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BOUNDS ON THE RATE OF CONVERGENCE OF MOMENTS IN THE
CENTRAL LIMIT THEOREM

By PETER HALL

Australian National University

We derive two-sided bounds on the rate of convergence of moments in
the central limit theorem. A variety of norming constants is considered, and
it is shown that a very delicate alteration to these constants can have a
significant effect on the rate. Indeed, the influence of norming constants on
rates of convergence of moments is of a more subtle nature than in the central
limit theorem itself. We present several examples to illustrate some extreme
cases.

1. Introduction and summary. The moments of a random variable are one of its
most descriptive and accessible characteristics. For example, the classical form of the
central limit theorem holds only for distributions with finite second moment, and the rate
of convergence in this limit law is commonly described by conditions on the distribution’s
higher order moments. Therefore it is not surprising that one of the earliest generalisations
of the Lindeberg-Feller theorem was Bernstein’s (1939) discovery of necessary and suffi-
cient conditions for the convergence of moments. Moment convergence in the central limit
theorem for more general stochastic processes has also been studied; see for example
Lifshits (1975), Hall (1978a) and de Acosta and Giné (1979). Brown (1969, 1970) provided
an alternative proof of Bernstein’s theorem. However, the rate of convergence of moments
has received relatively little attention, in comparsion to the wealth of literature which
exists on rates in the central limit theorem itself. Von Bahr (1965) obtained upper bounds
for the rate of convergence of moments, and derived Edgeworth-Cramér expansions. Some
more recent work of Bhattacharya and Rao (1976), in particular their Theorem 18.1, page
181, may be employed to generalise portions of von Bahr’s work to the case of vector
valued variables and to improve on some of his upper bounds in the scalar case. Further
sharpenings have been given by Hall (1978b). See also Sweeting (1980). In view of these
results it is of interest to know the full extent to which upper bounds can be tightened.
The most precise information in this problem can be obtained for the case of independent
and identically distributed variables, and it should consist of lower bounds on the rate of
convergence. This is the context of the present paper. We shall derive upper and lower
bounds which for many distributions are of the same order of magnitude.

Some results of this nature have been obtained by Osipov (1968, 1971), Rozovskii (1978a,
1978b) and Hall (1980, 1981) for the central limit theorem itself. However, the case of
convergence of moments contains some very interesting surprises. For example, an ex-
tremely subtle change of norming constants can significantly improve the rate of conver-
gence of moments. It is well known that the rate of convergence in the central limit
theorem may be expedited by norming with the truncated mean and mean square rather
than the true mean and mean square. The truncation may be performed at any constant
multiple of n'/%, and the value taken for the constant does not significantly affect the rate.
However, in the case of convergence of moments an alteration to the constant can change
the rate. The rate obtained with one multiple of n'/? can be asymptotically negligible in
comparison with the rate for another multiple. Behaviour of this subtlety is perhaps best
described by examples, and we shall consider the case of distributions with regularly
varying tails in detail.
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Our results are presented together in Section 2. We examine moments up to the fourth
in greatest depth, since this case is the simplest to present and discuss. In Theorem 1 we
present upper and lower bounds of similar orders of magnitude, and in Theorem 2 we
sharpen these in the special case of a distribution with regularly varying tails. Our upper
and lower bounds may be used to derive characterisations of the rate of convergence;
results of this type are given in Corollaries 1 and 2. Rates of convergence for different
norming constants are presented in subsequent theorems. Finally, we state a result on
Edgeworth-Cramér expansions for higher-order moments, which generalises Theorem 1.
All our proofs are deferred until Section 3.

2. Rates of Convergence. Let X, X;, X,, - - - be independent and identically distrib-
uted random variables with zero mean and unit variance, and set S, = Y 7X;. Let Z denote
a standard normal variable, and define

{n-lE{X4I(|X|5n1/2)} + E{X(|X|>n"?} if 0<p<2
O (n) =

T E{XI(X| = 0V} + n"PPE(| X|PI(| X| > nV)} if 2<p<4.

(Here I(E) denotes the indicator function of an event E.) The central limit theorem states
that S, /n'/? converges in distribution to Z, and if E | X |? <  for some p > 0 then E | S,/
n'?|P — E| Z|". We shall prove that if 0 < p < 4 then the rate of convergence in this limit
law is that of the quantity 6,(n) to zero, up to terms of order n~™"-®*1/2) T other words,
the quantities E | S,/n**|” — E| Z|? and 8,(n) have the same order of magnitude, except
for terms of order p ™" (LE+V/2) (If p=min(LE+1/2} jg of  larger order of magnitude than
8p(n), then of course this result is not so informative.)

THEOREM 1. Suppose 0<p <4,p#2and E|X|? < . Then

2.1) lim sup, .« | E|S,/n'2|? — E|Z|?|/{8,(n) + n~™™LE+D/AY < o
and
(2.2) lim inf, (| E | Sp/n*?|? — E|Z|?| + n~™"e+ /2y f5 (n) > 0.

Important to the proof of this result is a lemma which generalises portions of Esséen’s
(1945) Lemma 3 and von Bahr’s (1965) Lemma 2. We present it here because of its possible
independent interest.

LEMMA 1. Let ¢ be the characteristic function of a variable with finite variance.
Then for any 8 > 0, sup, | [2*° ¢"(t) dt| = O(n""*) as n — .

If ¢ satisfies Cramér’s continuity condition, i.e.
(C) lim supj¢j»e | $(2) | < 1,

then sup.=.| [5°¢"(t) d¢| = O(n™") for each ¢ and r > 0. In this case if X has characteristic
function ¢, Theorem 1 may be slightly sharpened by replacing the term min{1, (p + 1)/2}
by 1 in (2.1) and (2.2). Similarly, the condition (2.3) below may be dropped, and some
conditions in Theorems 3-5 and Corollary 2 may be relaxed.

The results of Theorem 1 may be refined if we are prepared to assume that the
underlying distribution has regularly varying tails.

THEOREM 2. Suppose the function R (x) = P(|X| > x) is regularly varying at infinity
with exponent —a, where 2 < a < 4, and that 0 < p < o with p # 2. (We continue to
assume that E | X |? < «.) Set

K, = 2|sin(% pm) |T'(p + 1)/
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(i) Assumethat2<a<4and0<p<a,andifp <1, that
2.3) xPPP(|X|>x) > o as x— »,
Then
|E|S./n'?|P — E|Z|?| ~ nP(|X| > n"*aK,

0 0 1
X f x_"‘_ldxf t‘“’“’{cos tx—1+ (-é) (tx)z}e_’z/2 dt
0 0

asn— oo,
(i) If0<p<a=2then

|E|S,./nl/2 |p — E|Z|P| ~ E{XZI(|X| > nl/z)}(Kp/2) f tl_pe_tg/z dt
0

asn— o,
(iii)) If2<p = a <4 then

|E|S,/n'?|P = E|Z|"| ~ W E{| X|"1(| X| > nw)}Kpj 3

0

® 1
t'“’“’(cos t—1+= t2) dt

asn— o,

In each case the right hand side can be shown to be asymptotically equivalent to a
constant multiple of §,(n). Note that in (ii) and (iii) the right hand side is asymptotically
much greater than nP (| X| > n'/?) (see Theorem 1, page 281 of Feller (1971)). Therefore
the rates of convergence derived in (ii) and (iii) are in a sense slower than in (i).

An advantage of expressing rates of convergence in the form of Theorem 1 is that they
may be used to derive characterisations of rates of convergence. For example, the following
two corollaries are easily proved.

COROLLARY 1. Suppose2<p<4,0=f<landE|X|°?<o. IfB<p/2—1then
(2.4) Sn*E | E|S,/n'?|P — E|Z|"| < c.

If B =p/2 — 1 then (2.4) holds if and only if
E{|X|?(1 + |log | X|)} < o,
while if p/2 — 1 < B < 1, (24) is equivalent to
E(|X|2+2B) < oo,

COROLLARY 2. Suppose 0 <p<2and0< B <min{l, (p + 1)/2}. Then the following
two conditions are equivalent:

(2.5) Sn A E|S,/n' 2P — E|Z|P| < oo
E(|X|**%) < o,
If 0 < B < Y%, they are also equivalent to
(2.6) Sn*Esup, | P(S./n*? = x) — ®(x) | < co.
In the case B = 0, (2.5) and (2.6) are each equivalent to
E{X*(1 + [log| X|)} < .

(In proving the last portion of this corollary, note the results of Heyde (1967).)
It is well known (see for example Friedman, Katz and Koopmans (1966), Egorov (1973),
Heyde (1973) and Hall (1980)) that the rate of convergence in the central limit theorem
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1/2

may be improved by considering (S, — d.)/c, instead of S,/n'/?, where for some A > 0,

o = [RE{XI(|X| < An"»}]"2 and d, = nE {XI(|X| < An'/?)).

(Actually only the case A = 1 has been widely considered, but a general A may be treated
using almost identical arguments, yielding the upper and lower bounds of Hall (1980).) It
is of interest to examine the effect that the same norming constants have on the rate of
convergence of moments. Let us define

85 (n) = n'E{X*I(|X| = n"?)} + n' PRE (| X|PI(| X| > n'?)}
forO<p<4,p#2

THEOREM 3. If 0<p <4 and p # 2 then for any A > 0,
(27)  lim supn.w |E| (S. — dn)/ca|” — E|Z|7|/{8} (n) + n~™n@+D/2} < oo,
and if2<p <4,
(2.8) lim inf, . {| E| (S — dn)/cu|” — E|Z|?| + n7'}/85 (n) > 0.

On comparing the results of Theorems 1 and 3 it is clear that if 2 < p < 4, no significant
improvement to the rate of convergence can be obtained by using the more compﬁﬁsed
norming constants ¢, and d,. However if 0 < p < 2, an improvement can be achieved in
some circumstances. For example, if R(x) = P(|X| > x) is regularly varying at infinity
with exponent —2 then 8%(n)/8,(n) — 0 for 0 < p < 2, and the upper bound on the rate
of convergence provided by Theorem 3 is asymptotically negligible in comparison with the
lower bound given by Theorem 1. In fact, the rate of convergence can sometimes be
improved still further by a judicious choice of the constant A. This is borne out by our next
theorem, which also shows that the result (2.8) cannot be extended to the case 0 <p < 2,
even if the term n™! is replaced by n~™n(:(p+1/2)

THEOREM 4. Suppose the function R (x) = P(| X| > x) is regularly varying at infinity
with exponent —a, where 2 < a < 4, and that 0 < p < 2. If p < 1, assume in addition that
PP (| X| > x) > o as x — . Then

|E[(Sn = dn)/cal” = E|ZIP| = 0{8%(n)}

as n— o« if and only if A is the (unique) positive solution of the equation

A o
1
J x_”“ldxf t_“’*”{cos tx—1+ 3 (tx)z}e"z/2 dt
0 0

=J' x_”‘_ldxj P (1 — cos tx)e /2 dt.
A 0

For all other positive values of A,
|E| (Sn - dn)/cn |p - Ellel ~ Cﬁ’;(n)

as n— o, where C is a positive constant depending on a, A and p.

It is worth recording the following consequence of Theorem 3: whenever 0 < p < 2,
E(X) =0and E(X? = 1, we have

EnT | E| (Su = dn)/en|” — E|Z|P| < .

This result should be compared with a rate of convergence in the central limit theorem
obtained by Friedman, Katz and Koopmans (1966); see also Egorov (1973) and Heyde
(1973). '
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Our final result is a generalisation of Theorem 1 to higher order moments. This
necessarily involves Edgeworth-Cramér expansions, and should be compared with the
upper bounds derived by von Bahr (1965). For the sake of convenience and brevity we
shall adopt von Bahr’s notation. We assume that E (X**) < o for a positive integer %, and
define

{n_kE{X2k+ZI(|X| = nl/z)} + nl_kE{X%I(|X| >n%)} if 0 <p <2k
Oprn(n) =

nE{X*?I(| X| = nVY) + o' PPE{|X|P [(|X| >0V} if 2k<p<2k+2.
(The case p = 2k, or indeed p equal to any even integer, is rather trivial.)

THEOREM 5. Suppose E(X*) + E|X|? < o, where 0 < p < 2k + 2 and p is not an
even integer. Then

lim sup,—. | E|S./n'?|? — E|Z|?
(2.9 - Xi=in” j | |7 dP2) (@) (x) | /{8pk(n) + n7mmR(PH/D) < oo
and

lim infn_m{ E|S./n*?|? - E|Z|?

(2.10)
)=, n‘fJ’ | x|? dPy(—®)(x)

+ n—mi"(k’“’”’/z)} /851 (n) > 0.

Generalisations of the other results may also be derived. Theorem 5 effectively states
that the quantities §,.(n) and

od
E|S./n?|? — E|Z|? — Yz} n J' | 2|7 dPs;(—®)(x)

are of the same order of magnitude up to terms of order p~™n*E+1/2)

3. Proofs. The symbol C, with or without subscripts, denotes a positive generic
constant, while o(1) stands for a function of n which does not depend on ¢ and which
converges to zero as n — oo,

Proor oF LEMMA 1. We may assume that ¢ is real and nonnegative (otherwise replace
¢" by | $°|"/?) and prove that for some & > 0,

x+8
sup; f ¢™(t) dt = O(n™?).

The result for a general § follows by adding.

Let Y denote the random variable in question. By rescaling we may suppose that E (Y?)
= 1. For any two real numbers ¢ and ¢ we may write ¢(¢) = ¢(t) + (¢ — to)d’(to) + Y(t —
t)%$”(s), where s lies between ¢ and . If « > 1 is chosen so large that E{Y?I(| Y| > a)}
=< % then

1+ ¢7(s) =f x%(1 — cos sx)dP(Y < x)

=<a? f (1 — cos sx)dP(Y = x) + 2J 22dP(Y = x) < o®{1 — ¢(s)} +-:1§,

|x|>a
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and so
(3.1 o(t) = ¢(to) + (t = to)d' (ko) + (¢ — to)’[a®(1 — é(5)}/2 — 1A].

Let I = I(x, 8) denote the interval [x, x + 8], and let % be a point in I at which ¢ attains its
maximum on I If $'(¢) # 0 then #, must equal one of the endpoints of I. It is readily seen
that if , = x then ¢’(¢,) < 0, while if £, = x + §, ¢’(£,) = 0. Therefore (t—t)o' (k) <0
whenever ¢ € I, and by (3.1),

(3:2) o(t) = ¢(to) + (t — t0)’[a?{1 — ¢(s)}/2 — %].

Since ¢ is uniformly continuous on (—o, «), there exists § > 0 such that |p(u) — ¢(v) | =
1/(6a”) whenever |u — v| < 8. Define I with this choice of 8. Then | s — to| = 8 whenever
t € 1, and so by (3.2),

(3.3) ¢(t) =1+ (t — t)’[a’(1 — ¢(to)}/2 — %].

If $(t) =1 — 1/(6a®) then [+ ¢"(t) dt < 8(1 — 1/(6a2)", while if o(to) > 1 — 1/(6a?) it
follows from (3.3) that ¢(t) < 1 — (¢ — £)%/6 whenever ¢ € I, whence

x+6 00
f ¢"(t) dt = j exp{—n(t — t)*/6} dt = (6m/n)">
Lemma 1 follows from these two estimates.

LemMMA 2. Let X be a random variable with finite variance. Then

(3.4) [E{XPI(X|=x)}F=0Q1) + o[E{X*I(|X| = x)}]
as x — », and for any k=1,
(3.5) E{X*"I(|X|=x)} =0Q) + o[E{| X|**I(| X| = x)}].

Proor. The result (3.4) is trivial if E(X*) < o, and so we may assume that E(X*) =
o0, Since E (X?%) < o, there exists a symmetric function A with A (x) = 1 and A (x) 1 o0 as
x — oo, such that E {X?A*X)} < . For any y € (0, x) we have
E{IXP'I(|X|=x)} =y’ + E{|X]’L(y < | X| < x)}
=Y’ + E[{|X|AQOMHX (| X| = x)}1/A(y)
="+ [E{X"A*X))E{X'I(| X| = x)}]"*/A(y),
so that
lim sup..[E{| X|"I(|X| = x)} F/E{X'I(| X| = x)} = E{X?A%(X)}/A%(y).
The result (3.4) follows on letting y — o, and (3.5) is proved similarly.
Proor oF THEOREMS 1 AND 5. Let k, = 7/2I(p + 1) | sin(Ypm) |, where p > 0 is not an

even integer. The function f£,(¢) = cos t — Y'¢’* (—=1)7/t¥//(2j)!, where [ p/2] denotes the
integer part of p/2, does not change sign on (0, «). It is readily shown that

(3.6)

= x|

f t~PHIE (tx)dt
0

f tP*Vf (2) dt’ =k, | x|
0

Define the polynomials P, by the formal expansion
exp(X5u'v' 72 [j1) = 5 v/Ps(u),

where k, is the jth cumulant of X. Let P,(—®)(x) denote the function whose Fourier-
Stieltjes transform equals P;(it)e*/-. Set H,(x) = P(S, < n"?x) — 252 n 2P (—®) (x).
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With ¢ denoting the characteristic function of X, the Fourier-Stieltjes transform of H,
may be written as

Pa(t) = $"(t/n"?) — Y2 n P (it)e
= ¢"(¢/n"?) — exp{n T8 k;(it/n*)’/j!} + o(|¢|*) = o(|¢]|*)
as ¢ — 0. Consequently [, x’dH,(x) = 0 for 0 < j < 2k, and so in view of (3.6),

ky

f | x|”dH, (x)

= ft“"“’dtf fo(tx)dH, (x)
0 0

f t= P Vpsh, (t) dt|.
0

But for any ¢ > 0,

J' £~ P Vg te"(t/n ) dE | < nP? f ¢ " (t) | dt
enl/? e

(j+1)e
< n—p/2 2;;1 (je)—(p+1) f |¢"(t)|dt = O(n—(p+1)/2)’

Je

using Lemma 1. Consequently

(3.7) k,

enl/2 )
f £~ P VL, (1) dt‘ + O(n~(#*V72),
0

f | x|?dH, (x)

Next observe that
log ¢(¢) = ¢(t) — 1+ Yo (=1)"*{o(t) — 1}/ + O(|t|***V);
{6() — 1)" = (T2 @)’ /j1)" + O(| >~ D+
and

kL (=1) TR, wi (i) /Y e = S0 ki @) /! + ko ()P (2R + 1) + O(|t|**?)
as t— 0, where y; = E(X’) and k5.1 is defined to equal the coefficient of (i£)2**!/(2k + 1)!
on the left hand side of the last expression. Therefore with x(£) = ¢(¢) — 1 — Y%, p;(it)’/
J!, we have

logg(¢) = x(&) + Y32 6, (i) /7! + koarr ()71 (2R + 1) + O(| ¢|**+2)
as t — 0. Setting a.(¢) = exp{—n Y3* ;(it/n*)’/j!} we have
a. (89" (¢/n'?) = exp[n{x(t/n'?) + kor+1(it/n*?* 1/ 2k + 1)} + 1 (t)]
=1+ n{x(t/n"?) + khre1(t/n?)***/(2k + 1)1}
+ o2 (&) | n{x (t/n'"?) + kbhper(it/nV2) 242k + 1)) |2 + ras(2),
where | 7,1 (t) | < Cn|t/n"?|?**2,
[ 7n2(2) | < ras(t) = C exp{n|xt/n"?) + kbrer(@t/n*?)* 1 /2 + )| + |1 (£) |}

and | 7a3(2) | < | rn1(2) |raa(?) for | ] < en'/? If € is chosen sufficiently small then | r..(¢) | <
Cn7*|¢|**** and ra4(t) = Ce™" for | t| < en'/2 (Note that | x(¢) + xhr+1(it)2**1/(2k + 1)! |
= 0(| t|?*) as t — 0.) Furthermore, if £ = 2 then

ras(t) = 02| x(E/nV2) + Kopar(t/n'2V4 1/ (2R + 1)L |2
= Cin*(E{|tX/n"? | 21(| X| < n'?) + | £X/n"2 |1(| X | > n'?)) P
+ [E([tX/n'? | I(| X | = n'?) + [ eX/n'2 P71 X | > n'%)))?
+ |t/n1/2|4k+2)
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< Cz(t4k_2 + t4k+4)[n—k+1/2E{|X|2k+lI(|X| <= n1/2)}
+ n'PEXI(| X > n'?)})2

Since E{X**I(| X| > n'?)} = n* P2E{| X|?I(| X | > n*/?)} for 2k < p < 2k + 2, we may
deduce from Lemma 2 that 7,5(t) < C(t*7% + t***)[0(1)8,x(n) + n7*]. In the case £ =1
a similar estimate yields an upper bound of

Ct* + 8)[o(1)8pi(n) + n7'],
and combining the estimate above we deduce that
an(t)¢"(t/n'?) = 1 + n{x(t/n"?) + korr1(it/n"?V**1/(2k + 1)} + rus(2)

where | 7.6(t) | = C(£2**2 + t***)[0(1)8,1 (n) + n~*1e"/" if | | < en'/ and ¢ is sufficiently
small.
Next observe that

{an(®)} ™ = e™2(1 + Y71 Pi(it) /n'"? + rur(t)}

where | r7(t) | < Cn~*2#*2e™/"° if | t| < en'/? and ¢ is sufficiently small. The polynomial
Py is odd, and so

(3.8)  RAp™(t/n"?) — e 21 + X2 Pi(it) /n'"*)] = Rn{an(t)) X (t/n')] + rus(?)
where
(3.9)  |7us(®)| = |2 {an () {nxhasr (i8/nV2) 2 )2k + D! + s (8)) + rar (D)e72]|
=< Ct***(0(1)8,1(n) + n~*}e 7
if | ¢] = en’? and e is sufficiently small. Now,
[{an(®)} ™" — %] < e™*2(n Y3 |k, (t/n2)’ |/} Yexp{n 33 | (t/n"2)’|/j))
= Cn7V2| ¢t |72
for | ¢| < en'/’. Moreover,
|x(&/n2) | < E((|£X/n"? % + | X/n2 PP OI( X | < n'2)) + E{(|tX/n"? |
+ [ tX/nV? P OI( X | > n'?))
= C(|t|*7 + *#*2)[n~CV2E (| X |2 (| X | = n'/?)}
+n*E{X* (| X| > n'?)}].
From the last two estimates and Lemma 2 we may deduce that
n|{a. ()} — e™2| | x(t/n"?) | = Ct**{0(1)dn (n) + n7*}e ™™,
and combining this with (3.8) and (3.9) we obtain
RLAS™(t/nY?)e {1 + Y2 Pi(it) /n/?}] = Rénx (t/n'?)e™ 2 + 19 (t)
where | ra9(2) | = Ct**2{0(1)8,z(n) + n*}e /5 for | t| < en'/? Substituting into (3.7) we

find that

kp| E|Su/n"2|P — E|Z|P — Y47} n-ff | 2|7 dPy (—®)(x)| + 0(1)8 (1)

(3.10) + O™t r/2y =

f t~(P*VE {cos(tX/n''?)
0

— Yho (=1)(eX/n )7/ (%)) Ye 2 dt | .
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Since
(311)  Cz*min(l, 2% = (—1)***{cos z — Y4, (—1)/2¥/(2/)!} < z**min(l, 2?)
for real z, then

o

(3.12) 0= (-1)*'n f tPOE (cos(tX/n'?) — Yoo (=1)(eX/n 2% /(27)}e 2 dt

0

00

t2k+l—pe—t2/2 dt + nl—kaef t2k—p—le—t2/2 dt}.
n'?/|X|

1/2
3.13) =E{n7*x%*+? f i

0

Now, [§ t**1Pe™""/% dt < C min(1, 2%**™?), and

” ph-r-g-yz gy — [Cmin(1, 27%) if 0<p<2k
i = | Cz*Pmin(1, 27%*72) if 2k<p<2k+2,

so that the quantity in (3.13) is dominated by
CE{n* X" I(| X |=n"® + n"#? | X FI(| X | > n"?)} + CR.(n)

where Ryi(n) = n' *E{X™I(|X| > n'?)} if 0 < p < 2k; 0 if 2k < p < 2k + 2. The upper
bound (2.9) follows on substituting these estimates into (3.10). To derive (2.10) observe
that in view of (3.11), the term on the right in (3.12) dominates a constant multiple of

1
E{n—kXZk+21(| X | < n1/2) j t2k+l—pe—t2/2 dt +
0

n'PXP*(| X | > n'?) J P12 gy,
n'/|x]

An argument similar to that above may now be used to prove (2.10).

Proor oF THEOREM 3. Assume first that 2 < p < 4. The upper bound (2.7) may be
obtained directly from Theorem 1 by noting that

E|(Sn—dn)/cn — Su/n'?|? = C1{(1 — 62)PE | S./n'?|P + | d, /n"?|7}
= GE{X(|X|>An"?)
= G[n'E{XI(|X| = n'?}
+n'PPE{| X|PI(| X| > n'/?)}].
In the remainder of the proof we shall make use of the fact that for any A; = A,,
nTE{X'I(|X| = \n'} + n'PPE{| X |PI(| X| > A n?)}
=nT'E{XI(|X| = An'?)} + nME{| X/Ain"?|PI(A2n'? < | X | = A\1n'?)
+n'PPE{| X|PI(| X| > Ain'?)}
= C[nT'E{XI(|X| = Aen'P)} + n' PPE{| X|PI(| X| > A2n'/?)}].
A similar argument may be used to obtain the same inequality for A; < A;. In both cases
we assume that 0 < p < 4.
We turn now to the lower bound (2.8) for 2 < p < 4. Write ¢(t) = exp[—'¢*{1 +

y(¢)}1and let £, (2) = Yt*[1 — nc,* {1 + y(t/cn) } ] — itd,/ca. The characteristic function of
(S. — d.)/c, may be written as

(3.14) Ya(8) = €2 {1 + £, (2) + BE(E) + BE (D) + rao ()| £1(8) |}
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where | r.o(t)| = exp|§n(t)| =< exp[%t*{|1 —nc,® | + nea? | y(t/cn)|} + |tdn/cn|]. Since

d./cn — 0 then if n is sufficiently large, ¢ sufficiently small and || < en'?, | ruo(t)| =
exp(t®/5 + | t|) = C exp(t?/4). Furthermore, —%n(t/c,)?{1 + y(t/c.)} = n log ¢ (t/ca) =
n{¢(t/cy) — 1} + ruu () where |r,11(2) | = Cn7't* if | ¢| < en'/2. Therefore with

M (8) = n{d(t/cn) — 1 + Yoh(t/ca)?} — itdn/cn
we may deduce from (3.14) that

2 3
nn(t) nn(t)
2 + 6

where | rn12(2) | < C{| 0 (8) |* + 7' (£ + £°) }e™/* for | ¢| < en'/?
In view of Lemma 1, (3.6) and (3.15),

Dw=kp|E|(Sn = dn)/cn|” — E|Z|7|

(3.15) Yn(t) = e"2/2{1 + e (8) + } + 712 ()

j PR () + Ynt (1 — 62) /& + 202} — €] dt
0

(3.16)
enl/2
= f PR L a () + Yemn (8) + Yomir (2)
0
YR (1 — )/ + Mz/oﬁ}em]e-ﬂ/zdt| + russ
where
enl/2
(3.17) | 7ria| = C{ j P |, (8) |Ye 1 dt + n—‘}.
1]
Now,

R bnn(t) + Yl {(1 — 03)/ch + i o Y&
= nE[{cos(tX/c.) — 1 + %(tX/c,)*}I(| X| < An'/?)
+ {cos(tX/c,) — 1 + %(tX/ca)?e™*Y I(| X| > An'?) ] + Yat2e”2np Jo?,
and
RM2(t) = (E[ {cos(tX/c,) — 1 + %(tX/c,)} (| X| < An"?)
+ {cos(tX/cn) — JI(| X| > An'?)])?
— (n[E{sin(tX/c,) — (tX/cn)} — tpn/cn])?
—t’np /o + raa(t),
where in view of Lemma 2,
| 7014 () | = CL([RE{| ¢X/cn |'I(| X| = An"?) + | X /o |2I(| X | > An'2)} T
+ [RE{|tX/c. |’I(| X | = An'2) + | tX/ca |2 I(| X | > An*/?)} T
+ | tpn/cn | NPE{| tX/cu |PI(| X | = AnY?) + | tX/c, ™™ PP (| X | > An'?)})
=Co([ | + ¢ + £8)
[o()8 (n) + nTPE{X*I(| X| > An*)}E{| X |’I(| X| < An*?)} + n7'].
But by Lemma 2, since E {X?I(| X| > An'?)} = C8} (n),
[E{XI(|X| > A" n"2E{| X’ I(| X| = An'?)}F = o()8} (n)[n™" + n ' E{X'I(| X|
=A%)}l =o[{n" + 8 (n))*].
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Therefore
[raa ()| = C([E]P™ + t* + £8) {0 (1)} (n) + n7').
A similar argument leads to the estimate
| RO ()| < | R (8)|® + 3| Rlna(t) || Imenn(t) |2 = C(t* + £°) {0(1)8} (n) + n'}.

Combining the results from (3.16) down we may deduce that
A=n J' P (E[{cos(tX/cn) — 1 + %(tX/c,)?}I(| X | = An'7?)
[

+ {cos(tX/c,) — 1 + W(tX/c,) e} II | X | > An'?)]

+ Vat2(e"/? — 1)np2/o2)e™ "2 dt + 0(1)8F (n) + O(n™") + Fus.

The estimate (3.17) and techniques like those used just above may be used to prove that
Tmiz = 0o(1)8F (n) + O(n™"), whence

A, +0o(1)83(n) + O(n™")=n J P VE{cos(tX/n'?) — 1 + %(tX/n'?)*}e " dt.

The lower bound (2.8) follows from this estimate in the same way that we proved (2.10)
from (3.10).

We now consider 0 < p < 2. In this case we may use (3.6) and the estimates from (3.15)
down to prove that

ko |E|(S, — do)/en|” — E|Z|?| =

f PV LR A (L) — e ?) di
(3.18) 0

enl/2
j ti(p+l)g /n"(t)e_’z/zdt + s
0

where | 74| = C{f5"” PV | 9. (t) |22 dt + n~™nP+/2Y Now,
M (t) = nE[{cos(tX/c,) — 1 + %(tX/c,)*}I(| X | <= An'/?)
= {1 = cos(tX/c,) }I(| X| > An'"?)]
+ inE[{sin(tX/c,) — (¢X/c,) }I(| X| = An'?) + sin(tX/c,) [(| X| > An'/?)],
and so
[n(8) |2 = C([RE{(|tX/cn |* + |tX/cn |V (| X| = ARY?)} I
+ nPE{|tX/c. |’ I(| X| > An'?)} P (| X| > An'/?)).

Since nP (| X| > An'?) = C8} (n) then |n.(£)|*> = (£* + t*)o(1)5} (n), and we may now
deduce from (3.18) that

ko |E[(Sn — dn)/en|? — E|Z|?| + 0(1)8} (n) + O(n ™1 D/2))

(3.19) =|n J’ P VE[{cos(tX/cn) — 1 + %(tX/c,)*YI(| X | < An'/?)
0

— {1 — cos(tX/ca) }I(| X | > An'/?) Je™"/?dt|.
To obtain the upper bound (2.7) observe that
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”J £V B[ {cos(tX/en) = 1 + %(X/e)*}I(| X| < An'”*) et
0
(3.20)

=nE{(X/c,)'I(|X| = An'?)} j tPe? dt
0
while
nf CPIOE{1 — cos(tX/c,) YI(| X| > An*?)1e /2 dt
0

> ne? J tPVE{(1 - cos tX)I(| X| > An'?)} dt
(3.21) '

= ne;,”E{| X|PI(| X| > An'?)) J' £ P (1 — cos ¢) dt.
0

Therefore the left sides of (3.20) and (3.21) are both dominated byd; (n), and (2.7) now
follows from (3.19).

Proor oF THEOREM 4. Observe first that

L= J’ £ PV B[ (cos(tX/ex) — 1+ (eX/e)*}I(| X| < An'/?)Je*de
)
anl/2/c,
=J' G(®)dP (| X| = cnx)
[

Anl/2/c,
= f gx)P(|X| > cax)dx — G(AnY?/c,) P (| X| > An'7?),
0

where G (x) = [3 t**V {cos tx — 1 + Y%(ix)*}e */*dt and g (x) = G’ (x). Now, n'> ~ c,as n
— o, and so in view of Theorem 2.7, page 66 of Seneta (1976),

Anl/2/c, A
f gx)P(|X| > cax)dx ~ P(| X| > n"?) f g(x)x*dx.
0 0
Therefore

A
I, ~ P(|X|>n'7?) f gx)x*dx — G\ P(|X| > An'?)
0

A
~ aP(|X|>n'?) f G (x)x ™ dx.
0
A similar argument based on Seneta’s Theorem 2.6 shows that

f £ PVE[{1 — cos(¢X/ca) YI(| X| > An'/?) e /?dt
0

00

~aP(|X|>n"?) f x ™ 'dx f P (1 — cos tx)e /2 dt.
A o
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It is easily proved from Seneta’s Theorems 2.6 and 2.7 that under the conditions of
Theorem 4, §; (n) ~ CnP (| X| > n'/?). These estimates together with (3.19) imply that

ko |E| (S — dn)/cu|” — E|ZIP| + o{nP (| X| > n"?)} + O(n ™"1(p+D/2])

A o
= anP (| X| = n*?) J x““"ldxj P+ (cos tx — 1 + Y(tx)*}e /2 dt
0 0

—f x_“"ldxf P (1 — cos tx)e 2dt|,
A 0

from which follows Theorem 4.

Proor or THEOREM 2. In the notation used just above, observe that

I = J’ PV E (cos(tX/n'?) — 1 + %(tX/nV?)?}e /2 dt
0

0

=J G(x)dP(|X|Snl/2x)=f gx)P(|X| > n**x)dx.
0

0

Now for positive x,

1/x

o

P2 dt + 2x f tPe "2 dt

1/x

gx) = f £P(¢x — sin tx)e "2 dt < x° f
0 0

<

{C{x3 min(1, x*7*) + xe 4} if 0<p<2
C{x* min(1, x*™*) + x" e ¥} if 2<p<4.
Therefore whenever 2 < a < 4 and 0 < p < « there exists 7 > 0 such that

A
f x M g(x)dx <o for A>0,

0

and if 2 < a < 4 and 0 < p < a there exists n > 0 such that
fﬁ x M g(x)dx <o for A>0.
A
In the latter case we may deduce from Theorems 2.6 and 2.7 of Seneta (1976) that
(3.22) Jn ~ aP (| X| > n'?) f” G(x)x ™ dx.
0

If a =2and 0 < p <2 then
J.=E{G(X/n"?)} = E{G(X/n'”*)I(|X| > n'?)}
+ O[n2E{X*I(|X|=n'?}];
nPE{X'I(|X|=n"?)} = O{P(|X| >n"?)} = o[n 'E{XI(| X| > n'?)}];

0

E{G(X/n"2)I(|X| > n*)} = (1/2n) E{X*I(| X| > n'/?)} f £ Pe 2 dt

0

- J P VE[(1 - cos(tX/n'?)}I(| X| > n'?)1e " d;
0
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andif0<e<2 —p,

f t"PVE[{1 — cos(tX/n (| X | > n*/?)]e /% dt
0

= E{| X/n'? P X| > n'%) f tle 2 gf = o[n'E {le(l X|> nl/z)}].
0
Therefore
(8.23) Ju ~ (1/20)E(X°I(| X | > n'/?)} f tPe ™ dt.
)

Finally, if 2 < p = a < 4 then arguing as just above we may prove that for any A > 0,
J. = E{GX/n")I(| X | >An'?)} + O(P(| X | >n"?)}.
It is easily shown that G(x) ~ |x|? [§ ¢t "*P(cos t — 1 + % t?) dt as | x| — », and therefore
E{Gx/n"HI(| X | > An'?))

= {1+ e WYE( X/n¥2 P I( X | > An') f t-<p+n<cost-1+;t2) dt
0

where ¢(A, n) may be made arbitrarily small uniformly in n by choosing A sufficiently large.
The function E {| X |?I(| X| > x)} is slowly varying at infinity and so

E{| X/n"?PI(| X | >An"?)} ~ E{| X/n"2 P I(| X | > n*?)} > P( X | > n'/?),

whence

” 1
(3.24) Jo~nPPE(| X |PI(| X|>n'?) f t‘"’“’(cos t—1+ 3 t2) dt.
0
Theorem 2 follows on combining (3.10) in the case k& = 1 with (3.22) through (3.24).
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