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A UNIFORM LOWER BOUND FOR HAUSDORFF DIMENSION FOR
TRANSIENT SYMMETRIC LEVY PROCESSES

By W. J. HENDRICKS
INCO Inc.; McLean, Virginia

For transient symmetric Lévy processes we determine a uniform lower
bound for the Hausdorff dimension of the range of a process on various time
sets. This complements earlier work which provided a uniform upper bound.
An example is provided in which both bounds are attained.

1. Introduction. The object of this paper is to obtain a uniform lower bound for
Hausdorff dimension for transient symmetric Lévy processes in R®. This problem was
posed by Hawkes and Pruitt [4], where a uniform upper bound result was established.
When combined with Hawkes’ [3] uniform lower bound for stable processes, this showed
that for strictly stable processes X(¢) of stable index a = d

(1) P[dim X(E, w) = a dim E for all time sets E] =1,

where X(E, w) = {x € R%: X(t, w) = x for some ¢ € E} and dim A = Hausdorff dimension
of the set A.

In his survey, Pruitt [10] establishes some uniform covering principles which when
applied to a given Lévy process suffice to give uniform upper and lower bounds upon
dim X(E). His methods give a quite direct proof of (1). He also notes that the missing
ingredient for a uniform bound result for general Lévy processes is an estimate upon
delayed hitting probabilities of small spheres. We obtain this estimate for transient
symmetric Lévy processes and thereby establish a uniform lower bound which agrees (at
least for some processes) with one suggested by Pruitt. In the course of the argument we
define a new index y’ and show its relation to previously defined indices.

Section 2 provides various definitions. Section 3 gives the delayed hitting probability
estimate and Section 4 the uniform dimension result. We conclude in Section 5 by relating
v’ to existing indices.

2. Preliminaries. Let X(¢), ¢t = 0, be a transient symmetric R%valued Lévy process
having characteristic function exp(—#J(z)). Note that by symmetric we do not assume X (¢)
to be radially symmetric; we simply mean that X(¢) and —X(¢) have the same distribution,
so that y(z) is real and in fact non-negative. Many of the sample path properties of X ()
can be expressed in terms of various indices, which we now recount. Blumenthal and
Getoor [1] defined lower and upper indices, 8” and 8 which satisfy 0 = 8” = 8 < 2 by:
B = inf{6 = 0:Rey(2)/|z| - 0 as |z| —> =}; B” = sup{f = 0:Rey(2)/| 2|’ - = as
| 2] = o0}. In 1969, Pruitt [9] introduced the index y defined by

(2) v =sup{f = 0:lim sup,_oE[T(S,, 1)]/r® < =}

where T'(S,, 1) denotes the sojourn time up to time 1 in a sphere S, of radius r centered at
the origin. He showed that with probability one, dim X[0, 1] = yand that 8" =y=< 8. A
planar stable components process (X;, X;) with X; linear, independent and symmetric
stable of index a;, i =1,2and 1 < oz < ay <2 satisfies B”" = o <y=1+4+ 02 — az/o1 < 1
= f. Henceforth, we refer to this process as (X, Xz). We shall define a new index vy’ by:

3) v’ =sup{f = 0:lim inf, .o E[T(S,, 1)]/r’ = 0}
and show that y = y’ = B, with y’ = y for (X1, X5).
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The uniform upper bound result of Hawkes and Pruitt states that:
4) P[dim X(E, w) =B dim E for all E] = 1.

These authors also show that uniform lower bound results can fail without some assump-
tions on the parameters. They raise the question as to whether 8” dim E is a uniform
lower bound for dim X(E) when B8 < d. For transient symmetric processes X with 8 = d we
show that .

) P[dim X(E, ) = 8”(d — y')(d — y)"*dim E for all E] = 1

and shall exhibit fixed time sets E for which the upper bound in (4) is attained for (X3, X5)
and random time sets for which (X;, X;) attains the lower bound in (5). Moreover, y = vy’
in this example. In the discussion we use constants ¢;, ¢z, ¢s3, ¢; which are finite and positive
and which remain fixed.

3. Delayed hitting probability estimate. To obtain the desired estimate we first
need a result (Lemma 2) from Hendricks [7]:

LEMMA 1. Let X(t) be a transient symmetric Lévy process in R? having lower index
B” > 0, thus guaranteeing the hypotheses in [7]. Let p;, denote Lebesgue measure and
Cap (A) the capacity of the set A. Then there exists c1, independent of r, for which

Cap(S,) = c1p.(S,)/E[T(S:, 1)].

(Here we have used the fact that X, has a density p(¢, x) for which, as pointed out in [7],
E[T(S,, V)] = [s [op(t, x) dt dx.)

We then argue along the same lines as in Lemma 1 of Hendricks [7] to obtain:

LEMMA 2. Let X(t) be a transient, symmetric Lévy process in R¢ having lower index

B” > 0 and upper index B < d. Assume thatr >0,1=T>0,0<a<pB”,and0<6<y.
Then there is a constant cs, independent of T, r, and x for which

(6) P*[X(t) € S, for some t = T'] < ¢;Cap(S,) T/,

Proor. Since a < 8” we can choose M > 0 so that Y(2) = | z|*if | z| = M. In addition,
the hypothesis of transience guarantees, by page 397 of Port and Stone [8], that
Jiz1<m, 1/Y(2) dz < . Finally, we need Pruitt’s [9] characterization of

1—e¥®@
yiy=supi0<d:| |z|*“Re —————dz < »
¥(2)
if Rey(2) = 2 log| z| for large | z| to conclude that
(7) J' |z %d(z) dz< o0 for O<y.
|2l>M
Let v be a capacitory measure on S, and write, as in Theorem 1 of [7]:

P*[X(t) € S, forsomet=T] = f f p(t, y — x) dt v(dy).
: s, JT

Estimate the inner integral by using the inversion theorem:

f plt,y —x) dt= (277)"’J' j e HBYTO W@ gy dt
T T JRd

Sf j e @ dz dt=j 1/ (2)e™?) dz
r Jre Rd
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SJ' 1/¢(2) dz + J' 1/ (2)eT*") da.
|z|l=M

l2l>M
Port and Stone’s result assures the convergence of the first of these integrals. Use (7) and
the fact that for u > 0 we have 1/e* < c3(1/u) “~?/* to get the desired bound upon the
second integral.
We now combine Lemmas 1 and 2, along with our definition of y’ in (3) to obtain
8) P*[X(t)E S, for some t = T'] < car®?/T“9/= for all small r,

where0<a<B”,0<8<vy,y <0,0<T=1,and ¢, is independent of r, T and x. This
is the key estimate we use in the next section.

4. Uniform dimension theorem. To obtain our uniform lower bound we use a
covering lemma of Pruitt [10], referred to by him as covering Principle II, but which we
list here as Lemma 3.

LemMMA 3. (Pruitt). Let {6,} be a sequence of positive real numbers with =, 65 <
o for some p > 0, and let C, be a class consisting of N, sets in R® of diameter 0, where
log N, = O(1)|log 6. |. If {t.} is a sequence of positive real numbers such that for some
8 > 0 we have

P{inf, <ycu| X.| < 6,) = 0(1)63,

then there exists a positive integer k such that, with probability one, for sufficiently large
n, {t: X, € C} can be covered by k intervals of length t, whenever C is in C,.

We now state and prove our principle theorem.
THEOREM. Let X(t) be a transient symmetric Lévy process in R® for which B < d.
Then
P[dim X(E) = 8”(d — y')(d — y) "'dim E for all time sets E] = 1.
ProOF. The theorem is trivially true for 8” = 0, so assume 8” > 0 and choose arbitrary
a, § and 6’ for which 0 < a < B”,0 < 6 < v, and y’ < 0’. The proof now parallels that of

Pruitt’s [10] Theorem 1, using his covering Principle II. Let 6, = Jd 2™ and t, = 27
where 0 < A < a(d — 6’)/(d — 8). According to (8) we then have

P[X(#) € cube of side 27" for some £ = ¢,] < ¢,(27")¢ 7 (2™ )@ 0/a = g™

where 8§ = d — 6’ — (d — 0)A\/a > 0. With these conventions, the hypotheses of Lemma 3
are satisfied. Pruitt’s argument then leads to dim X(E) = A dim E. Since a, § and 6’ are
arbitrary the proof is complete.

We conclude this section with several remarks:
REMARK (1). For processes for which y’ = y, the uniform lower bound for dim X (E)
is B” dim E. This will occur, for example, if the ratio
E[T(S,, DI/

is bounded above and below by finite positive numbers as r — 0. For (X, X;), Lemma 5.1
of Pruitt and Taylor [11] guarantees such behavior for the ratio, so that y = y’ is indeed
possible.

REMARK (2). For (X1, X2) our results combine with those of Pruitt and Hawkes to
give:
9) P[B” dim E = dim (X1, X;)(E) =B dim E forall E] = 1.
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We showed in [5] that dim (X, X;)(E) = 8 dim E for fixed time sets E such that 0 <
dim E =< 1/a;. To obtain the lower bound in (9), let E(w) = {¢: X1 (£, w)} = 0. Since X is
recurrent, E is nonempty and in fact P[w: dim E(w) = 1 — 1/a;] = 1 by virtue of Theorem
A of Blumenthal and Getoor [2]. The uniform upper bound of Hawkes and Pruitt, when
applied to X, gives:

dim (X7, X;)(E (w)) = dim X;(E (w)) < o dim E(w).
On the other hand, our theorem gives:

dim(X;, X2)(E (w)) = azdim E(w).
5. Relation of y’ to other indices.
THEOREM. With vy defined by (2) and vy’ by (3) we have y =y’ < B.

ProoF. The proof of y < y’ follows immediately from the definitions and is omitted.
To prove y’ < B, let « > B and use the fact that by virtue of Theorem 3.1 of [1] we have
| X(#) | < ¢V for all small ¢ with probability one. This means that

(10) P[T(S,,1)/r* =1 for all small r] = 1.

Therefore, P[lim inf,_,oT(S,, 1)/r*=1] =1 and

1= E[lim inf,o T(S;, 1)/r"] < lim infrﬁo—_—_E[T(,fr’ DI,

This shows that a = vy’ and the proof is complete.
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