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RENEWAL THEORY FOR MARKOV CHAINS ON THE REAL LINE!

By RoOBERT W. KEENER
University of Michigan
Standard renewal theory is concerned with expectations related to sums
of positive i.i.d. variables,
Sy =31 Z.

We generalize this theory to the case where {S,} is a Markov chain on the real
line with stationary transition probabilities satisfying a drift condition. The
expectations we are concerned with satisfy generalized renewal equations, and
in our main theorems, we show that these expectations are the unique
solutions of the equations they satisfy.

1. Introduction. One method of describing renewal theory is as follows. Let {S:}:i=o
be a random walk with initial position Sy = s. For a function 4, define the function

R(s) = E[Y¥:Z0 A(S)].
Then R(s) satisfies the renewal equation
R(s) = h(s) + E,[R(S))].

In our generalization of renewal theory we let the sequence {S;}:=0 be a Markov chain on
the real line with stationary transition probabilities. This type of process will be called a
generalized random walk, or GRW, to distinguish it from an ordinary random walk in
which the increments or steps, Z; = S, — Si_1, are ii.d. random variables. The starting
position of the GRW will be called s.

For a continuation set ¢, we define an extended Markov stopping time

N=inf{i:S; & ¢}.

The stopping set, &, will be the complement of %. For a function A, we will define the
function R as

R(s) = E[Y X, A(S)].

If R(s) exists, we can condition on the value of S; and obtain the following generalized
renewal equation

(1.1) R(s) = h(s) + 14 (s)E,[R(S1)].

To insure that R(s) exists, we restrict our study to GRW'’s satisfying one of the following
two conditions.

Cl: There exist positive constants a and b such that for all starting positions, s € R, we
have

Efe““]<e™.
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C2: For some constant £ = 2 there exist positive constants uo and M such that for all
starting positions, s € R, we have

EJfZ]= o
and

E[|Z - E{Z]|"1= M".

Both of these conditions imply that S,, — c« with probability one and that E#{n: S, < ¢}
< o, Processes satisfying C1 or C2 share many properties with random walks with positive
drift.

Some of the results presented have applications to sequential hypothesis testing. In
simple versus simple testing, the sequence of log likelihood ratios {In(dP,/d@.)} is a
random walk (P or @). In a design problem where the experimenter chooses an experiment
at each stage based on the current likelihood ratio, the same sequence is a GRW. If the
experiments are chosen from a finite set, then C1 holds. Error probabilities and expected
sample sizes for this problem can be expressed in the form of R(s) (for example, E,N =
E, Y, 14(S;)). For more details see Keener (1980a).

Sections 2 and 3 study GRW'’s satisfying C1 and C2 respectively. Theorems 2.1 and 3.4
assert that R is the unique solution to the renewal equation (1.1) in appropriate function
classes. If we define the linear operator L by LR(s) = R(s) — 14(s)E;R(S:), then the
renewal equation is LR = h and these theorems show that L is invertable. This can be
useful in assessing the accuracy of an approximation R of R. Since R — R = L™'(h — LR)
and L' is continuous, R will be close to R provided LR is close to h. This idea is applied
in Keener (1980a) to obtain approximations for expected sample sizes and error probabil-
ities in the testing problem mentioned. Bounds for the accuracy of the approximations are
found using Theorem 2.2 which gives an upper bound for L™ 'A for certain functions A.

Other theorems in Section 3 give bounds for probabilities and moments for processes
satisfying conditions related to C2.

2. First drift condition. Conditions C1 and C2 both imply that {S;} drifts to +. To
verify this for C1 we have the following lemma.

LeEmMA 2.1.  If the GRW satisfies C1 then
EJ#(i:S. = \)] s% A—s)+1+e®" if A=s

=e®™970/(1 — 7Y if A<s.
Proor. We can assume that s = 0. By induction, C1 implies that
(2.1) Efe ) =e™¥ forall jEN,
and from this it follows that
P(Sj=\) =e ¥,
Monotone convergence now implies
Ef#(i:Si=AN] =370 P(S;=N) =Y% 1 A e ¥+,

If A < 0, the sum may be taken from 1 to o, giving the desired result. If A = 0, the sum is

[(%A) + exp(—[(%}\) b+ a>\>/(1 — e,

where [(x) is the ceiling of x, i.e. the least integer = x. This expression is less than the
desired result.
An immediate consequence of Lemma 1 is the following corollary.
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COROLLARY 2.1. If the GRW satisfies C1 and if ¢ is an interval of length \, then
Ef#{1:S, € #}] = [% A+ (1 - e'b)_l]Ps[Bi s.t. S; € 7).

Proor. By Lemma 2.1, the result is obvious if s € £ If s € ¢ we use the Markov
property and condition on the first time the GRW enters ¢ to obtain the desired result.

The following theorem gives conditions under which R(s) is finite and shows that R(s)
is the only solution of the renewal equation (1.1) which is bounded on finite intervals and
has reasonable behavior as s — +.

THEOREM 2.1. Let the GRW satisfy C1 and let {e %} be a supermartingale for some
A = a. Let h be a non-negative function such that 1,.(x)h(x)/(1 + e™**) is bounded and
1,(x)h(x)/(1 + e™**) is directly Riemann integrable®. Then R(s) is finite for all s € R. If
1,(x) has a limit as x approaches +» and —x, then R(s) is the only solution of the renewal
equation (1.1), which is bounded on finite intervals and satisfies

(2.2) lim, 2ol (s)R(s)/(1 + €7 = 0.
To facilitate the proof of this theorem, we have the following technical lemma.
LEMMA 2.2. Let {m;}icz be a sequence of positive constants satisfying ¥ icz m; < o,

and let {n;},c; be positive random variables depending on a parameter s. If there exist
positive constants A and K such that

E.(n)<K for i=s
= Ke*™ for i<s,
then
(2.3) E[Yicz nmi(l + e 4] < oo,
and
) nmi(1 + e~
(2.4) llmmes[Ziez—(l_'_eAA—s)] =0.

ProoF oF LEMMA 2.2. From the bounds on E[n;] we have
Efn(1+ e "] = K(1 + ™),
Hence
SiezmEfn(l + e "] = K1 + e ™) Yier mi < ,
and (2.3) follows. To prove (2.4) we note that

E S[ni]

1+e’A”=O forall i€ Z.

limsaiw

Applying dominated convergence for sums, the limit of the sum is equal to the sum of the
limits and (2.4) is established.

ProoF oF THEOREM 2.1. For & € Z define

=1k —=1,k)

2See page 362 of Feller (1966) for a discussion of direct Riemann integrability as it relates to
renewal theory.
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and
n,=#{j:S;, € 4}.
Define the extended stopping times
T, =1inf{i:S, € %}.
Since {e "%} is a positive supermartingale, an optional stopping theorem for positive
supermartingales (page 267 of Karlin and Taylor, 1975) implies that
e = Ef15(Tr)e ™ 5n] = e™*P,(3i:S; € %).

Corollary 2.1 now implies that

+(1-e®" if k=s
(2.5)

We now define

My = supxe slo(x)A(x) /(1 + e~),
which implies that

SUpPre s le(X)A(x) = mu(l + e 4% D),

By the integrability condition, Y.cz m; < o, and using (2.5) we see that the conditions of
Lemma 2.2 are satisfied. We now observe that

(2.6) Yo A(Si) = A(SHINN) + Y xez namu(l + e 4*D),

R(s) will be finite if the expectation of the right-hand side of this equation is finite. Using
Equation (2.3) in Lemma 2.2, we only need to show that E[A(S,)1x(IN)] < . Let

M = sup.esh(x)/(1 + e ).
Using the same optional stopping theorem for supermartingales, we have
EJR(SN1INN)] = ME[(1 + e MIy(N)] = (1 + e )M < ,

and hence R(s) is finite.
We now show that R(s) satisfies (2.2). Using (2.4) in Lemma 2.2, and Equation (2.6), it
is sufficient to show that

(2.7) lim, .+ B 14(8) In(N )A(Sn) /(1 + e 4%)] = 0.

We deal first with the limit as s — +o0. If lim,_+.14(s) = 0, then the result is obvious. If
lim,_,+.1¢(s) = 1, then the conditions imposed on % imply that there exists a constant M’
such that when N < o,

h(Sn) < M’e 5,
By optional stopping we have
lim, 1B [16(8) In(N)A(Sn) /(1 + €7**)] < lim, s M ES[ 15(N)e ] < lim,_ 1. M’e ™ = 0.

To verify (2.7) as s - —o, we note that the result is obvious if lim,_, _.l¢(s) = 0. If
lim;_,—«14(s) = 1 then A is bounded on ¥ which implies (2.7) and completes our proof that
R satisfies (2.2). To complete our proof, we need to show uniqueness. Since (1.1) and (2.2)
are linear in R we can assume without loss of generality that A = 0. Let G be an arbitrary
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function which is bounded on finite intervals and such that

(2.8) G(s) = 14(S)E[G(S1)]
and
(2.9) lim, 2l (s)G(8)/(1 + e74%) = 0.

We must show that G = 0. (2.8) and (2.9) imply that
| G(s)| = KA + e™).
Iterating (2.8) gives
| G(s)| = EJ| G(S¥)|] forall k€ N.
We now partition the line into the intervals (—oo, —A), [-A, A] and (A, ) and get
| G(s)| = Edl| G(So)|(Loon(Sk) + Lan(Se) + Lo (Se))]
= supz<re™ | G(x)| Efe 91 (o) (Sk)]
+ KEJ(1 + ™5 11_5 s)(Sk)] + supe=a | G (x)]
= e Msupscse® | G(x)| + KE[e SN 4 gAr+an-s)]
+ sup.sx | G(x)].

Equation (2.1) now gives
| G(S)l < e_AsSllpx<—,\€Ax| G(x)| + K(e—a(s—z\)—bk + eA}\+a()\—s)—bk) + SUPxoA | G(x)]

If we now take A = v and let & — =, we have G(s) = 0 which completes the proof.
We will close this section by deriving bounds for the magnitude of R (s) for certain
functions A. If we define the renewal measure for our GRW as

UA) = E[#{j=N:S§ € A}],
then R (s) can be expressed as the integral
R(s) = f h(x) dU..
From Corollary 2.1, we know that if #is an interval of length A then
U(g) < % A+ (1—et)
Using this we can construct the following bounds for R (s).

THEOREM 2.2. Under the conditions of Theorem 2.1, if h(x) = 0 for x < X and h(x) is
integrable and non-increasing for x = \, then for all s

(2.10) Rs)=hM1 -+ %j h(x) dx.

A

If h(x) = 0 for x > X and h(x) is integrable and non-decreasing for x < A, then for all s

A
(2.11) Ris)=hM1 -+ %J h(x) dx.

—o0

Proor. To establish (2.10), we use the fact that A(x) = 0 for x < A and integration by
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parts to get

R(s) = j h(x) d(U,(A, x]) = — f U.([Ax]) dh(x)
a —by—1
s—] <3>\(x—>\)+ (1—-e™ )dh(x)

=R\ (1 — e )" +9f h(x) dx.
b A

Equation (2.11) can be established the same way.

Corollary 2.1 and Lemma 2.1 can be used to construct sharper bounds for U.(_#). These
bounds can be used to construct an improved bound on R (s) for a given s, but will not
improve our global bounds.

3. Second drift condition. Our main goal in this section will be to prove a theorem
similar to Theorem 2.1 for GRW’s satisfying C2 instead of C1. This result is useful because
C2 is often a weaker condition than C1. Unfortunately, C2 is more difficult to work with
than C1, and we need several preliminary results before we can prove our main theorem.
The following lemma will be used in many of the proofs to follow.

LemMa 3.1. IfE|X|* < M"* for some k> 2 and EX = 0 then

k(k —1)

Ell+X"=sQ+M)—kM=1+ M*(1 + M)*2,

Proor. By Taylor’s theorem with remainder we have

1
E|1+X|"=E|i1+kX+J' k(k—l)X2|1+X—Xy|k‘2ydy]
0
1
=1+J k(k — DE[X*|1+ X — Xy|**]y dy
0

1
=1+ f k(k — DMXE |1+ X — Xy|*+=2/ky gy,
o

Applying the Minkowski inequality

1

E|1+X|"Sl+j k(k— 1)M*(1 + (1 — y)M)* 2%y dy = (1 + M)* — kM.

0

The last inequality in the statement of Lemma 3.1 follows from Taylor’s theorem with
Lagrange’s form of the remainder.
Using Lemma 3.1, we now have the following result which bounds the magnitude of k2th

absolute moments of terms in a martingale. This result generalizes a theorem due to
Brillinger (1962).

THEOREM 3.1. Let {S,, %.}.=0 be a martingale satisfying

E|Sui1— Su|* < M*

for some k > 2. Then

E|S, — So|* = (Myvn)*
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where

v = 18k(k/(k = )"

Proor. Burkholder’s (1973) square function inequality gives
E[S, = So|" = y*E ($}=1 (S; — Sj-1)?)*2
and the result follows from Minkowsky’s inequality.

COMMENT. A proof of this result under the stronger moment condition that
E(|Swi1 = S |*| %) = M*

is given in Keener (1980b). The constant in that result, (¢ — 1)%exp((k — 2)/2), is smaller
than y unless % is greater than 10. A proof of the result for Markov chains on a countable
state space is given in Doob (1953).

To state our next two theorems in their proper generality, we will replace C2 by the
following condition for processes {S;}i-o where S; is measurable with respect to % and
{Z.} =0 is an increasing family of c-algebras.

C3: For constants 2 = 2, uo > 0 and M > 0, we have for all i = 0
EZi| ) = po
and
E[|Zis = EZin| ) |*| 7] < M*
where

Z,=8;— 8.
THEOREM 3.2. If {S;} satisfies C3 and Sy = s > 0 then
Plinfi~S; = 0] = (1 + as) ™2,

where

%o 1/(k—1)
- ! _
a=M [(1+(k+1)M> 1]>0.

Proor. This theorem is a generalization of a result in Dubins and Savage (1976). We
assume without loss of generality that M = 1. Define f(x) as

fX) =0 +ax)™" for x=0
=1 for x=0o.
A change of notation in Equation (9.4.5) of Dubins and Savage (1976) leads to
3.1) fx) = f(y) S af*(y)(y —x+ alx — y)?) forall x€ R

provided y > 0. This can be checked directly after noting that the right-hand side has
negative derivative for x < 0. We now let Z be any random variable satisfying

EZ =u E‘LLQ
and

E|Z-plt=<1.
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Using (3.1) and Lemma 3.1 we see that for positive x
E[f(x + Z)"*] < E[| f(x + p) + af*(x + p)(p — Z + a(Z — w)?) |*?]
= flx + W {(E[|1 + af(x + w)(u — Z)| 2] ¥*
+ (E[| a¥f(x + u)(Z — p)? |2 ])/* 2
= flx + W2 {(E[|1 + af(x + p)(n — Z) |*DV* + a*f(x + p)}2

k(k—1)

1/k
5 a’fP(x + p) (1 + af (x + u))"‘z]

=flx+ ,u)"/z{[l +

k/2
+ a’f(x + ,u)}

k/2
=flx+ u)“{l + k—;l a’f*(x + p)(1 + af (x + p)** + a*f(x + u)}

k-1 i
=f(x+ u)k/z{l t—— a’f(x + (1 + @)% + a’f(x + u)}

[ (k-1 w2
= {f(x +p) = fx+p) <T>a(l +a) 7+ a]}

[ (k-1 k2
= {f(x +p) — f(x+p) <_2._.>[(1 +a)f "t — 1+ a)y* ] + a]}

(k-1 /2
= {f(x +p) = fla+p) (—2—)((1 +a)f T =)+ 1+ a)f - 1]}

= {flx +p) — pof (x + p}**
= f(x)*.

For negative x, this result follows trivially, and applying these results it easily follows that
{ f(S;)**} =0 is a non-negative supermartingale. We now define the Markov time T as the
first n for which S, = 0. By an optional stopping theorem for non-negative supermartingales
(Karlin and Taylor, 1975, page 267) we have

f()** = E[ f(St)**1n(T)] = Plinfs0S, < 0].

The next lemma is needed to make use of Theorem 3.1.

LEMMA 32. IfEX=p=0and E|X —pu|* <1 then for A >0

_a+ N* — kA
P(Xs—A)_W——

Proor. By Lemma 3.1 we have

(1+N*— kA
—_—

- ZE[|X—p—1/A"]Z PX —p=— N+ 1/N= PX = A + 1/0

Using this lemma, we have the following bound for the expected number of steps a process
satisfying C3 takes from an interval of length yo.
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Lemma 3.3. If {S.} satisfies C3 and So = s and if we define

F =[N = o, A]
and
K=2+y2, (MN':L?A;;?(‘;):'I;QT‘Z%Y)WW (Myvn + D",
then
E[#{(i:S.€ #}]=K if A=s

=K1+a(s—A)" if A=<s,

where a is defined as in Theorem 3.2.

Proor. We begin by showing that
(3.2) E[#{i:S,=s+w}]=K
If we define
8, = s+ Yit1 E[Z,| i),

then {S, — §;} is a martingale satisfying the conditions of Theorem 3.1. Application of the
theorem gives

E[|S. — 6.|*]1 = (Myvn)".
By condition C3 we know that
O = s + npo,
and using Lemma 3.2, we have forn = 1
P(S, =5+ ) = P(S, — 8, = —(n — 1)uo)

- (Myvn + (n = Dpo)* — k(n — 1po(Myvn)*

(M*y’n + (n — 1)%ud)* (Myny"

Equation (3.2) now follows by monotone convergence and the theorem is true if s € ¢ If
s € 7, we condition on the time the process first enters ¢ and obtain

E[#{i:S.€ #}] = KP[3ist. S € ¥).

Application of Theorem 3.2 now finishes the proof.
Let C; be the set of non-negative measurable functions on R which are bounded on
[—1, =) and satisfy

-1
dy h(x)
— SUPxsy T 7 <
j |y el

THEOREM 3.3. If h € C, then there exists a measurable function g > h such that if
{Si, #i} satisfies C3, {g(S:), #.} is a supermartingale. If h(x) = 0 for sufficiently large x,
then g can be chosen so that lim,_..g(x) = 0.

To facilitate the proof of this theorem we have

LEmMMA 3.4. Let g(x, a) = (x7)* and let Z be an arbitrary random variable such that
(3.3) EZ=p=p
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and

(3.4) E|Z-p|f=M~

Then forl< a< kand k> 2,

(3.5) Egis+Z)—g@®)=c/(s+m)™ for s=0
(3.6) =c for cs<s<0
3.7) =0 for s=cs,

where c1, c; and c; depend on uy, M and k.

Proor. By ordinary calculus
aa
((x + )y = |x|* 7 (k= a)*™

for x € R and y € R*. Choosing x = Z — p and y = s + pu and taking expectations gives
(3.5). To prove (3.7), we note that

(88) Eg(s+Z)<Egs+p+Z—pw=E|s+u+Z—u|*<[E|s+p+Z—p|*]*
Using Lemma 3.1 and assuming s + pio < M + (M?*/uo) (B — 1)2* we have

k(k -1)

a/k
Eg(s+Z)s{|s|k—pok|s+uo|k T T MR s + o | B2 MH)}

=|s|*
which proves (3.7). (3.6) holds because (3.8) implies
Eg(s+Z)=<||s+po| +M|*=<|1+|cs|+po+M|* for cs<s<O.

ProOF OF THEOREM 3.3.  We assume without loss of generality that 4(x)/| x |** is non-
decreasing on (—o, — 1) and that A(x) =0 for x = —1. For t < 1

(3.9) i 1532J dxj dyh(=y) | ty| */y"
el/x

because

32J' de’ dyle_(y+t)|ty| " /y= 1
0 el/x

Equation (3.9) implies that for t < —1
(3.10) h(t) <ct™ + A(t)

where

c=32 J' dxf dyh(—y)y ™"
0 1/x

and

k—2 o
A(t) = 32[ dx(t_)k_l_”f dyy " h(-y).
0 1/x
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Since A and c are non-negative, (3.10) holds for all ¢. Let Z be any random variable
satisfying (3.3) and (3.4). Using Lemma 3.4, we see that

Elct+Z7) +A(t+ Z) — ct™ — A(t)] = B(t)

where
B(t)=0 for t<cs
= 2cc3 for c3=t=0
k—2 o c
= cl{32 fo dx(t + po) ™! L/x dyy ™" h(=y) +mm} for ¢>0.
Observing that

oo k—2 oo 0 o
d.
f dt J dx(t+uo)"“1f dyy™*h(=y) = (1 +u3"“)J' & f dyy ™ "*h(-y)
0 0 el/x 0 x el/x

=1 +ud™ j x 7% h(—x) dxj % eV <o
1 1

we see that B is directly Riemann integrable. We now let f be defined as in Theorem 3.2.
Choosing 6 = po/3 and using Lemma 3.2 we see that there exists ¢ > 0 such that for any
random variable Z satisfying EZ = p = po and E | Z — p|* < M* we have

(3.11) E[fs+Z)—f(s)]<—¢ for —86=s=<0.
Since B(¢) is directly Riemann integrable, there exist constants a; such that
(3.12) B(t)<a; for i§<t=<(@{+1)6
and
Yiez a, < .
Let

c) = z,ez%ﬂt — (i + 1)9).

C is positive and (3.11), (3.12) imply that
E(C{t+Z)— C(t)) < —B(¢t)

for all Z such that EZ = p = o, E | Z — p|* < M*. Hence {c(S7) + A(S:) + C(S)), F}isa
positive supermartingale whenever {S,, %)} satisfies C3 and we are done.
After so many preliminaries we can now establish our main result.

THEOREM 3.4. Let {S;} be a GRW satisfying C2 and let h be a non-negative
measurable function such that 1,(x)h(x) € Cp and 1¢(x)h(x)/(1 + (x7)*?) is directly
Riemann integrable. Then R(s) is finite for all s € R. If 1 ,(x) has a limit as x approaches
+o and —x, then R(s) is the only solution of the renewal equation (1.1) which is bounded
on finite intervals and satisfies

(3.13) limg 2014 (S)R(s) /(1 + (s7)*?) = 0.

Proor. This proof is similar to the proof of Theorem 2.1. To simplify notation we will
assume without loss of generality that o = 1. We define

fk=[k_lyk)) nk=#{]'sje fk})
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and
M = SUPse 5, (D) A(2)/(1 + (x7)"2).
It follows that
= supse s, Lo (X)A(x) < mu(l + 1p_(k — 1) |k — 1|"?).
By the integrability condition, ¥;cz m, < . We now observe that
(3.14) No h(S:) = h(Sy)1n(N) + Yrez nema(l + 1p_(k — 1) |k — 1]%?).
Now by Lemma 3.3
Ei[n.] = K(lg-(k — s) + 1g-(k — 8)(1 + a(s — k))™*?).

From this it follows that

Ei[n](1+ 1e-(k = 1) [k = 1[*)/(1 + (s7)*?)
is a bounded function of % and s which approaches zero as s — +o. Hence

EJ[Srez memp(1 + lg-(k — 1) |k — 1|*"*)] <
and
E[Yrez namu(l + le-(k = 1) |k = 1]*?)] _

1+ (sT)*?)

Using (3.14), we see that R(s) will be finite provided E,;[A(Sx)1n(N)] < o, and R(s) will
satisfy (3.13) provided
(3.15) Hmye 14 (8) Es[A(Sw) In(N)1/ (L + Le-(s) [ s|**) = 0.

Using Theorem 3.3 we choose a function g(s) > A(s)14(s) such that {g(S;)} is a non-
negative supermartingale. By optional stopping

0.

lims—>j:oo

E[h(Sn)1n(N)] = g(s) < co.

If lim;_.+14(s) = 1, then g can be chosen so that lim,_..+.g(s) = 0. Hence (3.15) holds as
s — +0. (3.15) holds as s — — because 1 4(s)A(s) is bounded if lim,_,—14(s) = 1.

To complete our proof we need to show uniqueness. We can assume without loss of
generality that 2 = 0. Let G be an arbitrary function which is bounded on finite intervals
and satisfies

(3.16) G(s) = 14()Es[G(S1)],

and

(3.17) lim, 2. 14(s)G(s) /(1 + (s7)**) = 0.
We must show that G(s) = 0. Iterating (3.16) gives

(3.18) 1G(9)] = EL[| G(S\) |1

Since 4 is zero and G is bounded on finite intervals, (3.17) implies that there exists a
constant K such that

(3.19) | G(s) | = K(1 + (s7)*?).
Equations (3.18) and (3.19) now give for x > 0
| G(s) | = E[K(1 + (S7)**)1-a(Sp)] + supesa | G(#) |
+supe<r(| Gx) || % [*2)Es[| Sp|** 10 (S)]
= K(1 + N)Py(S, = A) + supasr | G(x) | + sup.<-a(| G(x) || x| %)
AES[ S0 |10 () IPS(S, < —=N)} 72

(3.20)
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We define §, as

8, =s+ Yk EJ[Z;|Si—1].
By Condition C2, 8, = s + n and Theorem 3.1 gives
(3.21) EJ|S, — 8.1%] = (MyVn)~.

We now take n large enough that 8, > vn. Then for S, < —A we will have [Sn| < |Sn — 6n|
implying

E[[8n M0 -\(Sn)] = (MyVn)".
We now let A = Vn in (3.20) and obtain
|G(s) | < K(1 + n*")Py(S, — 8, < Vn — n — s) + supu>vi | G(x)|
+ $Upecva | G || 2|2 {((MyVR)'P,(S, — 8, < =V — n — )}

If we let n — o in this expression, we can use Lemma 3.2 and (3.21) to conclude that G(s)
= 0 and our proof is complete.

Acknowledgments. I would like to thank the referee for his comments and for
suggesting the simple proof of Theorem 3.1. )
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