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DOMINATING POINTS AND THE ASYMPTOTICS OF LARGE
DEVIATIONS FOR RANDOM WALK ON R*

By PETER NEY!

University of Wisconsin, Madison

Let p(-) be a probability measure on R and B be a convex set with
nonempty interior. It is shown that there exists a unique “dominating” point
associated with (g, B). This fact leads (via conjugate distributions) to a
representation formula from which sharp asymptotic estimates of the large
deviation probabilities u**(nB) can be derived.

1. Introduction and summary. LetS,=X;+ ... + X,,, where {X;; £ =1,2, ...}
are iid. random variables with u(B) = P{X € B}, and m = EX;. The existence and
properties of

(L1) lim,_...[p**(nB)]"" = p(B) = exp {entropy of B},

have been extensively studied. When the {X,} are real valued the subject goes back to
Cramér [7] and Chernoff [6]. In the most general setting, Bahadur and Zabell [2] have
shown that if {X,} take values in a topological vector space V, then subject to mild
regularity conditions, p(-) exists for open convex B.

In this paper we consider the case V = R“.

Let: InA = interior, ClA = closure, dA = boundary of A;
& = the convex hull of the support of u;
¢la) = E exp(a-X), a€ER%
2(p) = {a:p(a) < o} = “effective domain” of ¢ ;
H*(a, v) = the half-space {x € R?:x-a=v-a}, a,v€E R’

- If 2 contains a neighborhood of the origin then for any open set B, p(B) exists and can be
identified as

(1.21) p(B) = sup{p(v) :v € B},
where
(1.2ii) 6(v) = inf {e™*’p(a) : a € R?}

(Bartfai [5]).
We will see that under a slightly stronger hypoethesis one can go further.
We make the following:

DEFINITION. A point vz € R? is a dominating point of the set B if

(i) vs € 4B,
(1.3) (i) the equation (ina) grad ¢(a) = vsp(a)
has a unique solution «(vs) € Z; and

(iii) B C H*(a(vs), vs).
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Our main result is:

THEOREM. If 9 is an open set, B is convex with In(B N %) # ¢, and m & B, then
there exists a unique dominating point. This point is in In &,

The motivation for using the word “dominating” will shortly be apparent. My idea to
look for such a point has its germ in a joint paper with F. Spitzer [9] on Martin boundary
construction. In various forms, the idea has been under the surface of much of the large
deviation literature.

The utility of the above theorem is that it leads to the following

REPRESENTATION FOrRMULA: If vg is a dominating point of B then

(1.4) p**(nB) = p"(B) e~ (¥ (dx),

n(B—upg)

where [i is a probability measure (to be specified) with mean O (the origin), and

(1.5) a(vg)-x =0 for xE€ B — vs.

The crucial property is (1.5). One can easily get many representations like (1.4); but
these are quite useless without (1.5). With this property one can apply standard central
limit estimates (available in great accuracy, as e.g. in [4]) to estimate the asymptotic
behavior of p*"(nB). For example, a first consequence is the inequality:

(1.6) cin™? = p™(B)u*"(nB) < c;n”V?

for some 0 < ¢1, ¢; < 0, which is already a refinement of (1.1). Under somewhat stronger
hypotheses one gets asymptotic behavior between these bounds. For any 1/2 < y < d/2,
there are examples where

(1.7) p*"(nB) = p"n'[c + O(n %],

and in principle, more refined results can be obtained.

The representation formula (1.4) with (1.5) is valid any time a dominating point exists.
The conditions of the theorem are not necessary for this, but at present there do not
appear to be other attractive general hypotheses.

From (1.4) one also obtains the corollaries that (i) p(vs) = p(B), namely the “point
entropy equals the set entropy function”; and (ii) if  is any neighborhood of vg, then

(1.8) p(B N n) = p(B).

It is this property which suggests calling vz a “dominating” point.

Whens the r.v.’s {X;} are € R' and B = [a, ), with EX = m < a, then the dominating
point is trivially vp = a; also B — vg = [0, ), « > 0, and [i is a centering of the 1-
dimensional Cramér-Chernoff transform. The representation (1.4) reduces to a form used-
by Bahadur and Rao [1] to obtain a complete asymptotic expansion of u*”.

The case when p(-) is a multinomial distribution has received special attention in the
literature due to its importance in statistical applications. Applying classical asymptotic
estimates directly to u*” it has been shown that in this case (see J. Reeds [10])

(1.9) log P{S. € nA} — log{n %"} = 0(1)

for A a C* manifold, A C d-simplex. This is consistent with example (i) in Section 5.

The paper is organized as follows. In Section 2 we describe the conjugate (Cramér-
Chernoff) transform (a well-known tool in large deviation theory); also we state two
lemmas which contain some information we will need about the map a(-) which is defined
as the solution of grad ¢(a) = vp(a), and about the function §(-). The representation
formula and some first consequences are derived in Section 3; the theorem is proved in
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Section 4. This is done by a fixed point argument, which for d = 2 involves some simple
geometry, and for d = 3 an elementary homotopy argument. Finally, some further examples
of the application of the representation formula are in Section 5.

2. Conjugate distributions and some related functions. For a € 2(¢), the
conjugate distribution of u(-) is defined by
(2.1) e (dx) = [p(a)] e *u(dx).

(When d = 1, this is called the Cramér or Chernoff transform.) Let X* be the random
variable with distribution p, and note that

(2.2) Ee™ X" = ___(p(;(-;)a) , a, T € R,
and
(2.3) EX©@ = M.

o(a)

The following two lemmas summarize some facts about the solution a(v) of
(2.4) grad ¢(a) = vp(a), veln %
and about the related function
(2.5) pv) = e p(a(v)), vEInZ

These are known results in the theory of exponential families and convexity. As a reference
see, for example, the book by O. Barndorff-Nielsen [3].

LEMMA 1. Ifv €In & and 9(p) is an open set, then (2.4) has a unique solution a(v).
The function a:In & — 9(p) is € C*, and

(2.6) EXC® =y,

REMARKsS. (i) It is easily seen that if v &€ In & then (2.4) may not have a solution. If
v € In & and 2 is not open, then it may or may not have a solution. Take for example the
mixture of distributions which is (—1) with probability p, and has density ce ™y ™, y = 1,
with probability (1 — p). Then 2 = (—o, 1] (closed on the right). If p is close to 1 then
¢’(a) < 0for all « € 2 and (2.4) has no solution. If p is small, there will be a solution. Thus
the condition “2 open” is sufficient but not necessary.

(ii) “2 Open” also implies that the exponential family generated by p is “steep” in the
language of convexity theory (see [3]). The hypothesis of steepness could replace “ 2 open”
in the lemma.

Now with p(-) as defined in (2.5), let
2.7) R.={veE R*:5(v) = c}, O<c=1

LemMA 2. If 9 is open, then on In &

() peC™,

(ii) grad 6(v) = —a(v)p(v),

(iii) —log p(v) is strictly convex,

(iv) p(v) = inf{e™™p(x):x € R} (asin (12)),

(v) p(m) =1,

(vi) {R.} are convex sets which \{m} as c¢ /L

3. The representation formula. Let us suppose that the set B has been shown to
have a dominating point vg, and examine some of the consequences. We start with the
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conjugate transform defined in (2.1), convolve it with itself n times, multiply and divide by
e ™Y and make a change of variable in the integral to get

(3.1) p*"(nB) = [e™"p(a)]* J e " us"(dx + nv),

n(B—v)

for any « € 9, v € R°. )

We assume throughout this section that 2 is open and B is convex with nonempty
interior. Hence by the theorem, B has a dominating point vz. We are free to choose v = vp
and a = a(vp) (Section 2) in (3.1). This yields

(3.2) p**(nB) = p"(vs) e~ Cn* j**(dx),
n(B—uvp)

where [i(dx) = p(dx + vg) and §(v) = e “p(a(v)). Clearly

(3.2a) J xdp=0
and
(3.2b) a(vg)-x=0 for x € B — vg.

This is the formula (1.4).
We observe first that (3.2) implies

(3.3) p(B) = p(uvs),
where p(B) is defined by (1.1). This follows from the fact that
p(B) = p(vs)

since the integral in (3.2) < 1; while from the characterization of p(B) in (1.2) and the
continuity of g(-) on In % we see that p(B) = g(vs). Hence (3.3).
Let us derive some first estimates of u*"(nB) based on the representation formula.

PROPOSITION. If the hypotheses of the theorem are satisfied and u is either lattice or
strongly nonlattice, then there exist constants c1, ¢: such that for sufficiently large n
(3.4) c1p™(ws)n~Y* = P{S, € nB} < cap"(v)n""2
(Strongly nonlattice means that the modulus of the Fourier transform of u equals one only

at the origin.)

Proor. It is necessary only to estimate the integral in (3.2). To do so, we make a
change of variable in the integral, y = Rx, where R is the rotation that takes a = (a1,
«ve, aq) into Ra = (|||, 0, -- -, 0). The resultant measure »(-) (say) will still have mean
0, and letting A = {Rx:x € B — vg} we still have

(i) A convex with non-empty interior,
(3.5) (i) O €04, and now
. (iii) A C the right half plane {x:x; = 0}.

Thus we must estimate

(3.6) f el *n(dy) = I(nA).
nA

But for any sphere S about O, clearly
I,(nA) = L,((nA) N S) = cv*"(nA N S)
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for some constant ¢ > 0. Since A is convex with nonempty interior and O € 94, nA N S
contains a truncated cone " with vertex O and In ¥ # &. Thus

3.7 I,(nA) = ecv**(X),
and if p satisfies a local limit condition (e.g. lattice or strongly nonlattice), then (see [4])
(3.8) v A) = c'nTY,
The upper bound in (3.4) follows from a comparison with the known 1-dimensional case
[1].0
Recalling (3.3) we also see that

COROLLARY. Under the hypothesis of the proposition it follows that for any neigh-
borhood A of vs

p(B N A) = p(B).

This follows from the proposition and the fact that vy = vs.

4. Proof of the theorem. We first give a proof under further restrictions, and then
successively remove these.

CASE (A): B a smooth, bounded, interior set. Suppose that (i) B is bounded; (ii) aB is
smooth in the sense that at each point v € B there is a unique supporting tangent plane
T (v) and (exterior) normal unit vector N(v); (iii) C1 B C In & Consider the normal map:

4.1) N:dB — 8Si,
where a8, is the boundary of the unit ball in R% and the map defined in Section 2:
(4.2) «a:0B — 2.

Note that m & B implies O &€ a(B) = {a(v):v € B}.
Thus N and « are both homeomorphisms from 8B into R¢ — {O}. If the continuous
map

F:8B x [0, 1] > R*

defined by F(A, v) = Aa(v) + (1 — A) N(v) were also into R? — {0}, then N and « would
be homotopic on R — {O}. But this is impossible since they have different degrees. Hence
F(\* v*)=0forsome 0 <A* <1, v* € dB. (Note that \* = 0 or 1 would imply F(A*, v*)
= N(*) = O or a(v*) = O, which is impossible). Thus

4.3) a(v*) = —cN((v*) forsome 0<c<oo,

implying that B C H*(a(v*), v*).

REMARK. The above argument is particularly simple to visualize when d = 2. Fix a
point vy € 3B and let Oy (v) € [0, 27] be the angle between N (vo) and N(v), O,(v) = the
angle between N (vo) and a(v). Now let v run (say in the positive direction) from vy, around
4B, and back to vo. Then Oy (v) increases from 0 to 27, while O, (v) returns to the same
value O, (vo). Thus there must be a point v* where 6,(v*) = Oy (v*).

To prove uniqueness, suppose that there were two dominating points v* and v%. Then
by (3.3) p(v¥) = p(B) = p(vs). Hence v} € dR,m), i = 1, 2 (see (2.7)). Also of course v}
€ 0B, i = 1, 2. By (4.3) and Lemma 2 (ii) we see that R, and B are in opposite half
spaces, with a separating hyperplane containing v*, i = 1, 2. But this is impossible unless
vt = vs.
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CAsE (B). B a bounded interior set. For any set A, let A, = U,ea (v + S.) where S,
= {x:|| X|| =< ¢}, i.e. A, is the e-neighborhood of A. Suppose that B is a bounded set with Cl
B C In & Then B. is bounded, convex, and smooth (in the sense of case (A)). If ¢ is small
enough, then Cl B, C In & Hence by Case (A), for each 2 = 1, there exists a unique
dominating point v, or B . By compactness there is a subsequence vy, — vo € dB. If x
€ B C By, then by the dominating property of Uk, (x — vx) + a(ve,) =0, and by continuity
(x — vo) - a(vo) = 0; i.e. vy is dominating for B. Uniquehess follows exactly as in part (a).

CASE (€) General case. Finally we remove the boundedness and “interior” restric-
tions, and consider any convex B with nonempty interior.

To end this we must define yet another class of sets. Let &; = & — (0%). = the interior
e-approximation of &, and S, = the ball of radius r, center O. Let {§z; k=1, 2, ---}, {rs;
k=1,2, --.} be sequences such that 0 = 8, \y 0, 0 >r; /  as k — o. We define

(4.4) B®»=95;nS, NB.

Since In B # ¢, one can choose 8; small enough and r; large enough so that In B® =
¢. Hence

(4.5) p*™(neB®) > 0 for some integer no.

Of course BY, B®?, ..., are all bounded interior sets with In B® # ¢, and B® /~ Bask
— o, Thus by case (b), there exists a unique dominating point v, for B®, 2 =1, 2, ...
There are two possibilities:

Cask (i). There exists a ko = 1, such that vs, = Ug,+1 Or
CaSE (ii). vp# vp1forallk=1.
To prove the theorem in Case (i) we use

LeEMMA 3. Suppose B and Ci, C., -- - are convex set such that

1) CIC;CInCiyy, i=1,2,--.
(2) BC (UG
(3) In(B N Cy) # ¢.

If H is a hyperplane which supports both (B N C;) at v and (B N C;) at v for some i < j,
then H supports B at v.

This follows from the following fact: Consider two convex sets A and E, with A C E, and
suppose that there is a point v in the “interior” of A N dE in the sense that

(4.6) (A#»NAA) C (A N IE)

for some neighborhood ./, of v. If there is a supporting hyperplane H of A at v, then H also
supports E (at v). Now apply this to the setup in Lemma 3, with A = BN Cjand E = B.
The fact that H supports both B N C; and B N C; at v implies that v € interior of (B N
C;), hence of (B N C;) N 8B. Hence H also supports B. 0

Returning to the proof of the theorem, let {B*} as defined in (4.4) play the role of {C%}
in Lemma 3. In case (i) B*’ and B%*" have a common dominating point, say v*, and
supporting hyperplane H(a(v*), v*) = {x:x-a(v*) = v-a(v*)}. By the lemma, then, we
also have v* € 9B and BC H*(a(v*), v*), i.e. v* is a dominating point for B. Clearly also
v* € In & Uniqueness follows as in part (a). Thus, in Case (i), the theorem is proved.

We conclude the proof by showing that Case (ii) is impossible. In this case, necessarily
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Ur+1 € (B™)° and hence either

or (iil.) ||ve]| =

(ii2.) v = Vo € 3 on a subsequence {k'}.
We will use the fact, whose proof we defer to the end, that
4.7 limy e 6 (V) = 0.
But
p(B1) = lim,.P{S, € nBY}'" < lim P{S, € nB®}"" = 5(vs),

while (81, 71) in (3.4) can be chosen so that p(B;) > 0. Hence if || v, || — o we are led to a
contradiction.

It remains only to consider Case (ii2). To this end we use the conjugate transform (2.1),
a = a(v), plus a little manipulation, to write

p(BP) = p(vr) j e Ty o (dX).

B
Since §(vx) = 1and BY € B® C H*(a(vz), vz), this implies that
(4.8) p(BY) < pa, (BM).

But if vy — vo then EX, ;) — vo € ¥ and E(u-X,;,) — u-v for any unit vector u
orthogonal to a supporting hyperplane T of & at vo. Since u - vo = ess sup(u - X,,;)), we
must have & - X, (,;) —as. U - Vo, i.e. the limit distribution of X,,,,, is singular and concentrated
on T. But this means that ., (B"’) — 0, contradicting (4.8), since B"” can be chosen so
that u(B®) > 0.

Thus, to complete the proof of existence of a dominating point we need only prove (4.7).
If this is false, there must exist a subsequence {k’} and § > 0 such that lim inf g(v.') = 6,
and a further subsequence {k”} such that v,-/| vx-| = w (say). Also, for each {k”} there
will exist a small sphere %~ interior to #such that v, is a dominating point of %-. Let u
be a unit vector with u - w > 0. There exists a sequence j (k) such that % C H"(u, vje"))
and u - vy — o as k” — . Now

4.9) 6(vr) = lim,_wP{S, €E n%}" = lim,_,oP{u-S, = n(u-vig)}"™

Butu.-S,=u-X;+ .- + u-X,is a sum of r.v.’s on R' with entropy function p:(-) (say),
and in this one-dimensional case it is easily shown that p;(a) — 0 as a — . Hence the
right sight of (4.9) can be made arbitrarily small for large n and £”. This proves (4.7) and
the existence of a dominating point in In %, and completes the proof of the theorem. [0

5. Examples of asymptotic calculations. We will now illustrate how, with addi-
tional assumptions on the set B, one can use the formula (3.2) to get more precise
information on the asymptotic behavior P{S, € nB}. It would be nice to have a systematic
treatment of this matter in terms of the geometry of B, but here we limit ourselves to some
examples. (See also J. Reeds [10]).

We start with (3.2), and again change variables by the rotation R as in Section 3. We
assume through this section that this rotation has been carried out. Thus the integral

(5.1) I.= f e lelx y*n (dx), B = R(B — vg)
nB

must be estimated.
The finer estimates will always be slightly different in the lattice and nonlattice cases.
We will here consider the nonlattice case, and will assume that u (and hence ») satisfies the
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“Cramer condition”
lim sup|aj—e| @ (i) | < 1.

The lattice case can be treated similarly. We classify the results according to the curvature
of 9B at vg.

CasE (i): 9B has “small curvature” near vp in the sense that for some ¢ > 0, 0 <.r < o,
and 0=y <%,

[BNH(©,¢]D[T(, y) NHO, 6],
where
H@O,e) = {x ER*:0=x:<¢}
and
T(r,y)={x€R*: (x+ --- x2)2 < ra7}.

In this case p*"(nB) will be seen to behave similar to the 1-dimensional case, namely
(5.2) p**(nB) = cp"n Y [1 +0o(n7%)], &>0.
Thus the behavior of u*" is in this case not very sensitive to the shape of B.

Cask (ii). B has “y-order contact” with its tangent plane at vg, in the sense that

B={xeR%x3+ -+ +x3=rx¥ + o(ad)}

for some % <y=1,0 < r < o, In this case
(5.3) p**(nB) = cp"n @~ V02V 4 O(n7%)], 8 > 0.

Thus in this case the behavior of u*" is sensitive to shape and dimension.
In the following calculations ¢, ¢;, will always denote constants; not necessarily the same
ones each time.

Cask (iii). If y = % in either (i) or (ii) above then we get the weaker result
(5.4) p*"(nB) an~V? p",

where a, H b, means log a, — log b, = O(1). To get a sharper estimate here, it seems that
the actual shape of B would have to be more carefully taken into account.
To prove (5.2) observe that

0< f e~ llellxy vi" (dx) — f e lallxyy, xn (dx),
0 nB

where »{" = the first marginal of »*,

= J’ e eIy *» (dx)
I (r,)NH(0,)]

=v**{n[T(r, y) N H(0, )]}
= v**(nI(r, v)) + v*" (H (ne, »)).

Now by the 1-dimensional theory [1],

J’ el p*n (dx) = enV[1 + o(n™?)],
0
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while »**(H (ne, »)) is exponentially small. Thus to prove (5.2) it is sufficient to show that
(5.5) v**(n°) = O(n~"?7% for some 8 > 0.
But n'* = {x: (x3+ .-+ + x%)"?> > rn'""x}}, and hence for any © > 0
»**(nl°) = »§*(0, n O)+ ™ {x: (x5 + .-+ + xZ)VE=ralTrvOY,
Choose a small ©,0 <O < %sothat 1 — y — yO =7 > %. Then
(5.61) "0, n®)=PO0=Ui+-.-+ U, =n"°)}, 0 >0,
and
(5.6il) (x5 A+ - +xB)VP=m) =P{|Vi+ oo + Vo ="},  g>Y%,

where {U;} are i.i.d. 1-dimensional r.v.’s with EU; = 0, {V;} are i.i.d. (d — 1)-dimensional
r.v.’s with EV; = 0, and all moments of U; and V; exist. Both probabilities are of at most
the order of magnitude required in (5.5), and hence (5.2) follows.

To prove (5.3), we make a change of variable y; = x;/vn in (5.1), let A®” (dx) =
v¥**(dx/ «/Z), and choose § so that (1 — y)/2y < § < ', which is possible since y > '%. We
can then write

n—&
(5.7) In — f e—lla"s/ﬁy. f }\(n) (dy) + O(e—"a“n“/2fﬁ))’

o D,
where D, = {y € R%:y3+ - +y3=[r+ o(1)]n'""y¥}. Applying Corollary 20.3 of [4],
the main term in the estimate of (5.7) is

-8 -8

(5.8) J e—llallﬂynj boz(y) dy =f e—llallﬂyof @n| )1 + O(n~7"27)] dy,
0 D, 0 D,

where ¢,y is the normal density in R¢ with O mean and covariance matrix ¥, and ¥ | =
det ¥; and (5.7) =

n-—ﬁ
=c[l + O(n'""2%)] J e-llalVan[pl-rydr]@-1/2 g,
0

Changing variables again Wn y1 = z), we conclude that this
(5.9) = cp"VWEVH2[] 4 O(n™%)] for some & > 0.

The remaining terms in the central limit expansion of (5.7) are like (5.8) times O (n™'/%).
This implies (5.3).

The proof of (5.4) goes like that of (5.2), but now we only get (5.5) with § = 0, and this
weakens the result.
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