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SOME LIMIT THEOREMS ON REVERSED BROWNIAN MOTION

By Rone WU
Stanford University

Let B be the standard one-dimensional Brownian motion, 7'; = inf{s |s=0;
B(s) =x}, x>0, T=TyAT,,

%m={?ﬁﬂ;§g%;ﬂ”=“,ﬂn=wmvna>

where a > 0 is fixed and W(s) = B(T — s), 0 < s < T Let Z(s) be the restriction
of B to the interval [y(¢), ¢], that is, Z(s) = B(y(t) + s), 0 = s < L(¢). In this
paper we use a “time reversal” argument to study relations as ¢ — o between
the processes Z and W under P’(-|B(t) = x) and to evaluate some limits
related to L(¢).

0. Introduction. Let B = (B(t)).=0 be the standard one dimensional Brownian motion
process, and let P* denote the probability associated with the Brownian motion starting
from x. P° will be written as P. 6, is the shift operator. .

Let P*“ denote the probability for the conditional probability under B, = x and B, =
y. That is, P**” is the unique probability on F¢ where F = 6(B(s), s < t) with the following
property: Ifo<t, < ... <t¢,<tand Ei, ---, E, are Borel subsets of R' (let 8 denote the
Borel field on R'), then:

PX;[’y(B(tj) (S Ej; l=j=n

)
ti, x, x1)p(ta — t1, X1, X2) -+ p(t — tn, X,
=f f p(t Dp(t: 1, X1, X2) p( y)dxn~~dx1
El En

p(t, x,)

where p(t, x, y) = (2nt) /?e™*""/? is the Brownian transition density.
For an arbitrary o-field F, let bF denote the class of bounded, F-measurable functions.
It is immediate that if Z € bF{, then E**’(Z) is a version of E*(Z | B(t) = y). Let us
denote E*(Z| B(t) = y) by E®*(Z).
We define

T.=inf{s|s = 0; B(s) = x}, x=0.
T. is called the hitting time of x. We will also write
T =ToAT.=inf{t:B(t) =0 or a},
where a is fixed and a > 0. If ¢ > 0, define
A(t) = {wEQ|0=s=t¢:B,(w) = x},

) = sup(s|s =<t B(s) =x) if w€EA.(t)
Y 0 if weQ— A,

L.(t) =t — v:(2),
L(t) = Lo()ALa(#),
Y(#) = vo(t)\Vva(?).
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v« (¢) is the last exit time from x before time ¢.
For each t > 0, consider the process B restricted to the interval [y(¢), ¢]. Define a process
Z as follow:

Z(s) = B(y(t) +s) for 0=s=<L(t)
1A for L(t) <s, where AE R.

Set
oz =0(Z(s), s=0).

_|B(T—s) for 0=s=T
Wis) = {A for T<s,
ow=o(W(s), s=0).
In Section 1, we shall prove some relations between the processes Z and W and that for
arbitrary y and 0 < x < a,

1. limw P*(Lo(8) < L () | B(t) = x) == . .

lim e P(Lo(6) < Lo() | B) = ) ==,
2. lim,oP’(L(¢) < s|B(t) = x) = PY(T < s), s>0.
3. For any k=1, lim,..E*(L*(t) | B(t) = x) = E*T*.
These results correspond to the following results which are well known:

P Ty< T, =2 ; X PNT,<Ty) =2,

E*T* < oo, E'T=x(a—x) (see[2]).

The central result of Section 1 is Theorem 1. The Result 2 is a direct corollary of
Theorem 1, and the Result 3 follows from 2 after making some uniform integrability type
estimates. The Result 1 is obtained in the process of proving Theorem 1.

In Section 2, we apply the above results to excursion of Brownian motion.

1. Limit theorems. We shall use a “time reversal” argument due to Getoor and
Sharpe in [4] to study the relation between the processes Z and W and evaluate the limits
in the Results 1, 2 and 3.

Let ¢, be the reversal from ¢ operator; that is, B(s)e¢, = B(¢t — s), 0 < s < ¢. In [4], it is
shown that:

(1.1) if Ze€bF], the E*“(Z)=E**(Zo¢,).
LEmma 1. If s < t, the measure P**” has a Radon-Nikodym derivative on F? with

respect to the unconditional measure P* which is uniformly bounded and tends to 1 as t
—> 00,

Proor. For any A € F? we have

P(A) = E"{IAp(t — s, Bs, y)} ’
p(t, x,y)
thus we obtain
dpP=t _ pt—S, B, y)
dpP* plt, x, )

It is evident that the above right side converges boundedly to 1 as ¢ — oo.

(1.2) on F?.
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COROLLARY. For s <t, we have:

—-s,0
(1.3) Ps(T, € ds) = P*(T, € ds) —p(t %0, 7) »
p(t, x,y)
t—s,0
(1.4) P (To< Ty, ToEds) =P (To<T., To € ds)p( 5,0, ) ’
pt, x,y)
where

PX(Ty € ds) = % e~/ s,
78"

PX(To < Tq, To € ds) = f(x, s) ds = =Y n=—w D= (s, 0, 2na + x) ds
(see [2] page 170).

As is well known, ¢ € o7 is equivalent to the condition that there exists g = g(x1, x2,
cee, Xp, +++)where g EBR(BX=PBaXPaX -+, Ba=BR' ' UA))and0<s;,1=1,2, ---,
n, --- such that £ = g(Z(s1), +--, Z(ss), ---). Abbreviate the above expression as { =
g(Z(+)) (see [3]).

LEmMma 2. Ifg € bB:(|g| < My) then for any y and 0 < x < a we have: ‘

(1.5) lim, . E’(g(Z(-)); Lo(t) < L. (t) | B(¢) = x) = E*(g(W(.)); To < To),
(1.6) lim, o E’(g(Z(:)); La(t) < Lo(t) | B(t) = x) = E*(g(W(.)); Ta < Tp).

Proor. Without loss of generality, we may suppose 0 < g < 1. From (1.1), we obtain
L. (t)op: = T/, B(y(t) + s)o¢p. = B(TAt — s).
For s < ¢t we have by Lemma 1
E”“*(g(Z(+)); Lo(8) < Lo (t)) = E***(g(Z(+)); Lo(t) < Lo (t) < 5)

p(t_s’ Bs’y)

= EX(g(W()); To< Ta<s) = E( oy W) T <T.= s)~

As t — o, the right side tends to
E*(g(W()); To<Ta=<5s)
by the Dominated Convergence Theorem. As s is arbitrary, this shows
(1.7) lim inf,_. E¥**(g(Z(+)); Lo(t) < La(t)) = E*(g(W(-)); To < Ta).

Let g = 1; we obtain

(1.8) lim inf,_.. P**(Lo(t) < La(£)) = PX(Ty < T,) = - — %
and
(1.9) lim inf, ... P%**(Lq(t) < Lo(t)) = PX(T, < Ty) = g ;

since the right side of (1.8) plus the right side of (1.9) equals 1 and
PY ¥ (Lo(t) < La(#)) + P?"* (Lo (t) < Lo(8)) = 1,

these imply that

(1.10) lim ... P*(Lo(t) < La(t) | B(t) = x) == ; x
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(1.11) lim, . P*(La(t) < Lo(t)|B(t) = x) =

QIR

’

(1.12) lim, . P?(Lo(¢) = Lo(¢) | B(t) = x) = 0.
Replacing g by 1 — g, we obtain from (1.10), (1.11), (1.12) that
(1.13)  lim supE*“*(g(Z(-)); Lo(t) < La(t)) < E*(g(W(-)); Lo(t) < Lo (2)).

Combining (1.7) with (1.13), we have (1.5). Using a similar argument, we can obtain (1.6).
0

THEOREM 1. If g € bS53, then for any y and 0 < x < a we have:
(1.14) lim,..E>(g(Z(-)) | B(t) = x) = E¥(g(W(-))).

Proor. The conclusion follows from Lemma 2.0

COROLLARY. For s> 0, we have:

(1.15) lim, P> (L(¢) < s|B(t) = x) = P(T < s).

Proor. Taking

(%) = 0 xR’
W =11 x=A

in (1.14), we obtain (1.15). 0

THEOREM 2. For anyy, 0 < x < a and integer k = 1, we have:
(1.16) lim,.E>(L*(t) | B(t) = x) = E*T*.

Proor. Let
_p(t—s,B,y) dP*
T ptxy) dP*

qs,l F(s)

We take s = ¢/2 and note g, 5 < v2e"“", so we have from Lemma 1:

E>(L*(t)| B(t) = x) = E¥((TAD*) < E"“(Tk; T<%> + t'*P’“"y<T> -;—)

N t
< 2e "‘""“{E"(T"’, T< é) + t’*P"(T > E)} )

Now t"P*(T > t/2) < 2*E*T*, hence if £ > 1, then the right side of (1.17)
= 2"1V2e BT < o,

(1.17)

This implies that for each % there exists a constant M (x, y, k) such that
(1.18) sup,E*(L*(t) | B(t) = x) < M(x, y, k) < .
The conclusion of Theorem 2 follows from (1.15); and (1.18) (see [1], 4.5.2). 0
2. Application to Brownian excursion. We use the following notations:
Y(¢) =|B(¢)|, h(t) =inf{s|s=t, B(t) =0},
M'(¢) = max,o=s= Y (s),  M*(t) = max=s=n Y (s),

MS(t) = MaXyy(H)=s=<h(t) Y (s),
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|71 e/

&0,y = =
Tt

g

We can prove some results in Chung [2] by the above methods in an easier way. For
example:

1.For0 <s<t,y>0, we have:

Y —y2/2(t—s)
(2.1) P(yo(t) Eds, Y(¢) € dy) = ———¢"" ds dy.
YO Y Vs(t — s)®
Noting Lo(t) = t — yo(t), we obtain (2.1) from (1.1) and (1.3).
2.
(2.2) PM'(t) < a|Lo(t) =r) = 1+ 2 37 (=1)"e ™™/,

where 0 <r<t.

Proor. We have

PM'\(t) = a, Lo(t) € dr) = 2P(Lo(t) < L(t), Lo(t) € dr)
(2.3) @ .
=2 f P%(Lo(¢) < La(t), Lo(t) € dr)p(t, 0, y) dy.

0
We know from (1.4) that the right side of (2.3) equals
(2.4) 2 f f(y,np(t —r,0,0) dy.
0

By (2.1) we have P(Lo(t) € dx) = dx/n~r(t —r), hence the left side of (2.3) equals

(2.5) 27r j f(y, r) dy,
0

where f(y,r) = =Y n-—wpy(r, 0, 2na + y).
Integrating out dy in (2.5), we obtain (2.2). 0

Let
_JY(yo(t) + ) for 0=s= Lo(t),
H(s) = {A for Lo(t) <s ’
_ ) Y(To - s) for 0=s=T,
Uts) = {A for To<s >
_ | Y¢(s) for 0<s< T,
X(s) = {A for To<s ’
Zo(s) = B(yo(t) + ) for 0=<s= L),
¥ =1a for Lo(t)<s °
_ | B(Ty—s) for 0<=s=<Tp
Wols) = {A for To<s

Next, we shall prove some relations among processes H, U and X.

THEOREM 3. Ifg € bBR(R™)(R™ = [0, »)) and x > 0, we have:
(2.6) lim, .. E(g(H(:))| Y(¢) = x) = E*(g(U(-))).
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Proor. The proof of Lemma 2 is applicable if we delete Lo(t) < L.(¢), To < T, and
replace Z(-) by Zy(-), W(-) by Wy(-). We obtain
lim, . E(g(Zo(-)) | B(¢) = x) = E"g(W,(+)).
Since
E(g(H(-))| Y(¢) = x) = E(g(Zo(-)) | B(t) = x)
and
E"g(Wo(-)) = E"g(U(-)),
we obtain (2.6). 0

Using the same argument, we can obtain results similar to (1.15) and (1.16).

THEOREM 4. If g1, 8, € bBE(R™) and x > 0, we have:
2.7 lim, .. E (g (H(-))-8:(X(-)°0,) | Y(¢) = x) = E"g1(U(-)) E*g:(X(-)).
Proor. This follows from the Markov property and Theorem 3. 0
Theorem 4 shows that H and X0, are asymptotically conditionally independent relative

to P%%* as t — oo. .
If we take g1 (H(-)) = I#L”, g2(X(-)°0,) = I#%" and note that

M3(t) = M\(t) v M2(¢),

then we have

2
(2.8) lim,.P(M*(t) < a|Y(t) = x) = (“ ; x) .

Taking

___)J1 xeRrR”
81=8%19 x=2

and noting that (h(¢) — t) = T,°0;, we obtain

8 Sy

g(u’ 0’ x) duf g(v, 0, x) dv.

0

(2.9) lim, o P(Lo(t) < s1, (A(t) — t) < 82| Y(¢) = x) =f

0

We can obtain other important results if we take some special g; and go.
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