The Annals of Probability
1983, Vol. 11, No. 3, 692-7056

THE BINARY CONTACT PATH PROCESS

By DaAvID GRIFFEATH'

University of Wisconsin

We study some {0, 1, - - -} * valued Markov interactions 7, called contact
path processes. These are similar to branching random walks, in that the
normalized size process starting from a singleton is a martingale which
converges to a limit M... In contrast to branching, however, M., depends on
the spatial dynamics of the path process. The main result is an exact evaluation
of the variance of M., achieved by means of the Feynman-Kac formula. The
basic contact process of Harris may be viewed as a projection of 7; as a
corollary to the main result we obtain bounds on the contact process critical
value A in dimension d = 3.

1. The results. For motivation, let us first consider a continuous time binary spatial
branching process (1:(x)) on the d-dimensional integer lattice Z%. In this process each
individual at site x € Z¢ waits an independent intensity 1 + & exponential holding time,
and then either dies with probability §/(1 + 8) or stays at x and produces an offspring at
some y € Z% y # x, chosen with probability p(y — x)/(1 + 8). Here § = 0 is a parameter
and p is a fixed probability density on Z¢ with p(0) = 0. Denote by 1?(x) the number of
individuals at site x at time ¢ when the process starts with a single individual at the origin
at time 0 (0 will denote the configuration 1;—q) throughout the paper.) Thus 7; =
(n?(x))zez is a Markov process on {0, 1, - -} 7" the possible transitions at site x at time ¢

are
7Ax) = n(x) + 1 at rate 3, plx — y)mi(y),
(1.1)
— nd(x) — 1 atrate &7n9(x).

(In Sections 2 and 3 we consider only chains which live on So = {n with finite support}. In
Section 4 we will discuss processes with infinite configurations.)

Let X, be the continuous random walk on Z¢ with mean 1 holding times and displace-
ment density p, and write p(¢, x) = P(X; = x| Xo = 0). Then letting

m.(t) = E[n?(x)],

it is not hard to check that m satisfies

fl";’—tm = —8m.(t) + X, p(x — y)m, (?)

(1.2)
m(0) = 1i—q,
and so
(1.3) m.(t) = e Vp(t, x), x€Z%t=0.
Next, write
78] = Xn2x), m(t) =E[|n?|].
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(1.4) m(t) = e,
In fact, from (1.1) we see that
[n¢]—|n?]+1 atrate |n?|
— |n?| =1 atrate &8|n?],
so that | n? | is simply a continuous time binary branching process. Thus
M, = e~ 0= ¢
is a non-negative mean 1 martingale, and
(1.5) M > M,<» as. ast— o

for some random M... Of course from branching theory (e.g. [1]) we know that a critical
phenomenon occurs. If § < §, = 1, then sup, E[M}] < « for each % and hence M., # 0 has
all moments finite. In particular one can compute

1+8
(1.6) Var(M,) =——, §<1.

1-38
If § < &, then p,(8) = P(|n?| > 0 for all t) = 0, and hence M., = 0 a.s. Also, for any §,
1.7) P(M, > 0) = p,(6).

In this paper we study a similar but more complex Markov process 5¢ on {0, 1, - - -} %,
which we call the (binary) contact path process. Instead of (1.1), the dynamics at x at time
t are:

n2(x) = 7(x) + n2(y) atrate p(x—y) (y€ Z9),
(1.1)
-0 at rate .

With m,(¢) and m(¢) defined as above, a little thought reveals that m, () satisfies precisely
the same differential equations (1.2), so that (1.3) and (1.4) follow. (In expectation the
increments of the two processes agree, but the variation in (1.1’) is more dramatic than in
(1.1).) Moreover, for each x such that 5?(x) > 0,

[n8]— [n¢| + n(x) atrate 1
— |n?| —n?(x) atrate §,

which implies that, as before, M, is a non-negative mean 1 martingale (a formal proof will
be given later), and so (1.5) holds by martingale convergence. In contrast to the branching
example, however, | 7{ | now depends nontrivially on the spatial structure of (7{(x)).

One reason for our interest in contact path processes, as the name implies, is their
intimate connection with Harris’ contact processes [4], probably the simplest Markov
systems on {0, 1}%' which exhibit critical phenomena. The dynamics of the most widely
studied example, the basic contact process & with parameter A, are as follows: at site x at
time ¢,

0—') 1 at I‘ate A Zy:[y—x|=l gt(y) if &t(x) = 0’

(18) 1— 0 atrate 1 if &(x) =1.

(Throughout the paper we will use the box norm |(x1, - -+, x4) | = %=1 | x:| on Z%)

See [3] for a survey of known results concerning the process (1.8), and for a great many
references. To explain the connection between (1.1’) and (1.8), let us recall Harris’ useful
graphical representation [6]. Start with the space-time diagram Z? x [0, ). For each pair
of distinct x, y € Z¢ draw (oriented) arrows from (x, 77%) to (y, 7%) (n =1, 2, .- ), where
the 7%, — 7% ! are i.i.d. exponential with mean 1/p(y — x)(r%, = 0). In addition, for each
x € Z% put down “D”’s at (x, %) (n =1, 2, - - -), where the 77 — 777! are i.i.d. exponential
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with mean 8. The resulting random scheme 2 is called the percolation substructure. By a
path up from (%o, ty) to (xn, t,.) in 2 we mean a sequence of space-time points

(xO’ tO)’ (xo’ tl)a (xla tl)’ trty (xn—l, tn), (xna tn)’

with increasing time coordinates £, such that there is an arrow from (xx-1, &) to (xz, &)
for each k, and no D appears on any segment {(xx, ¥); & < u < tp+1}. See [2], [3] and [6]
for more details; the first two references provide helpful pictures. Now the contact path
process can be represented as

n?(x) = the number of distinct paths up from (0, 0) t;) (x, t) in 2.
Moreover, if we consider the “projection” ¢ given by
(1.9) $2(x) = Linow>0)5
then ¢? is a contact process with flip rates at x at time ¢:
0—1 atrate Y,p(x—y)¢2(y) if {H(x)=0
1— 0 atrate 8 if {J(x)=1.

(See [6] for a proof.) Comparing (1.7) and (1.10) we see that if p(y) = (2d) 1y =1 and A
= (2d8) 7, then

(1.11) £ = {31, (in distribution as processes).

(1.10)

Thus information about the contact path process can yield information about the basic
contact process via (1.9) and (1.11). For instance, consider the critical values

8. = inf(8 = 0:p,(8) = P(|9?| >0 Vt) =0},
8, =inf{(§ = 0: M. =0},
A = sup{A = 0: p:(\) = P(] 7| > 0 V¢t) = 0}.
A. is the critical value for the basic contact process. By (1.11), (1.9) and (1.4), A. = 1/2d.

Actually, Harris [4] has proved that A. = 1/(2d — 1). On the other hand, (1.11), (1.9) and
the trivial inequality 8, < &. give

(1.12) Ao = 1/2d8,,

so lower bounds on &, give upper bounds for A..

The path process 7¢ is also intriguing in its own right. In contrast to the branching
model, the nature of the limit law M.. depends fundamentally on p as well as 8. Let S, be
the discrete symmetrized random walk with displacement density 5(y) = (A)[p(») +
p(=y)]. It turns out that if S, is transient and

(1.13) y=P(S,#0Vn=1|S =0) > %,

then for all sufficiently small § > 0, M.. 5 0. We will prove this in Section 2 by computing
E[M?] exactly for each ¢ < o with the aid of the Feynman-Kac formula. Assuming (1.13),
we will show that for small & the second moments of M; are uniformly bounded in £, so that
M., has mean 1. In fact one can integrate M? to the limit to obtain E[M%]. The main
result of the paper is

THEOREM 1. Ify> %, then 8, =2y— 1. For6<2y—1,
1+8

E[Mm] =1, Var(Mw) =m.

Note that the variance agrees with (1.6) in the limit as y — 1. As explained in the preceding
paragraph, it follows that 8, = 2y — 1, and so for the basic contact process £ in three or
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more dimensions, we get a new upper bound on the critical value from (1.12) and Theorem
1.

COROLLARY., Letd = 3. Then
(1.14) A =[2d(2va— 1)]7,
and for A > [2d(2ys — 1)]7},

1 1
pg(A) =1- (2—W)<1 + m) .

(The bound for p uses the Schwarz inequality:

o= P(M.>0) = (E[M.])*/E[MZ%].)
In [7], Holley and Liggett obtained the bounds
(1.15) A <=y3'—1 (d=3)

by comparing the basic contact process with a certain “generalized smoothing process.” If
d = 3, then (1.15) gives A® < ,517, which is slightly better than (1.14) (A, < .523). For
d = 4 it is easy to check that (1.14) is stronger than (1.15), and (1.14) is also asymptotically
better as d —

—n~t s L oL
[2d(@y = D] ~ 5+ + 0 ),

whereas,

1 1 3 1

Yd 1 2d + i + O(da) .
Computer calculations by Chris Thron give convincing evidence that our bound (1.14)
- improves (1.15) for any d = 4. Actually, this paper originated in an attempt to understand
a beautiful computation of Kesten (unpublished) which gives a lower bound for the critical
value of oriented percolation in four or more dimensions as the return probability of a
(d — 1) dimensional random walk. Our Theorem 1 is an analogue of Kesten’s result, though
the proof is rather different.

The similarity between (1.14) and (1.15) is striking, and suggests that there may be
other features shared by 77 and the generalized smoothing processes of [7]. As we shall
see, the limit behavior of M, parallels the theory developed by Holley and Liggett in [7];
many of the techniques from [7] and an earlier paper of Liggett and Spitzer [8] apply
equally well to the normalized contact path process.

What happens when S, is recurrent? For d = 1 or 2, if p has bounded support, it is
shown in Section 3 that the limit variable M. is identically zero for any § = 0. The
technique is the same as in [7]: one shows that E[M}/?] — 0. The precise result is

THEOREM 2, Supposed =1or2, withy |y|p(y) <xifd=10rY |y|’p(y) < ® if
d=2.Then M, =0 for any § =0, so 8, = 0.

It seems most likely that M = 0 whenever S, is recurrent.
In Section 4 we discuss briefly the contact path processes 57 with arbitrary initial states
7 € [0, ©) %, Using the percolation substructure 2, simply define

(1.16) %) = Yyezd n(y) 12(x),
where

17(x) = the number of distinct paths from (y, 0) to (x, £) in 2.
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Note that n?(x) = o is possible in (1.16) if n is unbounded and p has infinite support. Now
suppose we start the contact path process in state 1 = “all 1’s on Z¢”, and consider the
normalized process

7t = e (mOmyL

Then there is a [0, ©) valued random field 7.. on Z¢ such that 7} — 7 as ¢ — o, where
— means weak convergence of finite dimensional distributions. Under the hypotheses of
Theorem 2, 7, = 0 = the “all 0’s” field. But under the hypotheses of Theorem 1, the law
v of 7. is a nontrivial invariant measure for the normalized process. In other words, let 7.
be v-distributed and independent of £, and define

n

ni=mn! on {n°=n}
then
1.17) P(n;€ .)=v» foreach t=0.

Moreover, just as in [7] and [8], one can compute the covariances of » explicitly. In
summary, the result is as follows.

THEOREM 3. For each density p and 8 =0 there is a limiting [0, ) valued field .. on
Z? such that i, — i as t = . The law v of i is invariant in the sense of (1.17). If d = 1
and ¥ |y| p(y) <o, orifd=2andy |y|?p(y) < =, then i. = 0 for any § = 0. On the
other hand, if y > % and 8§ < 2y — 1, then 1. # 0 has density one and covariances

1+ ®n(y —x)
2y—(1+9)

where n(x)=P(3n=0:S, =0|S; = x)(7(0) = 1).

Cov(= (%), 1= (7)) =

The main tool in the proof of Theorem 3 is a duality equation, like the ones in [7] and
[8], which connects %} and M,. Presumably one could develop an ergodic theory of
normalized contact path processes following the lead of [7] and [8]. For example, one
should be able to show that if y is translation invariant and ergodic with density one, then
Nt — MNw as L — .

We conclude this introduction by mentioning the two most intriguing open questions
raised by our results. First, what can be said concerning the convergence of M, to 0 in the
recurrent case? Perhaps for the simplest example, p(1) = 1 and § = 0, one can get more
detailed results. Second, what is the nature of M., if y <% or 0 <2y — 1 =<8 < 4.? The
most likely scenario seems to be that M., have infinite second moment in these cases, and
that the moments between the second and the first erode continuously as 4 1 8.

2. The proof of Theorem 1. Our main task is to compute Var(M;). We accomplish
this by deriving an explicit formula for
u:(t) = E[3, 72 (y)? (x + 3)].

Note that E[|7¢|%] = Y. ux(¢), so

Var(M,) = (e "™ ¥, u.(¢)) — 1.
The pafh processes 17 with dynamics (1.1’) have (formal) generator
(2.1 Gf(n) = Z= [8[fCn) = F)] + Xy p(x = ) f€™) — f)]],
where “n and ** are the modifications of n:

M) =0,z=2x "n(z) =) +n(y),z=2x,
=1n(2), z # x; =7(2), z # X.
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Adopting the usual semigroup notation, write 7.f(0) = E[f(#?)]. To calculate u.(t) we will
take f:(n) = Xy n(¥)n(x + y), verify the forward equations

dT:f: (0)
dt

and solve (2.2) with boundary conditions u.(0) = 1(:-0;. Since the path processes have
unbounded jump rates, the verification of (2.2) necessarily involves approximation by
“tame” Markov chains 97, ,(N =1,2, .- . ). Thus, write Ay = {x € Z%:| x| = N} and define
1; N7 as in (1.16) except that only arrows with heads and tails in Ay X [0, ©) and only D’s

in Ay X [0, ®) are used. Then n%. s a Markov chain with bounded jump rates; its generator
G looks like (2.1) with the sums restricted to x, y € An. Therefore, if f(n) is bounded and

T f(0) = E[f(n%,)],

(2.3)

(2.2) ui(t) = = T.Gf.(0),

dTn,.f(0)
dt

Also, if g(¢, n) = e “f(n) (c € R, f bounded), then

= Tn,.Gnf(0).

t
(2.4) g, ny,) — J (Gn — ¢)g(s,n},,) ds is a martingale.
0
Observe that the nth jump of ¢ has rate at most (1 + 8)n. Letting 7, be the time of the nth
jump, it follows that 7, — o a.s., and hence that for each t < 0, n € S,,
(2.5) P@EANo <ol =1} Vs=tVN=N,) = 1.

We will use (2.3), (2.5) and dominated convergence to establish (2.2).
But first, let us use (2.4) to check that M, is a martingale. Let f(n) = |n|, nv(x) =
n(x) A N, fn(n) = f(nn). Using (2.5), it is easy to see that as N— oo,

v = f@?), as.
and

t t
j Gnfv(mR,s) ds — J’ Gfn?) ds as.
1] 1]
Write g (¢, ) = e"%||. Since (2.4) holds for gn (¢, 7) = e"“fn(n), to show that

MP =gt 7)) — J’ (G —c)g(s,13) ds is a martingale,

we need only check that the approximating martingales converge in mean. To apply
monotone and dominated convergence, it suffices to note that

(2.6) fnm%e) 1f(m?) as N— oo,
and check that
(2.7) supnE[fv(mR)] < oo.

A straightforward calculation gives
(2.8) | Gufim) | = (1 + 8)fn(n),

so by (2.3) the supremum in (2.7) is at most e'*¥¢. Applying (2.8) again, the approximating

martingales are evidently dominated. Now observe that Gf(n) = (1 — 8)|n|, so that

(G— (1= 8)e *?|5|) =0. We conclude that M, = M{*~® is a martingale as claimed.
The argument leading to (2.2) is similar in spirit. First one shows that

2.9) f@d)— f Gf.(?) ds is a martingale
0
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by using the tame approximants fy(n) = f; (n~) in (2.4) (with ¢ = 0) and letting N — . To
see that the limit is integrable, set A (n) = |7|? and Ax () = A(qy). Also, let G° be the
generator G with § = 0, T? the corresponding semigroup, G% and T, the tame versions.
Then for all N,

(2.10) Gufv(m) = Gfv(n) < GRhn (),
and .
GYhn(m) = Y s yeny P& — ¥)[hn ) — Ay ()]

(2.11) = Yyean M(¥) AN)@ Xzeann(2) A N)
= 3hn(n).

By monotonicity, (2.3) and Fatou,

(2.12) Tife(n) < TP fuln) < TPh(n) < *|n|2

The same estimates as in (2.10) and (2.11) for the limit generator give
Gf«(n) = 3h(n).

Also,
Gfe(n) = =6 3« [A(n) — h(*n)] = —25h(n).
Thus,
(2.13) | Gf(n) | = 3 v/ 28)h(n),
and hence
(2.14) | T.Gf(0) | = (3 v 28)e™.

Estimates (2.12) and (2.14) give (2.9). Taking expectations we get
t
u.(t) = j T.Gf.(0) ds.
0

The equations (2.2) follow once we check that TsGf(0) is continuous in s. By the semigroup
property it suffices to check continuity of TGf.(n) for arbitrary n € S, at s = 0. Since 77
— n a.s. as s = 0 and by (2.13) and monotonicity

|Gf(n?) | = (3 v 20)h(n?) = B\ 28)h({j1) Vs=1,
where 1) is the path process with é = 0, we have
E[| Gf(q?) — Gf(n)|]—>0 as s|0

by (2.12) and dominated convergence. This establishes (2.2).
Let us now proceed to compute u.(t). To begin, we set f+,,(n) = n(x)n( ¥) (x, yE Z%) and
calculate Gf,,«+,y(n). For x # 0 we get

Gfyxty(m) = 2z (8[*n(y)n(x + y) — n(y)n(x + ¥)]
+ S D@ () n(x + 3) — n(Ym(x + N1}
= =25n(ym(x + y) + Y pW) {n(y — wn(x + y) + n(ymx + y — w)}.
For x =0,
Gfy.»(m) = 3z (8[*0%(») — n*(9)] + T P *(y) — n*(N]}
= —81*() + T PW) 2n(y(y — w) + n*(y — w)}.
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Summing on y we find that
Gf. = =20f + Xy PP firy + fery], x#0,
=1-8f+X, PWIfs+£H]l x=0.
(In the last line we have used the symmetry of f.,). Therefore, according to (2.2), the u.(t)
satisfy ’
du.(t
—d(—l = —28u.(t) + ¥, (p(y) + p(=y)uxzey x#0,
(2.15) ¢
=1 =80u(t) +Y, (p(y) + p(-M)w, x=0,
with boundary condition %.(0) = 1(—¢. To solve (2.15), write v.(£) = e >""y,(¢). Then
U:(0) = 1x—qp and

dv.(t)
dt

(2.16) = k(x)v:(2) + Av:(2),

where k(x) = (1 + )1 -0y and
Afe= 3y (p(3) + P fery — f], x€2Z7,

is the generator of a continuous time random walk X, with displacement density 5(y) and
mean % exponential holding times. Now recall the Feynman-Kac formula for Markov
chains: if % is bounded and the chain X, has generator A with bounded jump rates, then
the unique solution of (2.16) uniformly bounded on {(x, s):x € Z%, 0 = s < t} is:

t
U(t) = Ex[exp{ j k(X,) dS}vf,(O)]
0

(P, starts at x). (A proof may be fashioned after the one in [10], for example.) In our case,
using (2.12),

vi(s) < E[M?]
=e7TR(0) <exp{[3V (28 + DIt} Vs=¢,

so the formula applies. Also, X, is reversible in the sense that the P, law of x — (X, — X.—,),
0 < s =, equals the P, law of X,,0=<s=<t Thus,

v:(t) = Eo exp{j kEx-X + X)) ds} vx_z(o)]
L 0 B

r t
=E exp{ 1+9) j 1z - ds}lp‘g.x)]
L 0

r t
=E, exp{(l +9) j 1(£-g ds} X = x] .
L 0

Summing on x, we find that
U(t) = E[Mtz] = Zx vx(t)

= Eo[exp{(l +8) j 1(£-g ds}] .
0

It is easy to evaluate v(o) = lim,,.v(¢). In fact,
v() = Eo[exp{(1 + 8) Y0 T;}1,

(2.17)
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where

T; = total time of jth sojourn at 0
(initial sojourn = Oth),

L = total number of returns to 0.
Certainly v(w) = o if X, is recurrent. The 7T} are ii.d. exponential with mean %. L is
independent of the 7 with geometric density
PL=k)=0-v"y, k=0,1,...
in the transient case, since S, is the imbedded chain for X;. Therefore, assuming y > 0,
(@) = Eo[[T}o €+7]
= Yo Eo[[T}-0 "1 1-n ]

= Yi-o [15-0 Eo[e " T]IP(L = k).

Assume also that § < 1, so that

00

Eo[e(1+6)Tj,] = e 1+ =2t gy — 2 <o
A 1-8

Then we get

g \*1
(o) = Yi-o (m) (Y

2y .
=" < = - 1.
5 =159 o provided 0=8<2y-—1

Under the hypotheses of Theorem 1 we have therefore shown that

1+46

E[M.]=1 and limoVar(My) =5

It now follows from general martingale theory that the M} are uniformly integrable.
(Presumably for any § < 2y — 1 there is an £ > 0 such that

sup.E[M?*°] < oo.

This would also justify the integration of M? to the limit, but seems difficult to prove.) A
third tack is to use a beautiful argument due to Liggett and Spitzer [8] to compute
Var(M..). Since their approach involves the infinite contact path processes, this final step
will be presented in Section 4.

A final remark. The rigorous derivation of (1.2) and (1.3) for the contact path process
proceeds along the same lines as the demonstration of (2.2) and (2.17) just completed. To
get (1.2) one approximates by tame chains, for (1.3) one uses Feynman-Kac with £ = 0. We
will need (1.3) in the next section; details of the proof are left to the reader.

3. The proof of Theorem 2. Follo%aving the lead of Holley and Liggett [7], let us see
what we learn by applying the forward equation

dT.f(0)
dt

to the function f(n) = | 7|2 The verification of (3.1) for this choice of f is carried out just

3.1) = T.Gf(0)
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as before. For the needed integrability simply note that
fan) = fCw) = n(x),  fC™n) — fn) = an (),

and hence that (2.8) holds for our f. Actually, we want to estimate r(¢) = E[M;/*]. By (3.1),
3.2) r'(t) = e~ V2P (G — Y%(1 — 8))£(0).

After some algebraic manipulations, we find that whenever |1 | > 0,

1 ln(x) n(x)]
G--(1-96 =- .8 —y/1-
( 2( ))f(n) |71|(2 [ 2Tl ]
ln(y) n(y)D
ypx—y|1+= —f1+ 22 1),
+ Yy p(x )[ +5 T ] 1+ ]

Equation (3.3) contains a good deal of information. First, note that the bracketed terms
are positive, so that (G — %(1 — 8))fis negative. Thus r(¢) | r(») asr— . Also, a variant
of (3.3) can be used to show that rs(f) is nonincreasing in 8 for each ¢ < . (See the
Appendix for an outline of this argument.) It follows that rs() is nonincreasing in 6. Now
since E[M,] = 1, the M}/? are uniformly integrable, and so M.. = 0 a.s. if and only if ()
= 0. These considerations show that 8, is an honest critical value, i.e. if § > J, then M.
= 0. In fact, we can prove that P(M.. > 0) is nonincreasing in 8. Since p,(8) = p(d) is
nonincreasing (see e.g. [3]), it suffices to establish the following analogue of (1.7). Thanks
to Maury Bramson and Rick Durrett for the simple proof. We will only outline the
argument since it is rather tangential to the main direction of the paper.

(3.3)

PROPOSITION. If P(M.. > 0) > 0, then P(M, > 0) =
Sketch of proof. Since P(inf,M; = 0, M., > 0) = 0, if P(M. > 0) > 0 then there is an e
> 0 such that
P(inf,M;>¢) =p > 0.

Let m = inf{¢:|n?]| < e"™%}; P(r; = ©) = p. On {r; < o, |57, | > 0}, choose a site from
72, say x1, and consider the process 7" given by

7 (x) = the number of paths up from (x1, 1) to (x, 71 + £).

Let 7 = inf{¢: | 7" | < e%®%}; P(r; = o | 11 < ®) = p. And so on. If | n{ | stays positive,
then after a geometrlcally distributed number N of trials we get | n{" | > e "= for all ¢&. By
monotonicity, on {| 72| never 0} we have for all £ = 7w,

Mt > e—(1—8)1N[e—(1—8)(t—'rN) I nt(I_V)Nl] > e—(l—&)'rNe > 0.

Hence p, = P(| 7} | never 0) = P(M.. > 0). The opposite inequality is trivial.

If S, is transient, it seems most likely that 8, = 8., and that (1.7) holds for all §. When
S, is recurrent, (1.7) fails for small 8, at least under the hypotheses of Theorem 2, which
we now prove. The argument is almost identical to the one for Lemma (4.3) of [7]. Because
r.(t) is monotone decreasing for each ¢, it suffices to demonstrate that ro(cc) = 0. A little
algebra yields

1+ %a— v1+a=a?/12, a€[0,1],
so from (3.3), for § =0,

1 1 7(2) ]
(3.4) (G - §)f(n) = -3 Vinl (Zx [Tﬂ"] ) :
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To estimate the right side, Holley and Liggett use a clever truncation. Let u = ¥ yp(y), B:
=pt+ {x €Z%:| x| < p(t)}, @ to be chosen later. By the Schwarz inequality,

3 [”(’"]ZHBtr‘ -2 M]
“Lial] — “Inl

2|B,|“[1—2\/2x¢3,1|'—(:|—)-].

From (3.2), (3.4), (3.5) and Schwarz again one gets

(3.5)

(3.6) r'(¢) = —(12| B:|)7'r(t) + (6| B:|) " (Txgm, € ma(x))"”.

Under the hypotheses of the theorem, using (1.3) and Chebyshev’s inequality, there is a C,
< o such that the sum on the right is at most Cotg~(¢), (d = 1, 2). Combining (3.6) with
this bound one arrives at the first order differential inequality:

r(t) C Y2
+ — T
12|B:| = 6 |B:|o“*(t)

3.7 r') = -

A judicious choice of ¢ is
oty=Q1vyvtnH)% |B,|~2dtInt.
Solving (3.7) for this ¢, one finds that for some C; < «, ¢ > 0,
r@) =Cilylnt)y™“—>0 as t— .
Thus r() = 0, and the proof is finished.

4. The proof of Theorem 3. The strategy is due to Liggett and Spitzer [8]; the main
ingredients are duality, invariance, and mixing.

_ L. Duality. The idea here is “time/effect reversal;” there are many approaches (e.g. in
[2], [3], [4], [5], [6], [7], [8], [9]). We will need two duality equations. First, for any 71, 12
€[0, 0)*, t=0,

(4.1) ¥e m(x)n2(x) =a Yx n2(x)n?i(x).

(Recall (1.16). =4 means equal in distribution.) This sort of equation was introduced by
Spitzer [9]. Second, for each ¢ = 0 in the graphical representation,

4.2) M3 (%))xez? =a (|07 |)seze.

To prove (4.1) and (4.2) we use the approach of Harris [6]. He observed that on the
percolation substructure # = 2 restricted to Z¢ X [0, ¢] one can consider a dual
substructure 2, obtained by reversing time and reversing the directions of all arrows. The
contact substructure is self-dual, meaning that % equals 2 in law. Thus

71%(x) = the number of (arrow reversed) paths
down from (y, ) to (x, t — s)

can be used to define dual processes (7]2)o<s=¢. In this coupling we clearly have
(4.3) ni(y) = 77(x).
See [2] or [6] for more details. Using (4.3), it is easy to prove (4.1):
T mE)N2(x) =a Te n(@)7P2(x) = Tu Ty mi(0)m2( )73 (x)
= 2 Xy m) n2(ymi(y) = Ty m2(y)mP().
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We can also consider the joint distributions in the coupling:
(i (®) =a ({1 (x)) = (T, 77(x)) = (T, 2() = (| n¢]),
proving (4.2). It is now a simple matter to show convergence of 71. Write
M (x) = ™" 97|,
the process 17 all defined on #. Then by martingale convergence there is a limit field:
P(limg o (M:(x))zez? = (M(X))xez7) = 1.
Put 7. = (M.(x)), and let » be the law of ... By (4.2), 7} =4 (M:(x)) for each ¢. Hence
ijt = 7 as t — o, Under the hypotheses of Theorem 2, M..(x) =4 M.. = 0, 50 fj = 0.
II. Invariance. Of course for each fixed ¢
P4 €.)> 7 as s— o,

By the Markov property this probability equals P(7j% € -), where », = P(i} € -) and 77 is
constructed in the obvious way. The same sort of truncation used to prove Lemma (3.7) of
[7] shows that for each £ = 0,

P@r€E ) > P(iE ) as s— oo,

The finite dimensional distributions determine the limit, so (1.17) follows.

III. Mixing. Now assume that the hypotheses of Theorem 1 hold, so that
El[f(x)] = E[M=] =1,
and

2y

E[M:] < lim,..E[M?] = v() “m—ave "

Let 77 = e *~9%7. First we compute

vi(t) = E[Y, T(y)0i(x + ¥)]

and
vi(t) = Y. vit) = E[|7¢| - |97 ]].

To do so, one considers the bivariate process (1?, 77) on 2 and determines the forward
equation corresponding to f(ni, n2) = Yy m(¥)n2(x + y). Mimicking the main computation
of Section 2 we find that v ?(-) satisfies (2.16), now with boundary conditions v%(0) = 1z} .
It follows that

(4.4) vi(t) = Ez[eXp{(l +9) f 1£-g) dS} X = x] ,
0

v.(t) = Ez[exp{(l + 6) j 1(£=0 ds}] .
0

vi(t) < vi(w) = 1 + 7(2)(v(0) — 1),

and hence

As|z|—> o,

so by (4.2) and Fatou,
lim Suplzi—moE[ﬁoc(O)ﬁoo(z)] = 1'
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Since 7. has density one we get the mixing property,

(4.5) Lm0 E[7(0)71o(2)] = 1.

Now for fixed x, use duality and translation invariance to compute:

E[7:0):(x)] = E[Ey (377 (0) (B: 11 (2 + y)77™ (x))]
= Xz Elie(9)Te(z + PIEMA( )77 (2 + 5)]
= % E[1=(0)i1(2)] Ty E[72(y)77(z + ¥)]
= Y E[1(0)71(2) 0z (2).

From (4.4) we see that for any N < oo,

4.7) lime s 3z>n UZ(2) = v7(o0).

Combine (4.5), (4.6) and (4.7) to get

lim, .. E[72(0)72(x)] = v™(e0).

(4.6)

But by the invariance of »,
E[7:0)7:(x)] = E[7(0)j(x)] forall t.

A little algebra gives the desired covariances. In particular, Var(1.(0)) = Var(M..), so we
have completed the proofs of Theorems 1 and 3.

APPENDIX
We sketch the proof that r.(¢) is nonincreasing. Writing f(5) = | n|"?, for § < § we have
r5(t) — rs(t) = e"1/2’“'g’sTfe_“/z’““""s’T?_s £0)| im0

¢
= j % [e—(1/2)(1—58T§e—(1/2)(1—8)(t—S)Tf_sf(O)] ds.
o

One can show, as in [8], that T.Gf(n) = GT.f(n), so the right side above can be rewritten
as

t
(%) f e—(1/2)((1—§)s+(1—6)(t—S))Tf_s[G§_ G + %(5— 8)]T§f(0) ds.
0

Let w, be the path process with parameter § startmg from 1. By duality, if W= Y, ws(2)n(2),
T? f(n) = E[W"2]. Hence

[GE— G8+5<5 - 8)]T§f(n)

- G- la@n@ | [ e@mm
=@ s)E[JV—V{z,(1 5 = 1 il )}]

(interpret the sum as 0 if W = 0). All the summands are nonnegative. It follows that the
integral (*) is nonpositive as desired.

REMARK. Tom Liggett has a more elegant approach. He notes that the normalized
path process has generator

- of
Qf(n) = Gf(n) — (1 S)Xn(x)an()(n),
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that the normalized semigroup 7; maps

_f._ ¥
“= {f @) = VY }

into itself, and that (2° — Q%)f<0forall fE 4.

REFERENCES

[1] ATHREYA, K. and NEY, P. (1972). Branching Processes. Springer, New York.

[2] GrIFFEATH, D. (1979). Additive and cancellative interacting particle systems. Lecture Notes in
Math. 724. Springer, New York.

[3] GRIFFEATH, D. (1981). The basic contact processes. Stochastic Process. Appl. 11 151-185.

[4] HARRis, T. E. (1974). Contact interactions on a lattice. Ann. Probability 2 969-988.

[5] HARRis, T. E. (1976). On a class of set-valued Markov processes. Ann. Probability 4 175-194.

[6] Hagrris, T. E. (1978). Additive set-valued Markov processes and graphical methods. Ann.
Probability 6 355-378.

[7] HoLLEY, R. and LiGGETT, T. M. (1981). Generalized potlatch and smoothing processes. Z.
Wahrsch. verw. Gebiete 55. 165-196.

[8] LigGETT, T. M. and SPITZER, F. (1981). Ergodic theorems for coupled random walks and other
systems with locally interacting components. Z. Wahrsch. verw. Gebiete 56 443-468.

[9] SpitzER, F. (1981). Infinite systems with locally interacting components. Ann. Probability 9
349-364.

[10] VARADHAN, S. R. S. (1980). Lectures on Diffusion Problems and Partial Differential Equations.

Tata Institute Lecture Notes. Springer, New York.

MATHEMATICS DEPARTMENT
VAN VLECK HALL
UNIVERSITY OF WISCONSIN
480 LiNcoLN DRr.

MapbisoN, WISCONSIN 53706



