the proof here. We have in mind [7, 2.3] in which it
was shown that the only conditioning sets C which can support a Markov chain are of the
form Co N C,, N C. Cj denotes an initial condition: Co = {w:Xo(w) € Ao}. C, is defined by
C, = {w:(Xr, Xp+1) EV,0=k < x}, VE E X E, and C. is invariant: C, = §7'C.. Following
an approach using a multiplicative martingale M, one can show that

P(C|F,) = P*(C)M, (w), Pas.

Then M,,(w) = Hi‘ M1 (Hk_lw), or, since M1 (S U(Xo, X1 ), Mn (w) = H”:=‘1 u(Xk_l, Xk). It turns
out that Cp = {w:P*(C) > 0}, C, = {w:u(Xp-1, Xz) > 0, all 2 = 1}, and C.. =
{w:lim, M8, = 1}. _
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APPENDIX

Proor oF LEMMA 5.5. We follow the notation of Walsh [12], and the reader is advised
to have a copy available. (See [11] for a discussion of essential limits.) Let M,, 0
= t = x, be a right continuous version of the function defined in Section 5 and define
M, (w) = ess lim sup{M;_;(f.w), s | 0} with My(w) = ess lim sup{M;(w), s | 0}. Using m to
denote Lebesgue measure, we can modify the A of [12] by defining:

A = {w:for m almost all s M,(w) < o, M;_;(f;w) < o, and M;(w) = M,(w)-M;—s(f;w),
s=<t=o. My, (bs0) =1 if X;(w) € Ao and M, (w) = 0 for all ¢ = Do = inf{r:M, = 0}.}.

The Fubini-type arguments of [12] show that for any initial measure p, P*(A) = 1 and
also P*(I') = 1 where I = {w:0;w € A, m a.a. s = 0}. As before w € I" implies 6:w € T".

Suppose w € I'. Then it is possible to define a set of full m-measure, with elements
denoted by r, such that for m-almost all s and all ¢:

(A-l) Mt—r(arw) = Ms—r(erw) ‘Mt—s(esw)’ r<s< t’
and
(A.2) M, ;(0;0) =M,_s(00)-M,_,(0,0), s<r<t.

Suppose M;_,(6,w) = 0. Then in (A.2) M,_;(0;w) = 0 and M, = 0. If M,_,(6,w) > 0 we can
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take essential limits in (A.2) to obtain, in either case,
(A.3) M, (w) = M, (w)-M,_,(0:w), maa.r<t,

provided 0 = 0. should that case occur.

If M,_,(6,w) = 0, then M,,_, (6,w) = 0, all u = ¢, and M, (w) = 0 = M,(w). If M,_,(6,w) >
0, the right continuity of M, (w) at ¢ follows from (A.3), and hence we have right continuity
of M,(w) for all £> 0.

If both M, (w) and M,_, (6,w) are positive, we can use the right continuity of , (w) and
take essential limits in (A.3) to obtain

(A4) M (w) = M, (w) - M;—, (f.w), O<u<t.

If M, (w) = 0, then using u in place of ¢ in (A.2) gives for m a.a. r < u either M, (w) = 0 or
M,_,(0,w) = 0. Either condition gives M,(w) = 0 and (A.4) holds in that case. If M,_, (6, w)
=0, taking r < u < s < tin (A.1) gives M;_,(6,w) = M,_,(0,w) - M,_ (6, ) = 0. Again M, (w)
= 0 and (A .4) is established in all cases. Note that if 0 < M, (w) < % (A.4) holds for ¢t = u
and Mo+(0,,w) =1.

Now assume the m almost all r in (A.1) do not include the countable times when X (w)
isin A§ N {x:x irregular for A§}. If X, (w) € Ao, then M,_,(0,w) > 1 as s | r and

(A'5) Mt—r (0,-(.0) = Mt—r (orw)~

If X, (w) € A§, then X, (w) € A§ for a sequence of u | r, and it follows that for all s near r
M,_;(6;0) = M;_,(8-w) = 0, establishing (A.5) for m almost all r < ¢. It follows from (A.5)
that M, = M, as. p* for all x € Ao.

The last assertion of (5.5) is immediate from the definition of A and M,_,(6,w).
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