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A NEW PROOF OF THE HARTMAN-WINTNER LAW
OF THE ITERATED LOGARITHM
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A new proof of the Hartman-Wintner law of the iterated logarithm is
given. The main new ingredient is a simple exponential inequality. The same
method gives a new, simpler proof of a basic result of Kuelbs on the LIL in
the Banach space setting.

1. Introduction. The main object of this note is to give a new proof of one of the
fundamental strong laws of classical Probability Theory, the Hartman-Wintner law of the
iterated logarithm (LIL). In the original proof [6] the result was obtained from Kolmogo-
rov’s LIL via a very delicate truncation procedure; a contemporary presentation along
these lines may be found in [3]. A proof given by Heyde [7] (see also [11], Chapter 10)
depends on a refinement of the Berry-Esseen theorem. Strassen’s proof [13] is based on an
advanced tool, the Skorohod representation, and other more recent proofs by strong
approximation methods (see [5]) require delicate constructions and estimates. In contrast
to these proofs, the one presented here is based only on the (Lindeberg-Lévy) central limit
theorem and basic probability tools, such as the Borel-Cantelli and Kronecker lemmas.

An additional feature of interest of our proof is that it extends to the case of random
vectors taking values in a Banach space. We are thus able to give a new, simpler proof of
a basic result of Kuelbs [9] on the LIL in the Banach space setting.

In Section 2 we prove the Hartman-Wintner law in Strassen’s more complete formula-
tion. The proof is arranged as follows. The upper bound for {(2r log log n)~"/2S,} is
obtained by means of a simple exponential inequality—Lemma 2.2—allied with standard
elementary arguments. Instead of obtaining the lower bound by proving first an exponential
inequality—which is often difficult, as in the proof of Kolmogorov’s LIL—we identify
directly the whole cluster set of {(2n log log n)™'/?S,} by means of an elementary
(asymptotic) moderate deviation result. In this part of the proof we follow ideas arising
from recent work on cluster sets in more general situations ([1] and [2]).

Section 3 contains the proof of Kuelbs’ theorem. The proof is based on an exponential
inequality— (3.5)—similar to that given in Lemma 2.2. We also invoke the reduction given
by Kuelbs’ necessary and sufficient conditions for the (compact) LIL in the Banach space
setting ([8], Corollary 3.1).

NoratioN. We put LLn =loglognforn =3, LLn=1forn=1,2. Forn=1, a, =
(2n LLn) ?. The distance from a point x to a set A (in R® or in a Banach space B) will be
denoted d(x, A). The cluster set of a sequence {x,} will be written C({x,}) (in R' or in B).

2. The Hartman-Wintner LIL. For the proof of the Hartman-Wintner LIL we
provide four lemmas. The first three deal with the upper bound part of the LIL and the
fourth with the cluster set.

The following lemma is well-known. The proof is essentially the same as that of
Theorem 5.1.1, page 256 of [12], for example; the maximal inequality needed in this case
is the Ottaviani inequality,

P{maxi<r=n|Sk| >t + eymini<,<, P{| S, — Sk| =&} = P{|S.| > t},
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where S, = Y51 X;(k < n) with {X;} independent (see e.g. [4], page 120).

LemMa 2.1. Let {Y,} be independentr.v.’s, T, = ¥3_, Y;. Assume

(1) Tn/an —>p 0.
(2) for somea>1,8>0,c>0, nneN

P{T./a.> B} = c exp{—aLLn} for n = n,.
Then P{lim sup, T./a, =B} = 1.
The next lemma is the key new ingredient for the upper bound argument. The parameter
7 will play a useful role in the proof of Theorem 2.5.
Lemma 22. Let {Y,} be independent x+.v.’s, T, = ¥;_, Y;. Assume

(1) EYJ=O7 SupJE|YI|2<°°,
(2) |Y;| = 7(j/LLj)"? as. for all j and some 7 > 0.

Then if a = (sup,E| Y;|*)"?, forallt>0, ne€N,
P{T./a,> t) < exp{—(t/a)*(2 — exp(v2ta~?r))LLn).

ProOF. Since e* =1 + x + (x?/2)e!*! for all real x and for j < n
| Y;/@n| < 7(j/LLj)"?/(2nLLn)"? < 7(n/LLn)"?/(2nLLn)"2 < r /<3LLn,
we have for allA > 0
AY;  ATY?

exp(\Y,/an) <1+~ + 57 exp(\t/v2LLn).

Taking expectations, for j < n
2

EY? Na
o exp(Ar/+v2LLn) < eXP{4nLLn

2

A
E expA\Y,/a,) =1+

exp(A\t/ @LLn)} s

and by independence
22

A
E exp(A\T»/a.) = [[}-1 E exp(\Y;/a,) < exp{4Lin exp(}w/\@LLn)} .
For all A > 0, t > 0, by Markov’s inequality

Aa?

(2.1) P{T./a.>t} < exp(—A\t)E exp(\T,/a,) = exp{—}\t + ain exp(}vr/x/iLLn)} .

For fixed ¢, we set A = a™?2¢{LLn in (2.1) (this choice is motivated by the fact that if the
term exp(At/ \/QLLn) were absent, then A would minimize the right hand side). A simple
computation yields now the stated inequality. O

For the sake of completeness we include a proof of the following lemma, which is
elementary and classical. This lemma provides the final ingredient for the upper bound
argument.

LEmMmA 2.3. Let {X,} be independent, identically distributed r.v.’s with E| X, | < c.
Let 1> 0, and define Z, = X,I{| X, | > 7(j/LLj)"*}, U, = Y"1 Z;. Then

P{lim,| U,/a,| = 0} = 1.

Proor. By Kronecker’s lemma (see e.g. [12], page 120), it is enough to prove that
Y i(Z;j/a;) converges a.s., which in turn follows from

(2.2) 2 EZ|/a, < o
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To prove (2.2) let b, = (j/LLy)">. We have
Y E|Z)|/a, = Ti-1a;" X E| X I{1bi < | X, | < 7biva}
<32 a7 N, (b P{rhi < | X;| < 7hins)
=371 (rh ) P{7h; < | Xi| = 7bi1} (X1 7).

By an elementary calculation, Y:_; a;' < cb, for some constant ¢ (independent of 7).
Therefore for some constant ¢’

Z;;l E|Z,|/a, =c’ Z?=1 b%P{'Tb, < |X1| = 'Tbi+1}.
Since E|X; |? < o, (2.2) follows. O

The key to the cluster set argument is the following moderate deviation result; the proof
is taken from [2]. It is through this lemma that the central limit theorem is used in the
proof of the Hartman-Wintner LIL.

LEMMA 24. Let {X;) be independent, identically distributed r.v.’s, EX; = 0, 0® =
E|X|*< . Let my € N, a, > 0, ai/mi — 0, a/my, — . Then for every b € R, e >0

lim infy (ms/aZ)log P{|Sm,/ox — b| <&} = — (%) (b/0)*.
Proor. We first prove: if V = (c, d), t > 0 and y, is the N(0, ¢®) distribution, then
(2.3) lim inf, (mx/a?)log P{Sm,/ax € V} = t*log y,(tV).

Let Vs = (c + 8, d — 8), Us = (=8, 8)(8 > 0). Define p. = [m3t?/a%], qr = [a}i/t*ms],
ry = (tqk)'lak. Then

2.4) (P{S,,/s € tVs))® = P{Sp,q,/70 € tqu Vs} = P{Spqr/on € V3).
Also
(2.5) P{Spqul o € Va} 'P{(Smk - Spqu)/ak e U} = P{Smh/ak eV}

By Chebyshev’s inequality,
(2.6) e = P{|Sm, — Sp,q, | > S} = (ms — prqr)o?/8%ai — 0.
Since Z(S,,/r:) —w Yo by the central limit theorem, we have from (2.4)-(2.6)
lim inf, (ms/a?)log P{Sn,/ax € V} = lim inf, (mx/a?)log(l — Ax)
+ lim inf,.¢ *log P{S,,/r» € tVs}
= t7log v, (tVs).

Since § is arbitrary, (2.3) follows.
Now let ¢ = b — ¢, d = b + €. Then by a change of variable and Jensen’s inequality,

1 272
Y.(tV) = j exp (tbx)y. (dx) -exp{—<§> to_I;}
U,
1\ t2b®
= exp{—(§> %Z—}YU(U&).

2
t%log v, (¢V) = — <-;-> (g) + t7Aog v, (Us),

Thus
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o L 1\/b\’
2.7) lim inf, .t "log y,(tV) = — Nz
Now the result follows from (2.3) and (2.7). O

We come now to the Hartman-Wintner law, which we present in Strassen’s formulation.
THEOREM 2.5. Let {X;} be independent, identically distributed r.v.’s with EX; = 0,
o’=E|Xi|’<®,S,=Y"%1X;. Then if K, = [—o, o],

(1) P{lim,d(S./a., K,) =0} =1,
(2) P{C({Sn/an}) = K,} = 1.

In particular, with probability 1
lim sup,S./a. = o, lim inf, S, /a, = —o, lim sup,|Sr/a.| = .
ProoF. The statements are trivially true if o = 0, so we may assume o > 0. We first
show
(2.8) P{lim sup,S,/a, = o} = 1.
Let 6 >0, t = (1 + 8)o. Choose 7 > 0 small enough so that
a=(1+8)>3%2 - exp(¥2(1 + 8)o7'7)) > L.

Then if X; = X;I{| X;| = (r/2)(j/LLj)"/*} and Y, = X, — EX,, we can apply Lemma 2.2 to
{Y,} with a = o, obtaining

P{T./a.> (1 + 8§)o} = exp(—aLLn).

Also, by Chebyshev’s inequality
P{|Tw/an|> ¢} < no®/e’al — 0.
Applying now Lemma 2.1, we conclude that
(2.9) lim sup,T./a, < (1 + 8)¢ as..
Let S, =Y7-1 X/, Z,= X; — X]. Then EX, = — EZ;, and by the argument in Lemma 2.3,

i | EX]|/a;< ¥5-1 E|Z)|/a; <
so by Kronecker’s lemma
(2.10) |E(Sh/an) | < ax' $j-1 | EX;| — 0.
By (2.9), (2.10) and Lemma 2.3, we have

lim sup,.S,/a, = lim sup, T»/a, + lim sup,E(S,/a.)
+ lim sup,| Un/a.|
=1+ 6)o a.s.

Since § is arbitrary, this proves (2.8).
We prove next

(2.11) P{lim,d(S./ax, K,) =0} = 1.
In fact, (2.8) applied to {—X,} yields P {lim inf,S,./a, = —¢} = 1, and since

{lim sup,d(S./a., K,;) > 0} C {lim sup,S,/a, > o} U {lim inf S,/a, < — d},
(2.11) follows.
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It remains to prove
(2.12) P{C({Sn/an}) = K,} = 1.
In order to prove (2.12), it is enough to prove that for every b € (—o, o)
(2.13) P{be C({Si/an})} = 1.

In fact, taking a countable dense set D C (—o, o) it follows from (2.13) that P{C({S./a~})
D D} = 1. Since C({S./a.}) is closed and, as a consequence of (2.11), P{C({S,/a.}) C K,}
=1, (2.12) follows.

In order to prove (2.13) we adapt an argument in [1]. Let n = 2* and write

(2~14) |a;1,1+1s - bl = |a'_‘k1+1S”k| + |a;k1+1(Snk+1 - Snk) - bl‘

Np+1
Since an,/an,,, — 0, it follows from (2.11) that
(2.15) lim supe| @x,, Sr, | = lim sups(@n,/an,, )| Su,/an, | = 0, ass.

Let my = npy1 — nx; observe that my ~ ng+1. Given e > 0, let Ap = {| any,,(Snsrs — Sny)

—b|<e). Let |b] < o, put & = | /0| and choose § > 0 so that a« + 6§ < 1. By Lemma 2.4,
applied with ax = an,,,, there exists ko such that 2 = &, implies

2
P(Ax) = P{|Sn/ar — b| <&} = exp{_;_z (a ;— )

— 8,,:k € N} is independent, the Borel-Cantelli

)} ~ exp{—(a + 8)LLng+1)

and therefore Y 5-; P(A.) = . Since {S,,
lemma yields:

(2.16) P{lim inf:| a;}, (S

k+1 k+1

k+1

—-8S,) —bl=¢e =1
Since ¢ is arbitrary, it follows from (2.14)-(2.16) that
P{lim infe| @z}, ,S»,,, — b] =0} =1,

Tr+1

which implies (2.13). 0

3. Kuelbs’ LIL for Banach space valued random vectors. Let B be a separable
Banach space. Given a probability measure u on B with [ X du(x) =0, [ || x||* du(x) < oo,
we denote by K, the unit ball of the reproducing kernel Hilbert space of p (see e.g. [8],
Lemma 2.1). For a subspace F C B, gr is the seminorm defined by gr(x) = d(x, F)(x € B).

The following theorem of Kuelbs is one of the basic results on the LIL in the Banach
space setting. The proof is similar to the upper bound part of the proof of Theorem 2.5.

THEOREM 3.1. Let {X;} be independent, identically distributed B-valued r.v.’s with
EX, =0,E|X1|*> <, S, =Y"-1X;. Assume that { £ (S./a.)} is relatively compact. Then
if p=Z(X1),

1) P{limnd(sn/am Kn) = 0} =1,
We shall need the following.

LeEmMmaA 3.2. Let {Y,} be a sequence of B-valued r.v.’s. Assume

(1) P{{Y,} is bounded} =1,
(2) for every & > 0, there exists a finite-dimensional subspace F such that
P{lim sup.qr(Y,) < ¢} =L

Then P{{Y,} is relatively compact} = 1.

The proof is straightforward.
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Proor or THEOREM 3.1. By a result of Kuelbs ([8], Corollary 3.1), it is enough to
prove:

3.1) P{{S./a,} is relatively compact} = 1.

By standard arguments, it is enough to prove (3.1) under the additional assumption of
symmetry of X1, which we adopt for the rest of the proof.
Let

Y, = XI(| X, = r(G/LL)'?), Zi=X;- Y,
T, = '11'=1 ij U.= E'}=1 Zj

It is easily seen that the relative compactness of { #(S./a,)} implies that T,./a. —p 0.
Then standard integrability arguments (see e.g. [10], Lemma 2.3) yield:

(3.2) E| T./a.]— 0.

Let ¢ be a seminorm on B such that ¢ < || - ||. In order to obtain an exponential bound
for P{q(T./a,) > t} similar to that given in Lemma 2.2, we shall use a technique of
Yurinskii [14], already exploited in [9]. Let & = 6(Y1, -+, Y;) forj=1, ..., n and let %
be the trivial o-algebra. Define

0= E{q(To/ax) | ) — E{q(To/an) | Fi1), (G=1,---,n).
Then
q(To/an) — Eq(Tn/an) = ¥)-1 7,
(3.3)  EexpA(g(Tn/an) — Eq(T./an)) = E(E{exp A(X}-1mj) | Fa-1})
= E exp M(X7=1 n))E {exp(An,) | Fo-1}
for all A > 0, and

(3.4) || = q(Yj/an) + Eq(Y;/a,) as.;
this inequality follows from elementary properties of conditional expectations.
From (3.4) and the definition of Y, we have |n,;| < V2 7/LLn, (j =1, ---, n), so

proceeding as in Lemma 2.2 we get

2 2
exp(v) = 1+ A + 1 exp(+ZAr/LL),

NE{n;| Fu-1)

5 exp(v2\7/LLn)

E{exp(\n) | #o1} =1+
4AN’E(q(Y,))?
14 (q(2 )
2a,

2.2

<1+)\a
- nLLn

exp(v2Ar/LLn)

exp( \/5}\7/ LLn)

A%q? . .
= eXp{nLLn exp(\/2)\7/LLn)}, where a® = E(q(X1))".
By iterating this procedure we obtain from (3.3)

2 2

E exp A(q(T,/an) — Eq(T,/an)) < QXP{]}:I‘;

By applying Markov’s inequality and setting A = (2a?) '/LLn, we obtain as in Lemma 2.2:
forallt>0,neEN

exp(«/éM/LLn)}.

2
(3.5) P{q(T./a,)— Eq(T./ay) >t} < exp{—(%) 2- exp(tr/«/iaz))LLn}.
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Now lim,q(U,/a,) = 0 a.s.; in fact, the argument in Lemma 2.3 applies without change.
Following now the steps in the proof of (2.8) in Theorem 2.5, and using (3.2), we get

(3.6) P{lim sup,q(Sa/a,) = 2{E(q(X1))*)"*) = 1.
In particular

(i) P{lim supa|| Si/an|| < 2(E|| X, |*)"*} =1,

(ii) given & > 0, choose a finite-dimensional subspace F such that E(gr(X1))* < (¢/2)®
(this is possible because E|| X:||* < »); then P {lim sup,qr(S./a.) <€) = 1.

The proof of (3.1) is now completed by applying Lemma 3.2. 0
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