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OPTIMAL STOPPING ON AUTOREGRESSIVE SCHEMES'

By MARK FINSTER

University of Wisconsin-Madison and Cornell University

For ... &4, €, & --- ii.d. random variables the autoregression X, = ¢,
+ a1 Xn-1 + a2 Xn—2 + - -+ yields a payoff y* Y. wrX: when stopped at time 7,
0 < y < 1 being the discount factor. The optimal rule is characterized and
under certain restrictions is the first passage time ¢ = inf {n: X, = c}. Asc—
oo the distributions of ¢ and the remainder term R, = X; — c are asymptotically
independent and determined for exponential and algebraic tailed distributions
on &.. An asymptotic expression for the optimal payoff is given and ¢ = c(y)
is calculated so that ¢ yields a payoff asymptotically optimal and asymptotic
tocasy— 1.

1. Introduction and summary. Let ... ¢ ,z#,¢ - .- be integrable real valued i.i.d.
random variables and suppose --- X_;, Xo, X; --- is a stationary process satisfying the
autoregressive equation

(1.1) Xo=en+ a1 Xn1+ a2 X2+ -+

which has extensive applications in engineering (cf. Lapidus and Luus: 1967), econometrics
(cf. Grenander and Rosenblatt, 1957, page 36) and control (cf. Box and Jenkins, 1976).
Here a = (a1, az, - - +)’ lies within the unit disk D of ¢'; that is, | ax| < 1. All elements of
¢, the absolutely summable sequences, are considered as infinite column vectors with the
norm of any vector being the absolute sum of its coordinates and ’ denotes transpose. Let
Zn = (X,, Xu_1, ---)’ represent the past values or chart of {Xx}s<. and let w € ¢'. This
research investigates the optimal stopping problem {y"w’Z,, %} when, as in Dubins and
Teicher (1967), the future is discounted by a factor v, 0 < y < 1. { £} is any increasing
sequence of sigma algebras containing #(e,:k =< n) and independent of F(e: k > n), the
smallest sigma algebra generated by {ex: &k > n}.

This model can be viewed as a first order approximation to the general problem of
optimally stopping a sequence {X,} satisfying a stationarity equation

Xn = f(Zn—l) + &

when the undiscounted payoff or utility at time n is «(Z,). The linear coefficients of the
Taylor expansions of the functions fand u are given by {a:} and {w:} respectively.

Specifically we seek the value V(z, w, a) = sup E (y‘w’'Z;| Zo = z) where the supremum
is taken over all stopping times ¢, ¢ being a stopping time if P(t € N U {«}) = 1 and
{t=n} €% V n. Ont= {o} the payoff is zero. We also determine the existence and
nature of an optimal stopping time o yielding the extreme payoff E (y'w'Z,|Z, = 2) =
V(z, w, a).

Under specific assumptions the optimal rule is shown to be the first passage time ¢. =
inf{n = 1:X, = c} for some barrier ¢ determined by Browder’s Fixed Point Theorem.
Under less stringent conditions we exhibit in Theorem 5.1 a barrier ¢ = ¢(y) — « as
vy — 1 which gives the stopping rule t. a payoff that is asymptotically optimal for two
different classes of distributions on ¢,. The right tail of a distribution function F dominates
if F(—x) = o(1 — F(x)) as x — o. A distribution function F is Paretian with exponent
constant « > 1, denoted F € £, if F has a dominant right tail and varies regularly at o;
that is, if there exists a function of L(x) varying slowly at o« (Feller, 1966, page 276) such
that 1 — F(x) = x “L(x). A distribution function f is exponential with exponent constant
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a > 0, denoted F € &,, if F has a dominant right tail and 1 — F(x) ~ e™** as x — oo,
Throughout this paper F refers exclusively to the distribution function of ¢, and L refers
to the slowly varying function associated with F.

Finster (1982) has shown that for such distributions ¢ = ¢. and the remainder term R,
= X, — c properly normalized are asymptotically independent as ¢ — . Furthermore the
normalized stopping time converges in distribution to the exponential law [1 — e ] (9.« (x).
In the exponential case R, also converges in distribution to this exponential law and in the
Paretian case the distribution of R,c™' converges to the Pareto law [1 — (x + 1) ™*]Z(0.x)(x).
Under certain restrictions the limits of Et and ER, were obtained asymptotically via
uniform integrability.

Utilizing these results, asymptotic limits for the optimal payoff are determined as
vy — 1. If ¢, is Pareto in nature V(z, w, a) ~ eiw¢(y) where ¢(y) = inf{x: P(e, = x) =
(@ — 1)A}, A = —log vy, and {e:} is the standard basis for R“. The first passage time ¢ =
inf{n:w’'Z, = eiw¢} is shown to be asymptotically optimal in that V(z, w, a) ~
E(Y'w'Z,| Zy = z). If & is exponentially distributed, V(z, w, a) = ¥(y) + o(1) where y(y)
= —log A — log log A + log B for a given constant S. The payoff under ¢, is shown to differ
from V(z, w, a) by o(1) terms.

Dubins and Teicher (1967) as well as Darling, Liggett, and Taylor (1972) have investi-
gated the random walk stopping problem {y"(x + S,)} where S, = Y7 &. Since {x + S,}
corresponds to the autoregression (1.1) when X, = x and a is the boundary point e; of D,
one might expect similar results. In Section 7 our results are shown to differ markedly; the
optimal payoff of the random walk problem is asymptotic to u/eA as y — 1 provided p =
Ee, >0 and E | &, |™ < o for some m > 1.

2. The optimal stopping rule. Leta= (aj, az, ---)’ € R” and define {b,} inductively
by b = 1 and

bn=a1bn—1 + oo + anby for n>0
so that b = (b, by, - - -)" = Y& S*(a**) where the * product is convolution (cf. Finster, 1982,
Section 2) and S(a) = (0, ai, as, ---)’ is the right shift operator on R*. Throughout this

paper a lies in the unit disc D of #'; thatis ¥ | ax| < 1. Hence b € ¢' since | b| = ¥ | bx| <
(1—|a])™" and

(2.1) Xn = Y75 bren-s

is the unique stationary time series satisfying the autoregression (1.1). An alternate
formulation of b is

(2.2) b = (61 - S(a)) = er.
Define the transpose matrix A’ = (a, ey, ez, - -+) and r, = e;&, so that
(2.3) Zn=AZy  +1n=A"Z,, + Vi A,

is a stationary Markov sequence under the transition probabilities determined by
P.(Z, € C) = P(r, € C — Az) for C € B(A)—the Borel sets of the state space A. One
possible state space is found by defining 7, = (&,, &.-1, « - )’ so that X,, = by, and Z, = By,
with the upper triangular matrix B = (b;,) defined having entries b;; = b;_;(j = i). Note
that for w € ¢', w'Z, = (w * b)'n, converges a.e. Hence a state space is A = A(a, w) = 6,
N 8., where

6,={Bn:m€R and lim, .sup T™(D * b)'7 < o}.

Here 0 = (| v1], |v2], -+ -) for v = (v1, Uy, -++) € R* and T (v) = (vs, U3, - - )’ is the left shift
operator. It is easy to show P(Z,€6,) =1V vE /.
We write V(z, w, a) for the optimal payoff under P. when the autoregression is
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determined by a and the payoff is scaled by w. By (2.3)
(2.4) V(z, w, a) = sup E (y'w'A'z + y'w’ Yi=b A*r,_y)

where the supremum is taken over all stopping times for which the expectation above is
defined and y(a’Z,) = 0 on {t = «}. If @ and w are understood we simply write V(z).

The stationary Markovian structure of {Z,} facilitates the selection of the ‘best’ optimal
rule (more than one may exist). Faced at the nth stage with the decision of stopping or
continuing, one would logically stop if the value of y"w’Z, is at least as great as, say,
V.(Z,)—the optimal payoff if one knows the past Z, and is to make at least one more
observation X, ;. In light of (2.3) we have when Z, = z,

Vo(2) = sup E(y'w'A"™z + y'w’ Y5257 A*r,_p)

where the supremum is over all stopping times ¢ stopping after time n. Thus V,(z) =
v"V(2) and the natural prospect for an optimal stopping time is

(2.5) o=inf{n:w'Z, = V(Z,)).

Since E.(sup y"(w’Z,)") < o, rigorous justification for ¢’s optimality and preference is
given by Chow, Robbins, and Siegmund (1971) in Theorem 5.2, Theorem 4.5, and Lemma
4.6 Here E, represents expectation under P, and ¢* = max{c, 0}.

THEOREM 2.1. If|a|<1l,w E ¢ ' and E |&i| < , then ¢ = inf{n = 1:w'Z, = V(Z,)}
is optimal.

3. Autoregressions of finite order. If all but the first p coordinates of @ and w are
zero, consider them as elements of R”. In this case the definitive equation identical to (2.3)
in form and use arises when z, w, r and A = (a,;) are replaced by the vectors of R” formed
with their first p coordinates and by the p X p matrix (a;,: i < p,j < p) respectively. We do
not distinguish between these representations and R” is so embedded in ¢'. In this case
the natural state space is R” and if z = (zy, - -+, 2p)’ € R?, we write V(2) for the value
function corresponding to V(3 zex).

Now assume w = e; and a = pe; where |p| < 1 so that

(3.1) Xo=pXo1+en=p"Xo+ X6 p'enr

is itself a stationary Markov sequence. The value function (2.4) becomes
(3.2) V(x) =sup E(y'o'x + y' Yib o*err), xER
and the optimal rule (2.5) is 0 = inf{n: X, = V(X,)}. From (3.2) we see
(3.3) [ V) - V) <vylx-y|

and the contraction mapping principle produces a unique fixed point ¢ = V(c). Setting y
= c in (3.3) forces

Vix) =Zyx+ (1—1vy)e iff x=c
Thus
{x:x=zV(x)} ={x:x=c}
and
o=inf{n:X, = c}.

If a € R? and w = e, then (3.3) holds for x, y € R” and the unique Borel measurable
function ¢ = ¢(yy, « -+, ¥p—1) defined by ¢ = V(c, y1, -+ - , ¥p—1) determines the optimal rule

o=inf{n:X,=c(X,-1, -++, Xu—a-1}.
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Later we will need the average value function
(3.4) U(w, a) = sup Ey'w'Z,, we /!, a€D

the supremum being over all stopping times. Since o is optimal under each P,, U(w, a) =
Evy°w'Z,. Note that if a € R” N D then

(3.5) |Ue,a) — V(z,a)|<E|V(Z,a) — V(z,a)|=pE | X |+ ]| 2]

4. A lower bound on V. Letting ¢ = ¢(y) — ® as y — 1 and utilizing the asymptotic
joint distribution of ¢ = ¢. with its overshoot R, = X, — ¢ as given in Finster (1982), the
asymptotic payoff under ¢ = ¢. is easily calculated and determines asymptotic lower bounds

for the optimal payoff. Precisely if £(1 — F(c)) ~ A for £ > 0 and A = —log y then Theorem
5.1 of Finster (1982) implies

4.1) ¢c'Ey'X,=zEy'=Ee™ > —£— Feé,

B+¢

where 8§ = E (ag’Zo). Noting that Theorem 4.1, Remark 4.1 and Corollary 4.2 of Finster
(1982) apply to ¢t = inf{n:| X, | = ¢} and Ry= X7 — c gives
-1 t t -1 tn—
(4.2) ¢ E.y'X,=E.y+ c E.¥Rj Fe 2,
~E.e™(1+ E.Rx™") > a/(a — 1)(1 + §).

If a = pe; € D and w = ey, the first passage time ¢ = t. was shown to be optimal providing
V(c) = E.y*X, = c. Choosing £ so that the payoff is asymptotically ¢ gives a lower bound
which later is shown to be nearly sharp asy + 1,V a € D.

LEMMA 4.1. Set A = log y and suppose y — 1.
a. liminfc'E,y'X, =1ifN(@—1) ~1—F(c) and F € #..
b. lim inf ¢ 'Ey'X; = 1if A = o(1 — F(c)) and F € &,.

Proor. This follows directly from (4.1) and (4.2).

For F € &, the asymptotic results can be improved and a payoff of ¢ up to terms that
are o(1) is obtained for ¢ = y/(y) where

(4.3) Y(y) = —alog A — a "log log A7 + a'log B.

LeEmMA 4.2. Suppose F € &,, F(0) = 0, and each a;, = 0.
a. Ifc=y+o()then Ey'X, =y —a '+ 0(1).
b. If, in addition, a € R? then Ev'X, = ¢ + o(1).

PrROOF. Set s = e “ct and assume a € R”. Note that
(4.4) A = Be*(=log A)~le®®

implies Ae** — 0. Theorem 5.1 of Finster (1982) indicates Ey‘ = E exp(—Be“‘s) — 1 and,

together with Corollary 5.1 of Finster (1982) and (4.4), shows
45) Ey'X,=cEvy'+ EY'R,=yEe™ + a™' + 0(1)
' = — YE1 — exp[—B(~log A)e*Ps]) + a~* + o(1).

Since sup{x~'|1 — e — x|:x > 0} < o and Ba~'(—log A)"'s converges in distribution to
zero, the expectation in (4.5) equals

B(—log A)'e’ME (s) + o([—log A]'E (s)).
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Corollary 5.1 of Finster (1982) gives E(s) — B and because ay ~ —log A we have
established (b). By deleting the term Ey’R;, (a) follows as above.

5. First order autoregressions. Throughout this section w = e;, F(0) = 0, and a
= pe; where 0 < p < 1. Let o = inf{n: X, = c} = ¢t. where ¢ = V(c); that is, ¢ is optimal. Set
A = —log y and define ¢(y) = inf{x:1 — F(x) < (a — 1)A}. We begin by showing that as
Yy — 1, t = {, is asymptotically optimal with a payoff asymptotic to ¢ in that

(65.1) ¢(y) ~c~ V(x) ~Ey'X,, VxeR, Feo,.

Given arbitrary sequences {A, = A}, {0z = ¢} and {c, = ¢}, suppose ¢ — ® as y—1lin
such a manner that Ac*/L(c) — £ for some £, 0 < ¢ < «. The slow variation of L implies

(5.2) cd™ = (a — 1)Vegle

Our strong positivity assumptions ensure that (4.2) remains valid when the inequality is
replaced by equality. Coupled with (5.2), this yields for finite &

(5.3) ¢ 'V(x) = (c/$)c 'Ery°X, = ala — 1) 7eglVa] 4 £)71,

Since ¢ = {. is the optimal first passage time, this last limit must attain its maximum value
of one, which occurs when ¢ = (« — 1) or equivalently when ¢ ~ ¢. Replacing o by ¢ = ¢,
in (5.3) completes (5.1) for finite £.

If £ is infinite, (5.2) gives ¢ = o(c). Define M,, = max{X, ---, X,}. Since °

"N
(5.4) Pi(o=n) = P(M,=c) = 31 Px(Xp = pXp-1 + &= ¢, Mp-1 < ¢)
v < n[l - F(c — pe)]

we deduce that for sufficiently large ¢
Ee ™ < }\J P.o=y)e™dy=2(c—cp)°L(c)\™*
0

and so
¢ 'Exy*X, ~ c¢ 'Er(e ) = 2(1 — p) "¢ "L(c)¢p A
~ 2(1 = p)~*(c/¢)' "*L(c)/L(¢) = o(1)

contradicts ¢’s optimality via the lower bound given in Lemma 4.1a with ¢ = ¢. Thus (5.1)
is established.
The analogue of (5.1) for exponential F is

(5.5) c=yY(y) + o(1) = V(2) + o(1), Feég,, ZER
where ¥(y) has been given in (4.3). We begin by showing
(5.6) Ulei,a) =y +0(1) = Ey’X, iff t=1t with c=y¢+0(1)

where U = Evy°X, is the average value function defined in (3.4). Note that o’s optimality
and Lemma 4.2b assert

(5.7) Ey'X,zEyX,=y+o(l) if t=t,.

To prove (5.6), assume that for sequences {c; = ¢}, {Ax = A}, {¢x = ¢} and {v, = v} we
have ¢ = ¢ + v. Set s = e ‘0.
First suppose

(5.8) £=Xe* = B(=log\) e > 0
so that by Theorem 5.1 and Corollary 4.1 of Finster (1982)
E(1—e ) =E(&s) + o(§) = &/B + o(£)
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and
(59 EyX,=c—cE(l1—e™)+Ee™R,=W+v)— {+v)éfA+a '+ o0(1)
where A — 1. Thus (5.7) forces
v— W+ v)EBTIA+a = 0(1)
or equivalently
A=Y+ v) ' (-log N)e™[v+ 1/a + o(1)]

which can occur only with equality and only when v — 0; that is, only when ¢ = ¢ + o(1)
and (5.6) holds.
Now (5.8) must hold, for if £ has a positive or infinite limit, then

liminf E(1 —e™*) >0
so that as in (5.9)
Ey°X,<qc+o(c) forsome g<1.
This contradicts ¢’s optimality via (5.7) since
lim sup ¢/y = 1.

To obtain this bound, choose sequences {cx = ¢} etc. as above and set /= —ac/log A. If
£~ c¢/y has a limit greater than one then

Plo=y)=PWM,=c) =yP(Xi=c) ~yBe ™

and an integration by parts implies
Y Ey°X, =y 'cEy°O(1) ~ OQ1)¢A f e MP(o<y)dy
0

=O0)Bte™ > A= 01BN = 0(1)

which contradicts (5.7).
We have established (5.6). To obtain (5.5) from (5.6), note that for x < ¢, (3.2) implies

O0=<sc—V(x)=V(c) - V(x)=Epp°(c —x) =0().
The last equality follows by (5.4) and

Ec.pc= CJ' (—log p)p”P.(0 =y) dy
0

=c[1 - F(c— pc)l(—log p) f p’y dy = o(1).
0

Collecting the above results, we have the following.

THEOREM 5.1. Let F(0) = 0 and a = pe, where 0 < p < 1. If ¢ = V(c) then ¢ =
inf{n:X, = ¢} is optimal. Furthermore ¥V x € R

a Vix) ~EyX,~¢~cif FEP,and t =t,.
b.c=y¢y+0(1)=V(x)+0(l) and U=Ey'X,if FE &, and t = t,.

6. The general case. The notation of Section 2 is used here extensively. If a € D,
the sequence {w’Z,} is itself autoregressive for certain w € ¢'. One such w, as indicated by
(2.3), is any eigenvector w = w(p) of A associated with an eigenvalue p, | p | < 1. Specifically,
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for the eigenvector
(6.1) w(p) = (1, p, p% ) *(e1 — S(a))
of A, (2.3) implies that when Z, = 2
W2y =p™(W'z) + Y25 pren—s

is the simple autoregression (3.1) with the starting point X, = w’z. Hence the results of
Sections 3 and 5 apply here. Restating Theorem 5.1 gives the following.

COROLLARY 6.1. Ifw =w(p),|p| <1, andt.=inf{n:w’Z, = c} then o = t. is optimal
provided ¢ = V(c, pei, e1). If, in addition, F(0) =0and 0<p<1lthenV z€ ¢~
a. V(z,w,a) ~EywZ ~¢~cift=t,and F € Z,.
b. V(z,w,a) =c+o(1) =y + o(1) and U(w, a) = Ey'w'Z,if F € &, and t = t,.

Without loss of generality assume ejw = 1. In general w’Z,, = (w* b)'n, has the form of
(2.1) and corresponds to an autoregression (1.1) with @ € D replaced by d € D if there
exists d € D such that

wxb = Y7 S*(d*).
An algebraic manipulation of (2.2) shows this to be equivalent to
(6.2) wr*a—TWw)=deD

where w € R is defined by w*w = e; and T is the left shift operator. For example, the
eigenvector w(p) corresponds to d = pe; and w = e, corresponds to d = a.

Let W = W(a) be the set of w satisfying (6.2). It is now easy to extend the results of
Corollary 6.1 to arbitrary @ € D and w € W(a). Lemmas 4.1 and 4.2 provide lower bounds
on the optimal payoff. To establish upper bounds the autoregression of concern is simply
compared with one whose payoff is larger and known.

First consider the stopping problem {y"X, } where F(0) = 0 and a € D has nonnegative
coordinates. For |a| < p < 1 the coordinates of w = w(p) defined in (6.1) are positive and
therefore X, < w’Z,. Thus U(e;, a) = U(w, a) and V(z, e1, a) = V(z, w(p), a) V z € A(ey,
a) N A(w, a). That this holds for arbitrary z € A(ei1, a) follows since

(6~3) V(21, €1, a) - V(ZZ) e, a) = 0(1) v 21, 22 € A(el) a)~

Hence Corollary 6.1 extends to

COROLLARY 6.2. Let F(0) =0,a € D and e,a=0V k.

a. IfF€ P, and t = t, then V(z, e1, a) ~ ¢ ~ E.v'X,.
b. IfFE€ 6, and t = t, then

v—B'+0(1)<=EyX,=Ule,a)<y+o0(l) and V(z,e,a) <y +o(l).
c. If, in addition to (b), a € R” then
V(z, e1,a) + O(1) = Uler, a) =y + o(1) = Ey'X, + 0(1).
Note that in (c), O(1) = pE| X,| + | z| by (3.5).

When a € D and F(0) are arbitrary, an upper bound is obtained through comparison of
{X.} with the positive autoregression {£,} satisfying

$"= IE"I + Iallén—l"' |a2|§,,_2+ cee,

Fix the values of ¢ for 2 = 0 so that the corresponding Z, = z lies in A(e;, @); then
X, = &, and thus

E.y'X, < Ey'¢:, tany stopping time
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which together with (6.3) and Corollary 6.2 gives an upper bound V z € A. An analogous
comparison holds for Ul(e,, a) giving the following.
COROLLARY 6.3. Leta € D, w € W(a) and t. = inf{n:w'Z, = c}.

a. IfFEP,andt=t,then V(z,w,a) ~ ¢ ~ E.y'wZ, ¥V z € A.
b. If F € ¢, and t = ¢, then

Vv+o() = EywZ, =Uw,a)=y+o0() and V(z,w,a)<y + o(l).
c. If, in addition to (b), a € R” then
Yv+ oY) =EywZ,+o(y) = V(z,w,a)+ O01) = Uw, a) <y + o(l).
REMARK 6.1. If one could exhibit the uniform integrability of ¢ V a € D the proof of
Lemma 4.2 would yield Ey’X’ = ¢ + o(1) and o(¢) could be replaced by o(1) in (b). Also,
for a € R?, Fatou’s lemma implies V(Zy, w, a) — Ez y'X, converges in distribution to zero.

Hence a uniform integrability argument would give a payoff by ¢, under P, that is optimal
up to o(1) terms. The author has not yet been able to show this.

7. A Comparison of results. The random walk stopping problem {y"(x + S,)}
where S, = Y,Te, corresponds to the autoregression (1.1) when Z, = xe; and a is the
boundary point e; of D. Define ¢, = inf{n:S, = ¢} and ’

V(x) = V(xei, e1, e1) = sup E‘yl(x + S).
Dubins and Teicher (1967) proved the following.

THEOREM 7.1. If ¢ satisfies ¢ = V(c) then for t = t._
V(x) = Ey(x + S)).
Although there exists these strong similarities in the formulations of the stopping

problems and in the optimal stopping times, the asymptotic results differ markedly as
shown by

THEOREM 7.1. Assume Ee, = p >0 and E | &,|™ < « for some m > 1. If c = V(c) and
A= —log ythen c ~ p/A and V(x) ~ p/eA V¥ x € R.

Proor. Since | V(x) — V(y)| =|x — y| assume x = 0. Later we’ll show
(7.1) lim sup Ac < o0

so suppose the sequences {A, = A}, {cx = c} and {tc =t} satisfy A¢/u — y for 0 = y < oo,
The strong law of large numbers indicates t=c 'ut — 1 w.p. one and since R, converges
in distribution (Feller, 1966, page 371) a standard uniform integrability argument indicates
AEY'R; — 0. Hence

pTAEY'S, = p'eAE (exp[—p "Act]) + o(1) = ye ™ + o(1).

Since t is optimal y = 1, ¢ ~ p/A, and V(x) ~ p/Ae.
To see (7.1) assume Ac = £ — oo for sequences {A;, = A} and {c, =c}. Ifl<m<2,a
result of Von Bahr and Esseen (1965)

E(S, — un™"™ = o(n),

along with Kolomogorov’s and Holder’s inequalities, give the existence of a constant K
independent of n and y > 0 such that

PM,=y) = K(n/y)"
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where M,, = max{S,:k < n}. See Finster (1976) for the details. Thus

AEY‘S, = AcEe™ + AEy'R, = é}\f e ™MP(t=y) dy+ o(l)

0

= £\ J’ e ™ MP(M,=c) dy + o(1)
0

= £Ac‘”‘J e™y™ dy + o(1) = o(1)
0

contradicting the optimality of ¢ and completing the proof.

Note that this random walk sequential rule performs no better asymptotically than the
optimal nonsequential procedure which stops at N, the closest integer to A", and yields an
expected payoff

w/Ae + y'x + o(1).

If the second moments of &, exist, the results of Theorem 7.2 can be sharpened to o(1)
terms through the use of Blackwell’s Renewal Theorem. See Woodroofe (1981). However
when 1 < a < 2 the second moments of F € 2, do not exist.
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