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TWO CRITICAL EXPONENTS FOR FINITE REVERSIBLE
NEAREST PARTICLE SYSTEMS

By THoMAs M. LiGGETT!

University of California, Los Angeles

Finite nearest particle systems are certain one parameter families of
continuous time Markov chains A, whose state space is the collection of all
finite subsets of the integers. Points are added to or taken away from A, at
rates which have a particular form. The empty set is absorbing for these
chains. In the reversible case, the parameter A is normalized so that extinction
at the empty set is certain if and only if A < 1. Let o(A) be the probability of
nonextinction starting from a singleton. In a recent paper, Griffeath and
Liggett obtained the bounds A™'(A — 1) <= o(A) < |logA™'A — 1) | for A > 1,
and raised the question of determining the correct asymptotics of o(A) as
A | 1. In the present paper, this question is largely answered by showing under
a moment assumption that for A > 1, ¢(A) is bounded above by a constant
multiple of A — 1. In the critical case A = 1, a similar improvement is made on
the known bounds on the asymptotics as n — o of the probability that A, is
of cardinality at least n sometime before extinction. Similar results have been
conjectured, but remain open problems in nonreversible situations—for ex-
ample, for the basic one-dimensional contact process.

1. Introduction and statement of results. Nearest particle systems were intro-
duced and first studied by Spitzer in [9]. Various aspects of their construction and behavior
have been treated in [1]-[7]. In order to describe the class of processes to be considered
here, let f(n) be a strictly positive probability density on {1, 2, - ..} which satisfies

f(n)
f(n+1)

Let & be the collection of all finite subsets of the set of integers, where subsets which are
translates of one another are considered to be the same. The finite nearest particle system
corresponding to f with parameter A > 0 is the continuous time Markov chain A, on & with
transition rates given by

A — A\{x} at rate 1 for each x €A, and

fRf()
fle+¢)

where % and ¢ are the distances from x to be the nearest points in A to the left and right
respectively. If £ or ¢ is infinite, the birth rate is Af(£) or Af(k) respectively, which is the
natural choice in view of (1.1). The empty set is absorbing. In the foregoing description of
the process, we have built in the reversibility and attractiveness assumptions which will be
needed here.

In [4], it was shown that absorption at the empty set occurs with certainty if and only
if A = 1. Furthermore, the following asymptotics for various quantities near and at A = 1
were obtained. We will use * to denote the singleton element of % and 7 to be the time of
extinction. For A € %, | A | will denote the cardinality of A.

(a) The subcritical case A < 1:

(1.1) 1 as ntoo.

A— AU {x} at rate A for each x € A,
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E*(r)=Q1-N", E*{J’ | Ae| dt} =(1-A)7
(|

(b) The critical case A = 1:

C C
—ISP*[|A,| = n for some ¢] =
n logn

for some constants C; and C,.

(c) The supercritical case A > 1:
-1

A-1
A

‘%‘ISP*(T=w)s

log

A natural problem which we raised in [4] is to determine the correct asymptotics for these
quantities in the critical and supercritical cases. This paper is devoted to the proof of the
following theorem, which largely solves this problem.

THEOREM 1.2. In addition to (1.1), assume that
(1.3) Y1 n%(n) < .
(a) If A = 1, then for some constant C,

P*[|A;| = n for some t] sg

foralln = 1.
(b) There is a constant C so that
P¥r=0)=C@A-1)
forallA = 1.

This information is of particular interest because results of this type are notoriously
difficult to obtain in many important situations. Consider the basic contact process, for
instance, which is a nonreversible attractive nearest particle system. In that case, it is not
even known whether or not the critical process is absorbed at & with certainty, let alone
results of the above type.

The proof of Theorem 1.2 uses techniques from [4] to deduce the above bounds from
similar bounds for Markov chains on the simpler state space {0, 1, 2, - - -}. These Markov
chains are asymptotically random walks far from 0. The bulk of the proof involves making
comparisons between these Markov chains and the random walks which approximate
them, since the needed bounds are well known for the random walks. The main difficulty,
as might be expected, comes from the necessity of keeping the comparisons uniform in A
near the critical A = 1. The comparisons between the nearest particle systems and the
Markov chains on {0, 1, 2, ...} are carried out in Section 2, while the comparisons with
the random walks are worked out in Section 3. Theorem 1.2 results from combining
Theorems 2.4 and 3.14. ’

Two natural questions which remain open are: (a) what happens when (1.3) fails? and
(b) do the following limits exist:

lim,_,.nP*[|A;| = n for some t] for A =1

and
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2. The first comparison. The first comparison uses a slight extension of Theorem
2.10 of [4], which itself is an improved version of the Nash-Williams recurrence criterion
for reversible Markov chains. In order to state this extension, let S be a countable set and
let a(i, ) = a(J, i) be a symmetric nonnegative matrix indexed by i, j € S with the property
that

0<a@)=Y,a(,j) <o
for each i € S. Consider the discrete time Markov chain X,, on S with transition probabilities
. ali,))

p (l, J ) - a (l)
and assume that this chain is irreducible. Fix a reference point 0 € S and write S =
UZ=0 Ar where Ao = {0} and the A,’s are disjoint. Assume that

Yiea, a(l) < o
for each & and that

PYX, € Ug-r, Ay for somen) =1
for each m =1. Now put § = {0, 1, 2, - ..},
Ak, ¢)
a(k) ’

and let X, be the corresponding Markov chain on S. For each chain, let 7o be the hitting
time of state 0.

a(k, £) = Yienrjen, @i, j), &k) =3, dlk, ¢), Pk, ¢) =

THEOREM 2.1. Under the above assumptions,

P°X,, € Uf-r, Ay for some n < 7o) = P°(X, € {m, m + 1, - ..} for some n < o).

The proof of Theorem 2.1 is identical with that of Theorem 2.10 of [4]. The difference
in the statements of the two theorems is simply that in Theorem 2.10 of [4], it is assumed
that as,, = 0if |k — ¢| > 1, so that X, is a birth and death chain, and the right hand side
of the above inequality can be computed explicitly.

We will now apply Theorem 2.1 with S = %, a(A4, B) = 0 unless | AAB| =1, a(*, @) =
a(@, *) =1, and whenevern=1,0<j=<n,and A = {x0, x1, -, X} With o <21 < «++
< Xp,

a(A) A\{xl}) = a(A\{xf}’ A)

_ N[ fi—ximy) /=0 or j=n and A\{x)}=A\{x.}
T A% f(x — xi-1)  otherwise.

A moment’s thought shows that the chain with transition probabilities a(4, B)/a(A) is
the embedded discrete time chain for the nearest particle system up until the time it is
absorbed at &. It is here of course that we use the fact that the nearest particle systems we
are considering are reversible.

Put Ao = {J}, A1 = {*}, and for &k = 2,
Ar={A € ¥ max,cax — min,cax =k — 1}.

Fork=1and A € A, write A = {xo, +++, X,} where xo < x; < -+« <xp,and x, — xo + 1

=k.Thenif k= 2,
(2.2) =7 ZBeA, a(A, B) = 2\ [[7=1 f(x: — xi-1).

On the other hand, if 1 = k < ¢,
YBea, a(A, B) = 2N f(£ — k) [T f(x: — %i-1),
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so that
a(k, ¢) = Y aen, Y Ben, a(A, B) = ur(R)f(¢ — k)

for some u (k). Of course u, (1) = 2A, and if k£ = 2 it follows from (2.2) and the symmetry
of a(-, -) that u, (k) can be determined recursively by

ur(k) = A Taen,Beutia, a(A, B) = A Y321 d(k, j)
=AZE dG, k) = A E3= m (Df k< ).
Also, &(0, 1) = a(1, 0) = 1 and a(0, &) = a(k, 0) = O for & = 2. Therefore a(0) = 1,
A(l) =1+ Y22d(1, ) =1+2A,

(2.3)

and for k= 2,
a(k) = Y=l d(k, ¢) + Y21 dlk, ¢)
=Yl (O f(k — ¢) + To=rer i (R)f(£ — k)

= uA(k)(% + 1)

by (2.3). So, the comparison chain in Theorem 2.1 has the following transition probabilities:

1
q>\(0, 1)_1) QA(I,O) —m
2\
QA(I,J)—mf(f—l) for ¢=2
and for k£ = 2
A wm()fk—2)
XTI D) 1=/¢<k
_ak o)
ok, £) = HORE
A
mf(&’—k) > k.

In this context, Theorem 2.1 becomes

THEOREM 2.4. Let A, be the nearest particle system corresponding to the density f(k)
and the parameter A > 0. Then
P*[A, € UE-, \r for some t]=P![X)=n forsome m <)
where X, is the chain with transition probabilities qx(k, ¢).
REMARKS. (a) While the transition probabilities ¢\ (k, ¢) were obtained by purely

formal manipulations, there is an interpretation of them which motivated the manipula-
tions and hence should be described. To do so, take A = 1 and define s\ € (0, 1] by

. AYn-1f(n)sk =1
Put

(2.5) A(n) = A(n)sx,
which is a probability density. Then (2.3) can be written as
(2.6) un(k)sk =Xt (DA R —J)s,

so that stu (k) is a constant multiple of the renewal function corresponding to fi (rn). Call
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a transition A — B for the chain A, an interior transition if A and B are in the same A,
and otherwise call it a boundary transition. If the rates for the interior transitions are
formally set to o, then one can think of the boundary process as evolving in such a way
that the interior of the configuration is always in its stationary distribution. But if the
leftmost and rightmost elements of A, are frozen at u < v respectively, then the stationary
distribution for the interior of the configuration is obtained by conditioning the renewal
measure corresponding to fi (k) on the event that u and v are occupied. These heuristics
lead to the above transition probabilities g (%, ¢) for the evolutlon of the diameter of A,
when the interior rates are set to .

(b) In [4], the weaker logarithmic bounds for the escape probabilities which
are mentioned in the introduction were obtained by using Theorem 2.1 with A, =
{A € #:|A| = k}. The comparison chain in this case is just the birth and death chain on
{0, 1, 2, ...} which moves from n to n + 1 at rate A(n + 1) and from 7 to n — 1 at rate n.
Thus our present choice for A, based on the diameter of A rather than on its cardinality
leads to a comparison chain which is substantially more difficult to analyze. We are
rewarded, however, by obtaining substantially better results.

3. The second comparison. We assume in this section that A = 1 and Y- n?f(n)
< . The escape probabilities of interest for the chain with transition probabilities
ax(k, ¢) will be bounded above by comparing them with those for the chain with transition
probabilities p, (&, ¢) defined by

—Ahk—=¢) fl=ssl<k

7\+1
(k, ¢) = A —f(¢—k) ife>k
LA A+1

for £ =1 and p» (0, 1) = 1. This is a natural chain to consider for two reasons:
- (a) This chain is a random walk on the nonnegative integers until the first time it hits

0.
(b) It follows from the renewal theorem and the remark following Theorem 2.4 that
lim,_, . u) (n)sX exists and is positive, so that

for all integers 7.

Throughout this section, X}, and Y%, will denote the Markov chains on {0, 1, 2, ---}
with transition probabilities g\ (%, ¢) and pa (%, ¢) respectively. Let 7 be the hitting time of
0 for either chain. Make the following definitions:

Urnn(k) = PY[Y),>n forsome m<m] if 1=k=n
wyn(k) = PHX),>n forsome m<m] if 1 = k<n
Un(0) =wnn(0) =0, Ua(k)=wn.(kB)=1 if k>n
OA(R) = limnwtan(R),  wi(k) =limu,ows,n (k)
Gi (%, ¢) = E*[number of m = 7o so that Y), = £]if &, /=1
P\.g(k) =E*g(Y}) if 1sk=n
@ngk) =E'g(X}) if 1<k=n
n8k) =Py ng(k) =gk) of k=0 or k>n.
u(k, ©) = Y71 Gk, DI (7, 0) = (G, O)] if k6= 1
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LEMMA 3.1. (a) s%un(k) is nonincreasing in k for each \.

) pr(J, &) = q\(J, ¢) forj, £=1.

(c) ux(k, ¢) =0 fork, £=1.

ProOF. Parts (b) and (c) follow immediately from part (a) and the definitions of

u(k, £), pA(J, ¢) and g (Jj, ¢). The proof of part (a) involves a coupling argument. Define
fi(n) as in (2.5) and put

. Fi(n) = Yi-n A(R).
Assumption (1.1) implies that fo(n)/Fx(n) | as n 1 «. To see this, it suffices to check that
A() Tine1 AR) = A (n + 1) Xi-n A(R),
which follows from
A (R) = fln + DAk —1)

for £ = n + 1. This last inequality is essentially (1.1). For 2 = 0, let (nz, {x) be random
variables with possible values 0 and 1 and distributions given by: 7o = { = {; = 1 and for
n=1

H(£)

F\(¢)

AR _ A2
XDINAR)

h(k)
F\(k)

P[(Tlny {n) = (1’ l)l'l‘]j, fj, 15]<n] =

P[(nmfn) = (0, 1)]"11', gj’ 151<n] =

PL(n, £) = (0,0) [n), §j, 1=j<n]=1-

where £= £(no, *++,Mm—1) =n—max{j:0<j<n,n;=1} and & = k({o, -+ -, {n-1) =n —
max{j:0 <j < n, {; = 1}. Note that at each stage 7, < {», so that 2 < ¢ and hence the
above probabilities are nonnegative by the monotonicity of fi (rn)/Fy(n). Of course,

_ e . _ K@)
P[nn_ 1|"71, gl’ 15]<n] _F)\(f) ’
which is measurable with respect to {no, + -+, 7n-1}, and
_ . . _ A&
P[fn - 117]1’ g}» 15.]<n] _F)\(k) ’
which is measurable with respect to {{o, - -, {n—1}. Therefore
_ ) . _h(9)
Pln.=1|nj,1=j<n] =0
and
_ : . _ h(k) -
P[{,,—l|§',,1$]<n]—FA(k),

so that the distributions of {n,, n =0} and {{., n = 1} are those of the renewal process
corresponding to fi(-) conditioned respectively on being 1 at 0 and being 1 at 1. Since 7,
=< {» a8, P[n, = 1] = P[{, = 1] for all n = 1. The result follows now from the fact that
sfu (k) is a constant multiple of the renewal function corresponding to fo(+).

LEMMA 3.2. wy.(k) — Una(B) < X %-1ur(k, O)wnn(f) fork=1.

ProoOF. By the harmonicity of w,,, for the X, chain stopped when it exits {1, - - -, n},

Wr,n — P)\,nw)\,n = (Q)\,n - P)\,n)w)\,rn
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Applying P, , to this relation repeatedly and summing gives
Wr,n — P;\'fnw)\,n = Zj=_01 P){,n (Q)\,n - P)\,n)w}\,rh

Since (@r,» — Px,n)wx,» = 0 by (b) of Lemma 3.1 and
Upn (k) = limpm_, o (PSin ) n) (R),
Wrn (B) = Vrn (k) = $3=0 [P{(Qun — Prn)uon1(k)
= Y% un(k, Hwnn(f) |
for £ = 1.

LEMMA 3.3. Put G\(k) = G\(k, k) for k = 1. Then

(a) Ga(k, ) = Gy\(E) for k, ¢=1.

(b) Gr(k) =Gi(k+1)fork=1.

(c) Gh(k+ ¢) = G\(k) + G\ (£) for k, £=1.
(d) va(k) =uva(k+ 1) fork=0.

(e) valk + ¢) = va(R) + va(¢) for k, £=0.

Proor. Consider the random walk Z, on the integers with transition probabilities

1 .

ﬁ)\ (k’ /) =
A
A+1
Note that px(k, ¢)s{ = pa(¢4, k)s? for all &, ¢, so that [s,]7™ is a martingale. Therefore for
k, £= 1, P[Z}, hits & before hitting {-- -, — 1,0}] =< s{~*. Also Gy (%, ¢)s{ = Gr(£, k)s for
k, /=1, so that

Gr(k, &) = s 'Ga(4, k)
= sk~’P’[Z), hits k before hitting {- - -, —1, 0}]Gr (%, k)
= Gi(k,k)

giving part (a). For assertion (b), couple together two copies of the Markov chain Y?,, one
starting at % and one at & + ¢, by letting them use the same increments until the leftmost
process hits 0. Up until that time, the leftmost process has hit % the same number of times
that the rightmost process has hit £ + ¢, and of course the rightmost process may visit %
+ Zagain after that time before hitting 0. This proves (b). At the time the leftmost process
hits 0, the rightmost process isin {0, 1, ..., ¢}. Thus

Gr(k + ¢) — Gr(k) = maxi<j=,G\(J, k + £) = G\ (¢)

f(¢—k) if >k

by parts (a) and (b), so (c) is proved. The proofs of (d) and (e) are similar.
LeEMMA 3.4. (a) If 1 =1 < A, the density fi is stochastically larger than the density

i, :
() If 1= A1 = X; and Y§' < Y{, then Y)! and Y)? can be coupled together so that Y
=Y for all m.

Proor. Part (b) is an immediate consequence of part (a) and the definition of the
transition probabilities for the chain Y},. For part (a), put

@(s) = Y21 f(n)s” for 0=<s=1
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and note that (2.5) can be written as
_f(n)sy
hln) = (s

Also, since @(s) is increasing in s, 1 =< A; < A, implies that 1 = s, = s,,. Therefore it suffices
to show that for any N =1,

Yasi f(n)s”
®(s)
is a nonincreasing function of s. But this is easily checked by differentiation.

LEMMA 35. Y% ik, ¢) ¢< %) G*(k) [1+ X% )],
Proor.
Yrunlk, £)¢=5 =1 Gr(k, Nan (], ¢) — P (j, €)]¢
= G\(&) X5 -1 [n (G, &) — (5, 0)1¢

by (b) of Lemma 3.1 and (a) of Lemma 3.3. Now,
-
T@+Na+2)

an(j, ) =p(j,¢) for 2=j</¢

) ur (£)sf
1’“’_"[ ()] 1]

(L, ¢) —p(L,¢) fe—=1) for ¢=2,

and for 1 = /<,

qﬂ(j’ J) _pk(j’ J) =}\

Therefore
G\(k A
Srrnth Nes B8 [ Ay e 1)
Y (= 1) YR A — z)(Z‘ff)):f 1)]
By (2.6),
f i
A [ZEJ;; ]—1—2 DA =€) = T3 A(6) = S5, ()

by (a) of Lemma 3.4. Therefore .
Sk, e 28 {— O+ D) + 5 S A= l)f(f)]

which completes the proof.

LEMMA 3.6. lim supp_w Gi (k) = 2 5 .
k Yr=1nf(n)

Proor. Let Z,, be the symmetric random walk on the integers with transition proba-
bilities

Pk, &) ="%f(k—12])
for k # ¢ and let a (k) be the (recurrent) potential kernel for this random walk. Then
G (k) = {P*[Z, hits {---, —1, 0} before returning to £]} !
< {P"Z., hits {0} before returning to k]} ' = 2a (k)
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by Theorem 2 of Section 30 of [8]. By Proposition 4 of Section 28 of [8],

3.7) limy % (S5 %50, )] = [Be n%f ()]

from which the result follows.

LEMMA 3.8. limy1Gi(k, ¢) = Gi(k, ¢) for k, £ = 1.

ProoF. Note that for &k, £ =1,

Gi(k, ¢) = Ym0 P{Yh = 410> m].
It is clear that for each m, Zand &,
PHY) =4 10> m]
is continuous in A. On the other hand,
YN P Yn=41>m]<PHY%#0 forall m= N]G\(¢)
and
Limpolimy i P Y5 #0 forall m=N]=limy_oPYY.,#0 forall m=<=N]=0

since Y7, is recurrent. Since P*[ Y, # 0 for all m < N]is decreasing as N 1 « and A | 1 by
(b) of Lemma 3.4, it follows that

limytor 1 P YR %0 forall m=<N]=0.

The result then follows from the fact that for each /= 1, G (¢) is bounded on bounded A
sets.

. LEMMA 3.9.
. 1.
lim SUpPA|1,kte ; 2(=1 ur(k, )< 1.

Proor. Fix N = 1. By parts (b) and (c) of Lemma 3.3,

k+ N

G)\(k) = N

Gr(N)

for all £ = 1. By Lemma 3.5,

k+ N
4kN

(3.10) %zzl wn(k, £)¢< Gr (N[ + 351 2% (4)].

Since (%)[1 + -1 n%(n)] < % -1 n?f(n), Lemmas 3.6 and 3.8 guarantee that N can be

chosen so large that for all A sufficiently close to 1,

GW) _ 4
N 1+ 3% ()

The required result follows from this and (3.10).

LemMa 311 Y% m(k, £) <1— 1:—2}\ Ga(k, 1).
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ProOF.
=1un(k, £) = 3% =1 Gr (R, ) (4, £) — A (4, £)]
= 2;;1 G)\(khj)[p)\(.]) 0) —aqx (j’ 0)]

1
= PHY: = -
= P*Y, =0 forsome m] TN G (k, 1)

1
=1 —me(k, 1).

Let Uyh be defined by
Uhk) =% un(k, £)h(£) for k=1

and let U% be the nth power of U,.

LeEMMA 3.12. Let h(¢) = £ There exists a constant C so that for all A = 1 sufficiently
closeto 1,
Se o Urh= Ch.
ProoF. By Lemma 3.9, there is an N = 1 and a y € (0, 1) so that for all A = 1
sufficiently close to 1 and for all 2 = N,
Urh(k) < yh(R).
By Lemmas 3.8 and 3.11, U 1(k) < 1 for all & and the y above can be chosen so that
U, l(k) =v
for all 2 = N and all A = 1 sufficiently close to 1. Choose ¥ € (7, 1) so that
—_ )2
Gity <Y N
1-v
for all £ =< N and all A = 1 sufficiently close to 1. Then put

c=1"YnN

1-vy
For 1 =< k< N and all A = 1 sufficiently close to 1,

U(C+h)<C,+ (i__?zN=f =7(C+h).
For 2 = N and all A = 1 sufficiently close to 1,
U(C+h)<C+vh=7(C+h).
Thus U,(C + &) < ¥(C + h) for all 2 = 1. Interating this gives
S oUrh=32 o0 UN(C+h)=(C+h)1-7)'=<Ch
where C = (C+ 1)(1 — y) ™~

un (k)
LEmMMa 3.13. (a) SUPA>-1h=1 ) <o

nuy,. (k)

A < o,

(b) SUP.SUP1=k=n
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Proor. Consider the random walk Z2, on the integers defined in the proof of Lemma
3.3. By Theorem 2 of Section 25 of [8],

Si<o PHZ% >0 forall m=1]= E°Z}.
By part (d) of Lemma 3.3,

Se<o PH[Z5, >0 forall m=1]= stoz 1 f(£— R)un(£)
=2 un() Y7 ﬁf(n)
P R :
Of course
A
oA ®
EZ1——>\_'_1 =1 4f(£) — ¥ 1 =12 (£),
so
1% h(0)
nl)=1 }‘ 2 » ff(f)
or equivalently
s\ @’(sn)
nl)=1- (p,(].)

where g is as in the proof of Lemma 3.4. Since
9'(1) —s9'(s) _ 9”(1) +¢'(1)
1-g(s) (1)

limsfl
it follows that
)\() -1 n’f(n) <o
e nf )T

To complete the proof of part (a), use part (e) of Lemma 3.3. For part (b), consider the
random walk Z,, defined in the proof of Lemma 3.6 and let a (2) = 0 be its potential kernel.
Then

lim Supa, 1

a(k) =Y%—wp(k ¢)a(¢) for k#O0.

Let 7 be the hitting time for this random walk of the complement of {1, .-, n}. Then by
the martingale stopping theorem,

a(k) = E*a(Z,) for 1=k=n.
Therefore, a (k) = P*(Z, > n) inf,-.a(m), and hence

. a(k)
vinlk) = P2 >n) =g

Statement (b) now follows from (3.7)

TH 3.14. (a) ik w
EOREM a) supa>1, k>1k0\ ) .

nwi (k)
(b) SUPnSUPLskzn | ——p— < oo,

Proor. By Lemma 3.2,

Wrn < Urn + wax,,,.
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Since 0 < w»,. (k) = 1, Lemma 3.12 implies that lim, .. U{w) » = 0. Therefore
Wrn = Z?=0 vax,m

Using Lemma 3.12 again, statements (a) and (b) of the Theorem follow from (a) and (b) of
Lemma 3.13 respectively.
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