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RATES OF ESCAPE OF RANDOM WALKS

By PHILIP S. GRIFFIN

University of Minnesota

The rates at which a transient random walk can escape to infinity are
discussed.

1. Introduction. The purpose of this note is to give a one parameter family of
examples of one dimensional random walks exhibiting different rates of escape. More
specifically, for each & € (0, 1) we give a random walk such that

L. |'Sx| was. if a<$
* —_—
) lim infre = =10 s, if o> .

«

We achieve this by using a result of Kesten [2]. In the same paper Kesten gives an
example of a transient random walk such that lim inf 27| S,,| = 0 ass. for all a > 0. This
would correspond to § = 0 in (*). If § > 1, then the stable random walk of index § ! satisfies
(*), while the Strong Law of Large Numbers provides examples when 8 = 1. Thus in one
dimension, for every § = 0 there is a random walk satisfying (*). One can also show, as we
point out later, that the same situation holds in two dimensions. This behaviour is in
contrast to the d-dimensional case for d = 3, where n ™| S, | — « a.s. for every a < %4; see
Kesten [3].

2. The examples. We begin by introducing some notation:

. Qa,
a,~b, iff ——lasn—o o
n

@, = by iff there is a constant M > 1 such that 1/M < a,/b, = M as n — .
We write ¢x for log x, 4x for log log x, etc. Define

Observe that
d [ —(¢x)" ]_ 1 i
dx | exp{y(&x)(4x))} xH(x)"

Also one can easily check that H(x) is slowly varying.

The examples follow along the lines of Kesten’s example mentioned in the introduction.
Let X, X,, - - - be independent, identically distributed, symmetric random variables with
non-lattice distribution satisfying

H
P{X\|>x} ~ (%) as x— .
x
Then
lim inf [Si| [was if a<e
M= T = 0as. if a>e

Proor. We will make use of the following criterion of Kesten [2];

|Sz|<°° as. iff Y, P{|S.| < Kn") = o for some K > 0.

— _
mmm I P(|S] <nY
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First note that X is in the domain of attraction of the Cauchy distribution and so by a
Local Limit Theorem of Stone [4],

PIS.| < ke o if —" 0
~ — —
{18n] < Fn} nH(n) as . n nH(n)

Since e € (0, 1), it suffices to consider a € (0, 1), in which case
nu}
nH(n)’

Next we must estimate A, =¥ P{|S;| < n“}. Let

P{|S.| < Kn"} =

yn(én®)"" (0 (4n)
exp{y(&n*)(4n*)}
One easily checks by using the Mean Value Theorem, that (£n%)"" ~ (£p(n))""", (4n%) ~
(£3p(n)) and exp{y(£n®)(4n%)} ~ exp{y(4Le(n))(49(n))}. Thus
n® 1
o Hig(n)  fn

o(n) =

Now
Yo P{Si| <n®) = An = o(n) + X P{|Si| <n*}
and since n*/¢(n) H(p(n)) — 0,

Zq)(n) kH(k)
- n*(4p(n))” _ n*({n)
exp{y(4e(n))(4He(n))}  exp{y(4n)(4n))
- n*(¢n)”
" exp{y(&an)(4n*)})"

Yo P{|Si|<n} =

Thus
- n*(¢n)”
~ exp (v(4n*) (4n%)}

So we obtain
(&n) ~ (¢3n)

R e I R TV Ty o A P B e 1) St P T PAT

again by the Mean Value Theorem. Thus

(¢3n)

-1 A o~ —_—
Z" An P{ISnl < Kn } ~ Zn n(/n)(fzn)y(//a)

and the result now follows.

REMARK 1. In the case § = 1, the Strong Law of Large Numbers provides non-
symmetric examples. We indicate here how to obtain symmetric examples. Let X be a
symmetric, non-lattice random variable w1th distribution satisfying P{| X| > x} ~ L(x)/x
where

L(x) = exp{(£2x)(£x)*} with 8 > 1.

Now proceeding as above one shows that for a < 1, lim inf n7%| S, | = « a.s. while for « >
1, lim inf n7¢| S, | = lim sup 7| S, | = 0 a.s. since X is in the domain of attraction of the
Cauchy distribution.
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In passing we mention that taking 8 € (0, 1) gives rise to a transient random walk of
index § = 0.

REMARK 2. As mentioned in the introduction, (*) can also be satisfied for every é = 0
in two dimensions. For § > % the symmetric stable random walk of index 8 ' satisfies (*).
For 0 < § < Y%, let Y be a symmetric, one dimensional, non-lattice random variable with
distribution satisfying P{| Y| > x} ~ H’(x% where H(x) is as before with y = —(£28)7".
One easily verifies that Y is in the domain of attraction of the Normal distribution and a
correct normalizing sequence is vnH(n). Now let Z be an independent copy of Y and let
X = (Y, Z). Then X is in the domain of attraction of the two dimensional Normal
distribution with the same normalizing sequence, thus by Stone’s Local Limit Theorem,
k2 k2

as n— o if

P{Shl <k} = 2y nH(n)

-0

Everything now goes through as before using Kesten’s condition in two dimensions; see
Erickson [1]. For § = % take Y satisfying P{| Y| > x} ~ L’(x®) where L is as in Remark
1 with 8 > 1. Proceeding as above one obtains for a < %, lim inf n ™ |S,, | = = a.s., while for
a > Y%, lim inf n7%|S,| = lim sup n7*| S, | = 0 a.s. for every random variable with zero
mean in the domain of attraction of the Normal. Finally for § = 0, proceed as above using
the example from Remark 1 with 8 € (0, 1).
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