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STABLE LIMITS FOR PARTIAL SUMS OF
DEPENDENT RANDOM VARIABLES'

BY RicHARD A. DAvis

Colorado State University

Let {X,} be a stationary sequence of random variables whose marginal
distribution F belongs to a stable domain of attraction with index a, 0 < a <
2. Under the mixing and dependence conditions commonly used in extreme
value theory for stationary sequences, nonnormal stable limits are established
for the normalized partial sums. The method of proof relies heavily on a
recent paper by LePage, Woodroofe, and Zinn which makes the relationship
between the asymptotic behavior of extreme values and partial sums exceed-
ingly clear. Also, an example of a process which is an instantaneous function
of a stationary Gaussian process with covariance function r, behaving like
rnlog n — 0 as n — = is shown to satisfy these conditions.

1. Introduction. There is a vast literature on central limit theorems for stationary
mixing sequences (see Ibragimov and Linnik, 1971, for a convenient reference). Typically,
three ingredients are needed in proving such results: the variance of the partial sums must
approach o, a moment condition (usually the existence of a (2 + §)th moment) is required
and the sequence should satisfy a suitable mixing condition with a sufficiently fast rate of
mixing. Many useful results and insights into the dependence structure of stationary
sequences have evolved from studying problems of this type. However, not much is known
for obtaining nonnormal stable limits. Clearly, not only will the hypotheses needed for
obtaining stable limits with index less than 2 be different, but many of the highly developed
techniques used for normal limits will not be amenable to this case. If the common
distribution function of an iid sequence belongs to a nonnormal stable domain of attraction,
then the asymptotic behavior of the extreme order statistics and partial sums are closely
related. This relationship is made exceedingly clear in LePage, Woodroofe, and Zinn (1981)
(hereafter LWZ) which suggests that, in extending the iid results for nonnormal stable
limits to dependent sequences, the dependence and mixing assumptions commonly used in
extreme value theory for stationary sequences may be employed. Using these kinds of
hypotheses and expoiting the ideas in LWZ, nonnormal stable limits of the normalized
partial sums are established.

Let {X,} be a stationary sequence of random variables with marginal distribution
function (df) F(x). Much of the notation and formulations used in LWZ will be retained
in this paper. Let 1 — G(x) be the distribution function of | X; |. We shall assume F belongs
to the stable domain of attraction with index «, 0 < a < 2. This translates into the following
assumptions on F and G:

(1). G(x) = P(|X| > x) = x~“L(x) where L(x) is a slowly varying function at e,

and

1-F F(—
(2) ——G(y()y)_)p and —-—Gf(;;)—)q as y— oo,

where 0 < p =1 and ¢ = 1 — p. Then the normalizing constants, @, > 0 and b,, for the
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partial sums S, = X; + --- + X,,, will be determined by

(3) nG(a,x) > x™ asn— o, x>0,
and
(4) b, = J x dF (x).

—ay

Define M} and W% to be, respectively, the kth largest and kth smallest among {Xi, - - -,
X, } and let Y, = kth largest among {| Xi|, - -+, | X,|} for k=1, - - -, n. Also, let {X,} be
the associated independent sequence of {X,} (ie. {Xn} is an iid sequence and X =4 X)).
Correspondingly, the analogues of M%, W%, and Y, for the associated iid sequence will be
denoted by M kS Wﬁ, and Y,.. We will use throughout the convention that a “hat” over a
random variable refers to a random quantity related to the associated independent
sequence.

The mixing condition D which will be required is a somewhat stronger condition than
originally formulated by Leadbetter (1974) (also see Davis, 1979). Let B be a finite union
of disjoint intervals (possibly infinite) with nonzero endpoints of the form (a, b] and set
Un =1 .. e p)- Observe that EUi, — 0 or 1 as n — co. Then condition D is said to hold
if for any choice of integers

=< - <L<fi<e o <Jg=n, J1—0>"4
|E(Uiln e UianIj]n s l]jqn) _E(Ulln e Uipn)E(l]j]n "‘Lqun)lsan,/

where s, , is non-increasing in Zand a,, , — 0 as n — o for some sequence ¢, — o with £,
= o(n). Also a,,,, may depend on B. This condition is substantially weaker than the usual
mixing conditions associated with central limit theorems (see the second example in
Section 3).

In addition to the mixing hypothesis D, a local dependence assumption is also needed
in extreme value theory. The condition D’ is said to hold if for all x > 0

lim Sup Sk (x) = 0(1) as & — o where

Spn(x) = n I {PX: > anx, X; > anx) + P(X1 > anx, Xj < —X)

+ P(X: = — anx, X; > anx) + P(Xi = —anx, Xj = —anx)}.

If 0 < p < 1, then, under the D and D’ assumptions, P(M} < a,x) — e ?** and P(W}
> —a,x) = e %" for x > 0 by Theorem 2.6 in Leadbetter, Lindgren and Rootzén (1979).
Moreover, conditions D and D’ are the same as those defined in Section 4 of Davis (1983)
specialized to the present setting, and upon applying Theorem 4.2 and Remarks 1 and 2
from the same paper, we have the following result.

THEOREM 1. If0 < p < 1, the joint limiting distribution of the two vectors
a, (M}, -, M}) and a;' (Wi, ---, W) s the same as the limit of
a!(ML, -+, M) and a; (WL, ..., WE)  for all positive integers k.

This is the key observation in establishing the convergence of the partial sums to a
stable limit. This result is proved in Section 2 provided 0 < a < 1. For the case 1 = a < 2,
a rather mild assumption is also needed in order to obtain the same result.

In Section 3, two examples are presented. The first is an instantaneous function of a
stationary Gaussian sequence chosen in such a way that the marginal distribution function
of this new sequence satisfies (1) and (2). If the covariance function r, of the Gaussian
process behaves like r, log n— 0, then conditions D and D’ are fulfilled by the instantaneous
function process and hence the partial sums have a stable limit. The second example also
satisfies D and D’ yet does not satisfy any of the common mixing conditions.
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2. The main result. Let {X,} be a stationary sequence satisfying conditions D and
D’ and suppose F satisfies (1) and (2).

LEmMA 1. Theorem 1 remains valid for the additional cases p =0 and p = 1.

Proor. We only handle the case p = 0 for the argument when p = 1 is similar. First,
note that n(1 — F(a,x)) — 0 for all x > 0 and since 1 — n(1 — F(a.,x)) < P(M. < a.x),
P(M}, < a,x) — 1 for all x > 0. Now M. — x, a.s. where xo = sup{x: F(x) <1}. If xo =
o, then P(M,/a, < 0) — 0 which, together with P(M}/a, < x) — 1 for x > 0, implies
M./a, — 0 in probability. On the other hand if x, < oo, then X;/a, < M'/a, < xo/a, and
since the outside two terms approach 0 a.s. we have the same result. Finally, for large n,
Xi/an = M}/a, < M}/an, so that M}/a, — 0 in probability for j = 1, 2, -+ . . Thus the
vector a;' (M}, ---, M%) has a degenerate limit while a; (W}, ..., W%) has the same
limit as a; ' (W3, ---, W%) which completes the proof. 0

As in LWZ, let {E,} be a sequence of independent unit exponentials and set I'; =
Ei+ ...+ E, Define Z" = a;," (Yn1, Yn2, +++ Yun, 0,0, -+.) and Z = (Z1, Zs, - --) where
Z;=T;Ve

LEMMA 2. Z"—,Z.

Proor. In LWZ it was shown that Z, = a 1(17,,1, cee ?,m, 0, 0, -:.) converges in
distribution to Z. The sequence {|X,|} satisfies conditions D and D’ and using the
preceding lemma with p = 1, a7 (Y1, -+ - Y,) has the same limit as @7 (Y1, -+, Yor)
which is (I'7"% ... T'5"%). The result is complete since it is enough to establish the
convergence of the finite dimensional distributions.

For some random permutation (0,1, - -+, 6x.) of the integers 1, 2, - -+, n, Yo = | X, |.
Define 6., = sign(X;,,). We now state and prove the analogue of Lemma 2 in LWZ.

LEMMA 3. 8" = (Bu1, +++ Oun, 1,1, -+2) =4 8 = (81, 8, +++) as n — o, where 8, 8,
- -+ are iid random variables with P(8; = 1) = p and P(8, = —1) = q. Furthermore, 8™ and
Z" are asymptotically independent.

Proor. We first do away with the case p = 0. The event {8,; = —1, 8,2 = —1, -+ -, 8,
= —1} is the same as {M}, + W% < 0} and lim,_.P(ML. + W% < 0) = lim,—. P (ML/a, +
Wh/an < 0) = lim,—_..P(W%/a, < 0) = 1 since M}/a, — 0 and W% — —o in probability.
This proves that the finite dimensional distributions of 8" converge to those of § and so
8" —4 8 when p = 0. The case p = 1 is the same.
Now assume 0 < p < 1. Then M/, — + « a.s. and W}, — —w a.s, for every j. Hence, 8,;
= 1 implies for large n
M, if -W, <M,=-w;"'
M; if -Wi W < M2 < —-W4?
Yy=d @ .
M, if -W! —-Wl.<M,.
Similarly, 6,, = —1 implies for n large,
-W) if M, <-W! =M
-Wi if M < -W2 =Mt
Y, = . . .

W, if M, <-Wi.
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So the asymptotic properties of (@' Yy;, 6,/) are completely determined by the asymptotic
distribution of a,' (M}, -, M%, Wk, - .., W%). Consequently, for a compact subset B of
(0, )%, and (e, - - -, &) € {—1, +1}*,

limn—wop(a;l(Ynl) Yn2, cty Ynk) € B, 8’11 = &1, 00y 6nk = Ek)
(5)

= lim,_.P(a; (M}, -- -, ME, WL, ..., Wi) € B)

where B is a Borel subset of (—o0, )% chosen so that for large n (n depends on w), the
indicator of the set {a;"(Yu1, +++, Yor) EB, 81 =¢1, - - - , 8 = £ ) is equal to the indicator
of the set {a,' (M}, --+, M%, Wy, ..., W%) € B}. Using Lemma 1, the equality in (5) is
equal to

lim, . P(az' (M5, - -, Mk, Wh, - ., Wh) € B)
= lim o P(@7" (Pu, -+, Tod) € B, 8ui = &1, -+, 8o = &)
=P(Ti", .., T3 € B)PB1=¢1, ---, 00 = &)
where the last equality is from Lemma 2 in LWZ. This concludes the proof of the lemma. [J

Let [x:A] = xIa(x) where I, is the indicator function of the set A.
THEOREM 2. If0<a <1, then a;'S, —q S where S =Y, 8,Z;.

PrROOF. Asin LWZ, for 0 < e <A, let S, (¢, A] = Y 7=1 8 - [Zn:(e, A]) where Z,, =
a;'Y,;. Similarly define S(e, A\] =Y 71 §, - [Z:(¢, A]]. Since a,;'S, = S, (0, £] + Sa(e, ®), it
is enough to show (see Theorem 4.2 in Billingsley (1968)),

(6) lim, _olimsup,» E|S, (0,¢]| = 0,
@) Sy (g, ©) —4 S(e, ©) as n — o,
and

(8) S(e, ©) >4 Sase— 0.

For distribution functions with regularly varying tails with index a, 0 < a < 1, we have
from Karamata’s Theorem (see de Haan (1970))

lim,_, olimsup,_, « ai J | x| dF(x) = 0.

Thus (6) is established since E|S, (0, ]| < (n/a%) [*n, |x|dF(x). Using an identical
argument to the one given in LWZ, it may be shown that S,(e, ©) —; S(e, ). Finally to
prove (8), first observe that Z;/j~/* — 1 a.s. Hence for 0 < a < 1, the series ¥ %=, 8;Z;
converges absolutely a.s. in which case it follows that S(e, ) — S a.s. ase— 0.0

In addition to the hypotheses D and D’, a further dependence assumption is needed
when 1 =< a < 2. Condition D” is said to hold if

(9) lim._olimsup,_« -:—2 Y /=2 max(0, Cov([X; : (—ean, eax)], [X): (—eayn, £a,)])) = 0.
Each term in the sum is bounded by a,*n Var([X, : (—eay, a,)]) which in turn is bounded

by (n/a%) [“%, x® dF(x). Using properties of regularly varying distributions (deHaan,
1970),
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(10) lim, .o limsupn_. % J x2dF(x) =0

n
—tan

so that each of the summands in (6) has the desired property and, thus, an m-dependent
sequence satisfies (6).

Although it is believed that the following theorem is true without assuming D”, our
proof, which follows closely the argument given for Theorem 1 in LWZ, requires it.

THEOREM 3. For 1l = a <2, suppose the stationary sequence {X,} also satisfies D".
Then a;'(S, — nb,) =4 S* where

S* =¥ 8% - (p— @E[Z: (0, 1]].
Proor. Using the notation developed in the proof of Theorem 2, we have
a;' (S, — nb,) =S,(0,0) — ES,(0,1] = S, €, ©) — ES, €, 1] + S, (0,¢] — ES, (0,¢].

It then suffices to show

(11) lim,_,olimsup,_,» Var(S, (0, e]) = 0

(12) Sn(e, ©) — ES, (e, 1) —»a S(e, ®) — ES(, 1), asn— o
and

(13) S(e, 0) —ES(e, 1) >4 S* as &£— 0.

To prove (11), observe that

Var(S, (0, £]) s% f x? dF (x)

+ 2 1 max(0, Cov([X : (—ea, ean)], [;: (~ean, ean))).

Now, by the D” assumption and (10), the lim,_,olimsup,—... of the bound is zero. In LWZ,
(13) and ES. (e, 1] > ES(e, 1] were established. Since ES,(¢, 1] = ES, (s, 1], the argument
will be complete once we show S, (g, ©) —4 S(g, ©). However, as in the proof of Theorem
2, this is established using the same argument as the one provided in LWZ for S, (e, ©). O

The analogues of Theorem 1’ and Corollary 1 for self norming sums in LWZ also carries
over to the dependent setting. Set
Str=az' T 1 XY, 1sr=ow
St = {312}V, a<r<omw
Ste=a, max{|Xi|, ---,|Xx|} and S%=2.

The proof of the following theorem and corollary is immediate from Theorems 2 and 3 and
the proof of Theorem 1’ and Collary 1 in LWZ.

THEOREM 4. Under the assumptions of Theorem 2 or Theorem 3, (Z", S}, S5, ) —a
(Z,8*, 87) asn— « for all r, a < r < o where S = a,;' (S, — nb,) and S* is defined in
Theorem 3.

CoROLLARY a) IfO0<a<1,thenT,,—q T, for allr,a <r = o where

T = Ci=1 X)/{E5=1 | XY and T = 35718, /{55 Z;} "
b) If, in addition to the assumptions of Theorem 3, EX: = 0, then
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T,r—a TF for all r where a < r = © and
TF = X1 87 — (p — @E[Z: (0, 11D} /(T 5= Z5} "

3. Examples. In this section, two examples illustrating the results of the preceding
section are presented. First, let {Y,} be a stationary Gaussian sequence with Zero mean,
unit variance, and covariance function r, = EY;Y,1. Set A = U™, (v®, v#*V) where
—0 =00 <P <... <v® <@+ < 0, The proof of the following lemma mimics, with
minor modifications, the argument given for Lemma 3.2 in Leadbetter, Lindgren, and
Rootzen (1979).

LEmMA 4. For any choice of integers 1 < iy < i, < +-+ <1,

|P(X, EA, -, X, €EA) — PX, EA)| = Km® Ficjcnes | 1| €4/ 0HmD

where rj, = EX, X, and u = min{ | v |, |[v™"], .-+, |v®*"*V|} and K is a constant.

For eachj=0,1, ---,2m + 1, let v\ be a sequence of numbers with —o < p® < p@
<--- <v?*V < o and satisfying 1 — ®(|vY |) ~aT"’ as n — o where 0 = ol <o, j=0,
1, ...,2m + 1, and @ is the standard normal distribution function.

LemMA 5. For any choice of integers 1 = i, < iz < +++ < i < j1 < -+ < j, < n with
J1— ip = ¢, then
|P(Y, €Ay, -+ Y, EA,, Y, EAy, -, Y;, € A,)

—P(Y, €A, -+, Y, EAP(Y,,EA,, ---, Y, €EA,) | = 3Km®n Y[y |1, | e/ A+ImuD)

where A, is the set A defined above with v’ replaced by v\’ and u, = min{[v?], - ..,

[0 |}, Moreover, if r,log n — 0 or ¥ | r;| < oo, then this bound goes to zero for all
¢> 0 and

Hmsup,wnt 374 {P(Y1> tn, Y; > t,) + P(Y1 < —ttn, Yj> un)
+P(Y1>un, Vi< —tn) + P(Y1= —thp, ;< —un)} =0(1) as k— oo,

The proof follows from Lemma 4 above and Lemmas 3.1 and 3.3 in [8].
Now let X,, = H(Y,) be an instantaneous function of the Gaussian process such that the
df of X, belongs to the stable domain of attraction with index a, 0 < & < 1.

LEMMA 6. The sequence {X,} satisfies conditions D and D’ and, consequently,
an' 1 Xj—>a S =371 82,

Proor. Let B = U0 (x2), X2,+1) where —0 = %0 < x; < ++ + < Xome1 < o and xj # (0 for
J=0,:--,2m +1.Then {a,'X, € B} = {Y; € A} where A, = U, (v, v{¥*?) with
v = Ha,x)) j=0, --- 2m + 1. Since

D x;i“ ifx, >0
n(l—@(vd|) -
qlx|™ ifx <0,

by (1)-(3) and in view of Lemma 5, it is an easy task to verify both D and D’. I

It is worth remarking that if the instantaneous function of Y, was chosen such that
Var(H(Y,)) < o, then the normalized partial sums of X, = H(Y,) may not be asymptot-
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ically normal even under the assumption r, log n — 0. The special case where H(Y,,) = Y2
—landr, = n7" 0<y<%, was dealt with by Rosenblatt (1979). This is contrasted with
Lemma 6 where H is chosen to make the df of H(Y;) belong to a stable domain of
attraction.

The next example is a modification of the one given in Davis (1982). First, let {(Z},
Z%):n =1} be an iid sequence of 2-vectors with marginal distribution defined as follows.
The density f(x, y) of this distribution is supported on the unit square and is given by

0if (x, y) € (3%, '8) X (%, %) U (%, %) X (0, %)
flx,y) =3 2if (x, y) € (b, %) X (0, %) U (%, %) X (%, %)
1 elsewhere on the unit square.

In other words, f(x, y) is an altered uniform density on (0, 1) X (0, 1) with twice as much
mass on the squares (3%, %) X (0, %) and (%, %) X (%, %) and no mass on the adjacent
squares (%, %4) X (%, %) and (Y%, %) X (0, %). It is easy to check that both marginal densities
are uniform on (0, 1) and P(a < Z!=<b,a<Z?=<b) = (b — a)®for b > % and a < %.
Define the sequence (Y1, Y2, Y3, --+) to be equal to (Z%, Z}, Z%, ZL, Z%, .. .) and (Z}, Z3,
Z%, 7%, - -+) each with probability %. In [2], it was shown that {Y,} is stationary, ergodic,
and not mixing. If T' is the shift operator, a sequence of random variables is said to be
mixing if for any two events A and B, P(A N T7B) — P(A)P(B) — 0 asj — . However,
in this example, Y, is independent of {Y.2, Y,+3, -+ -} for all j.
Suppose A is a Borel subset of (0, 1) such that

(14) AN (%, %) =¢ or (3, %) CA.

Then P(Y; €A, .-, Y, €A) = P°(A) for all choices of integers 1 < i; < ... <1i,. To
complete the construction, define X, = F~'(Y,) where F is a df satisfying properties (1)
and (2). If B is a finite union of disjoint intervals, then the event {a,'X;€ B} = {Y, € A,.)
where A, = {x:a,'F'(x) € B}. For large n, A, eventually satisfies (14) so that PX, e
B, ... X; € B) = P*(X, € B). It follows that Conditions D and D’ are fulfilled for this
sequence and since X; and X; are independent for j > 2, Condition D” is also satisfied by
the remark preceding Theorem 3. Thus a,' (% X; — nb,) =4 S*, even though this
sequence is not mixing.

The results of Section 2 and the above examples suggest that the mixing assumptions
required for proving stable limits of partial sums need not be as stringent as those for
establishing central limit theorems. However, a price is paid in the form of a local
dependence hypothesis (Condition D’) which occasionally is not even satisfied by 1-
dependent sequences. Yet, in view of the relationship between extreme values and partial
sums, the hypotheses which are commonly used in extreme value theory for dependent
sequences appear appropriate for obtaining nonnormal stable limits of partial sums.
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