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EXIT TIMES FOR SYMMETRIC STABLE PROCESSES IN R"

By R. F. Bass AND M. CRANSTON

University of Illinois

Let X, be a symmetric stable process of index a in R" and 7 =
inf{¢:X, € D} where D is a connected open region in R". If 0 < p < a two
sided L” inequalities are obtained between 7'/ and the maximal function X+
= Sup:<:| X: |. Analytic conditions for 7'/* € L? are given in terms of domination
of |x|?, x € D° by a function u(x) a-harmonic in D. Also, the boundary
behavior of a-harmonic functions is studied by obtaining two-sided L” ine-
qualities, 0 < p < ®, between a random and deterministic maximal function of
non-negative a-harmonic functions.

1. Introduction. Let X be a Brownian motion in R”, D an open connected subset of
R", x € D and define .

r=inf{t>0:X, & D}.

If X% = supo=:=r] X; | for T a stopping time, we have the following results of Burkholder
(1977).

(1) Given 0 < p < », E*r?/?> < o if and only if there is a function # harmonic in D such
that | x| < u(x), x € D.

(2) Given a continuous function ®: [0, o] — [0, ] with ®(0) = 0 and

®(2\) = ad®(A), A>0
and T a stopping time of X, then
cE*®([T + |rx [21¥%) = E*®(X%) < CE*®([T + | x|*]"?

where ¢ and C depend only on ® and n.

The symmetric stable processes of index a, 0 < a < 2, share scaling properties similar
to Brownian motion but fail to have continuous paths. These properties, scaling and
sample path continuity, were key ingredients in Burkholder’s proof of 2). In the present
work 1) and 2) are extended to stable processes of index a. This is done in Section 3.

In another direction, we investigate boundary behavior of a-harmonic functions on the
unit ball in R". The main result of Section 4 gives an L” equivalence, 0 < p < », between
the symmetric stable maximal function

u*(w) = supe<.| u(Xe(w))|,

where 7 = inf{¢ > 0:|X;| > 1}, and X is a symmetric stable process of index «, and the
maximal function

Nou(x) = supep ol ¥, |x|>1,

where T, (x) is a “Stolz-like” domain in B(0, 1) = {y:|y| < 1}. When u is positive and a-
harmonic in B (0, 1) there is a two-sided L?-inequality between «* and N,. This is analogous
to the Brownian motion case treated in Burkholder, Gundy and Silverstein (1971).

The authors would like to take this. opportunity to thank Terry McConnell for his
continued interest and many useful conversations while this work was undertaken.

2. Preliminaries. We introduce some notation and a few known results. Let (X;, P*)
be a symmetric stable process of index a, 0 < a < 2, with values in R". This process has
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infinitesimal generator A*? where

u(x +y) — u(x)
R” Iy|n+a

A function u is called a-harmonic in an open set D C R™ if A*?u(x) = 0 for x € D. Note first
that u must be defined in all of R" and secondly u should satisfy [jy-1 (| u(|/|y]"**) dy
< o, The justification for calling the generator A*? is due to M. Riesz (1938).

The process X, has jumps, so if B(0, 7) = {x:|x|<r} and T=inf{¢t>0:X, € B(0, r)},
then the P* distribution of Xr has density

D n —n/2-1g. TX r2 - |x|2 o/ -n
(2.2) P x,y) =T 3 T sm?- —7 |x —y|

21 Au(x) = An, a) dy, A(n,a) =7"""T((n — a)/2)/T (a/2).

Iy —r
for | x| <r,|y|> r. Similarly when S = inf{¢ > 0: X, € B(0, r)} the P* distribution of X5
has density

~ n o1 . T X 2_ r2 o/? —
2.3 P.x,y) = 1‘(5)77 /2 1Sln? I:I',2|le|—2 |x =y,

for |x| > r, |y| < r. These, of course, are the analogues of the Poisson kernel for the

interior and exterior of the sphere respectively. The justification for this may be found, for

example, in N. S. Landkof (1972).
We shall need the following two consequences of (2.2) and (2.3). The first was observed
by M. Riesz (1938). The proof follows exactly as in the classical case of a = 2 and will be

omitted.

LEMMA 2.1. (Harnack’s Inequality). If u is positive and a-harmonic in B(0, r), then

a/2 -n

r—|x|
r+|yl

rz_lxlz

r2_ |y|2 u(y)

Cu(x) =

for each x,y € B(0, r).

LEMMA 2.2. If|x| = R = 2r > 0 there exists a constant ¢ = c(a, n) > 0 such that

P*[|X;| < r for some ¢ > 0] < c(%) .
Proor. Using (2.3)

n ; ra x|2=r2”?
P*(|X,| <r for some t > 0) = I‘(—)ﬂ'"/"’"sin——-j [‘ITl_f] lx —y|™ dy.
2 2 Jpon LT =11

Observing that

lez_rzst’ lylsr,

and
|x—y|=|x|-|y|=R—-r=R/2,

we switch to polar coordinates and get

i . 2\" B r s
P (|Xt|<rforsomet>0)$c(a, n)R <I_'?) r" ZJ; ‘[I‘Z——STC'/?dS

= c¢(a, n)(l—:> as desired. 0
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DEFINITION 2.3. A continuous nondecreasing function @ : [0, ] — [0, ], ®(0) = 0, is
said to have moderate growth if there is a constant ¢ such that ®(2\) =< c®(A) for all A >
0. A function @ : [0, ) — [0, ) will be said to grow more slowly than A?, p > 0, if there are
constants ¢ and g < p such that ®(aA) < ca?®(A) for all A > 0 and all a larger than some
Qo.

The following lemma due to Burkholder (1973) shall be useful in what follows; we refer
the reader to the above reference for the proof.

LEMMA 24. Suppose that f and g are nonnegative measurable functions on a
probability space and 8> 1, § > 0, e > 0 are real numbers such that

(2.4) Pg> B\ f=<6\)<ePE=>A), A>0.
Let y and 7 be real numbers satisfying
(2.5) ®(BA) = y®(A), @(87'A) = 9®(A), A>0.
Finally, suppose that ye < 1. Then
(2.6) E®(g) < yn(1 — ye) 'E®(f).
Condition (2.5) is satisfied when ® has moderate growth.
3. Exit times of symmetric stable processes in R". Throughout this section X; is
a symmetric stable process of index a, 0 < a < 2, in R", n = 2. The case n = 1 will not be

considered here. Define X} = sup,=| X |, X% = sups<| X |, and we may similarly define
X# and X% for stopping times T.

THEOREM 3.1. There exist constants ci, ¢z, c3, cs depending only on n, a and ® such
that if @ is of moderate growth and T is a finite stopping time for X, then
(31) E®((|x|*+ T)") < . E*®(X%-) < o E"®(| Xr-|) < ¢ E*®(X?) < ; E*®(| X7 ).
1If, in addition, ® grows more slowly than \°,
(3.2) E*®(X$) < . E*®((|x|* + T)).

Proor. It will suffice to prove

(3.3) E*®((T + | x|*)*) < cE"®(X%-),
(3.4) E*®(X%.) < cE™®(| Xr-|),
(3.5) E*®(X%) < cE*®(| Xr|),

and if ® grows more slowly than A*
(3.6) E*®(X%) < cE*®((T + | x|,
where c is a positive constant not necessarily the same in each instance, but depending
only upon n, a and ®. The inequality (2.4) will be proven in each case (a variant in the case
of (3.6)), and the results will then follow from Lemma 2.4.
PR60F oF (3.3). We need to establish that for § >1, 6 >0,
PT + | x|9"* > BA, X} < 8A] = c(5, B)P(T + | x|9Ye > A]

where ¢(8, §) — 0 when either 8 — « or § — 0. When | x| > 8A the left-hand side is zero
so assume | x| < 8A. Setting @ = A% — | x|*,

b= (BN)*— | x| (take § < 1 so that a > 0)
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PT + |x|)V* > B\, X < 8A] = P [T > b, X} < 6)A]
= PYT > a, supe=t<s| X — X, | = 26\ ]
= E{P*[suposi<t-a) | X: — Xo| < 20A1; T > a).
The stability of X implies

26
supyeRnP"[supoSKb_,,lXt - Xol = 28)\] = supyeRnP’[suposKl'I X, - Xol = (ﬁa — 1)1 a]

26
= Pol:Xf— S'(Ba—_]yg;] = c(ﬁ’ S, n).

Thus
PYT + | x|V* > BN, X~ < SA] < ¢(B, 8, )P [(T + | x|)*> A], since 8> 1.
Observe that c¢(8, 8, n) — 0 as either 8 — = or § — 0, so Lemma 2.4 applies and (3.3) is
proven.
PrOOF OF (3.4). In order to establish
PIX# > BN, | Xr— | = 8A] = ¢(B, 8) P [ X4 > \],

begin by defining U = inf{t > 0:| X7a| > A}, and let 8 = 2. If U < T, then X%_ > A, and
on the set {X% > B\, | Xr—| = 8A}, U < T < . Using the strong Markov property at U,

P X4 > B\, | Xr_| = 6A] = P[X$. > BA, | Xr_ | < A, U< T]
< E[P*[|X,| < 8 for some t > 0]; U< T]
=< sup|y=AP’[| X;| < 8A for some ¢ > 0]P*[U < T].

By Lemma 2.2,
supyy=rP’[| X:| < 8A for some ¢ > 0] < ¢(a, n)§"
Thus
PX%_ > BA, | Xr-| = 8A] = c(a. n)8" P X% > ],
and on letting 8 be sufficiently small, Lemma 2.4 applies, and (3.4) is proven.
ProoF oF (3.5). Let U be as defined in the proof of (3.4), 8> 1,0 < § < 1. On the set
{X%>BA, | Xr| =6A}, U<T. Hence ]
PHX3% > BA, | Xr| < 6A] = E*[PX[| X,| < &\ for some t > 0]; U< T]
< sup)y=AP”[| X:| = 8A for some ¢ > 0]P*[U < T']
= c(a, n)0" P U < T]
= c(a, n)8" P X% > \]
and since c(a, n)8"*— 0 as § — 0, (3.5) follows.
PROOF OF (3.6). Here it is assumed that ® grows more slowly than A Take 8 < 6, §

< 1. With U the same as before, U < « on the set {X% > gA},andon {U< T}, X% > A.
If | x| > 8A, then

P*X$> BA, (T + |x|)7*=8A) =0.
If | x| < 8A, then
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PX$> A, (T + | x|)/* < 8\ ] < P*[X;a > BN, (T + |x[)/* < 8\, | Xv| = g )\]

+ P"[Xﬂp‘ > B, (T + | x|V < 8N, | Xv | >§>\]

=I+J.
Considering I first with @ = (6A)* — | x|*,

I=P*X4>BN (T +|x|)*=<8A, |XU|5’§X, U< T}

=< pP* SupU5¢5U+a|X¢ - XUI >§A, U< T]

3.7) =E* va[sup,sa |X, — Xo| > g }\]; U< T]
= supyPy[suptsa | X, — Xo| > ’g}\]P"[U <T]

= ai(B, 8, )P [XF >A], a(B, 8, n) = PO(Xi* >67'8/2).

In considering </, note that if n(dx) is the Lévy measure for X,, then
n(sz) = CJ lyl—(n+a) dy _ C(R_"‘)
B%

where Bg is the ball of radius R centered at 0.
Now if Y; = Ye=¢ 1(ax,>r), then Y, is a Poisson process, Y, — n(B%)¢ is a martingale, and

by optional sampling, if 7 is a bounded stopping time, E*Y, = E* ¥.<, Ljax>r) = n(BR)E"r.
Letr=UATAa, (A\)*— |x|*=a.If s< 7= U, |AX,| < 2X by the definition of U.

Thus, provided R > 2A,
P|AX,| > R] = E* Y= Ljaxy>r) = n(BR)E™r.

Since r = T, X% = | X, |, and consequently,

J= P*[Xbm, T=<a,|Xv| >§>\, U= T} = P“[IAX,I > (g - 1>>\]

= n(B{pz-1p)E*r = 3(§ - 1) n(B$y)E*r = 3<§ - 1) PY|AX,| > 3A]

< 3a(§ - 1)_"px{|x,| >Al= 3“(§ - 1)_aP"[X% >AL

The estimates for I and J yield,
P*(X% > BA) = P*(X$ > B\, (T + | x[*)V/* < 8)) + P*(X# > BA, (T + | x )Y > 8X)
=< (ci(B, 8, n) + c2(B, ®))P*(X$ >A) + P*((T + | x[*)/* > 8X)

where c¢1(8, 8, n) is given by (3.7) and c2(B, @) = 3*(8/2 —1)™*. Recall that ® grows more
slowly than A¢, so there are constants ¢ and p < a such that ®(a)) < ca?®(A) for all A >
0, and all @ larger than some a,. Arguing in a manner similar to Burkholder (1973),

o

E*®(B7'X}) = J P*(X% > BA) d@(A) = (ci(B, 8, n) + c2(B, a))f P (X#>X) d®(\)
0

0

+ j P*((T + | x|)/*>8A) dP(A)
(|
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= (a(B, 8, n) + (B, ) E*®(X#) + E*®@E (T + | x[)'/")
< (ci(B, 8, n) + c2(B, a))E*®(XF) + S PE*®((T + | x[)*).
On the other hand,
E*®(X}) = E*®(BB7'X}) < cBPE*®(B7'XH)
and consequently .
(c7B™ = (cr(B, 8, n) + c2(B, ) E*®(X}) < B PED((T + | x)).

The theorem will be proved provided the constant on the left can be made positive by
appropriate choices of 8 and 8. Since cz(8, a) = 3*(8/2 — 1)™ and a > p, we can achieve
this by first taking B large, then § very small. 0

ExaMPLES. 1. The condition that ® grow more slowly than A is necessary in (3.6) as
the following example shows. If not,
E*®(X7) < cE*"®(X7-)

for all ® of moderate growth. Considering the case D = {z:|z| <1} and T = inf{¢ > 0: X,
& D}, | X7-| < 1, and with ®(A) = N\?, E*| Xr_|? < 0, p > 0, x € R™. On the other hand,
using the Poisson kernel (2.2) E*| X7 |? = o forp = a, x € D.

2. The inequality E*®(Xr_) < cE*®((T + | x |*)/*) also requires that ® grow more slowly
than A* as the following example shows. Take
D = {z:| 21 — m| < ¢ for some integer m},
where z = (21, -+ -, 2,) and %2 > ¢ > 0 is fixed. With
T=inf{¢:X, & D)

we show E*X3? = oo yet E*(T + | x|*)”* < o for p = a. Since X, = (X}, -- -, X?) exits D
when X} = Y, exits D,

D, = {w € R:|w — m| < ¢ for some integer m},
and X% = Y%, it suffices to consider the one dimensional symmetric stable process of
index a, Y,. By a result of Watanabe (1962) if S = inf{¢ > 0:Y, & (—¢, €)} then

2

2 _ a/2
PY.€dy] =n'sin 2" (y "2) ly — x| dy

2 —¢
for |x| <e, |y| = e Letting x =0
E'YR = sin g |y Py = e dy
DN(—ee)€ .

and the right-hand side is infinite for p = a.

Define Z(y) = kif k ~ Y2 <y < k'+ % for integer k. Let Uy =0, U, =inf{t >0:|Y, —
Z(Yo)| > ¢} and Uiyy = U; + Use8y,. For any real y, let I, = (Z(y) — ¢, Z(y) + ¢). Then y
= sup,,,P*(Y: € I,) <1 and by the Markov property,

Py, el,-.-,Y,€L)=EP"(Y,€L);, YA€, -+, Y, EL)
= 'YPy(Yl (S Iy, oo, Y. E Iy) = ‘Y".
Consequently,

P(U,>n)<=P’(Y,€L,..-, Y,E€L)=Yy"
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and
& =sup,E°Ui <Y, n"y" <o, E¥(Urfy) = EX(EW(U}) <&
If r = 1, by Minkowski’s inequality,
E’(UL)Y" < (B°UHY" + (E*(Urefy)")"".
By induction, E*U; < i'¢;.
Using Watanabe’s result
A =sup,P’(Yy, ED)) <1,

and by an argument similar to the above
PXT>U) < P*(Yy, €Dy, ---, Yy € D) <\’
Finally, suppose p = « and let r = 2p/a. Cauchy-Schwartz implies
E*TP =Y, EX(UY T = Uy
= T2 (BXUDHPHT = UD* = B2 755NV < o0,

As pointed out by the referee, T = 1 provides another example of a stopping time (but not
an exit time) where ® growing slower than A* is required.

The next theorem is the analogue for symmetric stable processes of Theorem 3.1 in
Burkholder (1977) for Brownian motion. In the Brownian motion case | x |” is subharmonic,
so the majorization of | x|” by a harmonic function u(x) on D is achieved if u(x) = | x |” for
x € aD. For symmetric stable processes D° acts as the boundary, since the process has
jumps, and the majorization condition must change accordingly. The proof is so similar to
its Brownian analogue, Theorem 3.1, Burkholder (1977), that it is omitted. '

THEOREM 3.2. Let D be a region in R" and T = inf{t: X, & D}. Then for 0 <p < a,
TV= & I? if and only if there is a function u defined on R™ which is a-harmonic on D and
u(x) = | x|? for all x.

REMARK. If TV* € I” for some p < a, then by Theorem 3.1, E*X#? < o and u(x) =
E*| Xr|P defines a function which is a-harmonic on D and majorizes | x |”. As the following
example may show, finding such a u for a given domain D is not easy.

EXAMPLE (An open problem). Here we set D = {(r, ) :|8| < 6o} C R*. The problem
is to find the critical value p’ for which T'*/* € L” for p < p’ when 6, and « are given. To
find suitable u, we need only consider u(x) of the form

(3.8) u(x) =|x|°g@)

for we know u(x) = E*| Xr|” dominates | x|” and is a-harmonic in D when T* € L?; by
the stability property of X, such a u may be written u(x) = | x|°g (9). The condition that u
be a-harmonic on D is exactly

ulx +y) — w()

— dy=0forx€D
R? |y

Au(x) = ¢ f
which after a change of variable and substitution of (3.8) becomes
(3.9) J’ (8ly +0) — g0)K,—oly) dy + Apog@) =0, |0]|<6bo.

That u(x) = | x| yields
(3.10) g6)=1.
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The quantities K, ,(y), Ay« in (3.9) are given by

p+l
Pﬂ(y) j [p _ 2p cos Y + 1]1+u/2 dp
(" p(p? — 1)
Ape = dp dy.
i J:,, , [0 — 20 cosy+ 1] P

The kernel K,,(y) is the Mellin transform of (p% — 2o cos y + 1)~'**?; by Oberhettinger
(1974),

3+
Kpaly) = 2”"‘/"T< a) (sin y)""**?B(p + 2, a — p) - Poii%/m(cos )

which is valid for p < a.
Here B (x, y) is the Beta function

1
B(x, y) =f 1 -8 de
0

and P%(z) is the Legendre function

(1/2)p
Pi(2) =[I'1-w] ‘<z b ;) 2F1<—r, v+1;1— u;% - % z),

2Fi(a, b; c; z) is Gauss’ hypergeometric function

T'(c) » T(a+n)I'(b+n) _z_"’ lz]<1.

2Fi(e, b ¢ 2) = [ m s B nl

The problem (3.9)-(3.10) may be viewed as an eigenvalue problem for the integral
operator determined by the first term in (3.9). This is analogous to the case a = 2 treated
. by Burkholder (1977) where separation of variables as in (3.8) leads to the problem

(3.11) g"(0) +p’g@) =0, |8]|<6bo
(3.12) 8g(6o) = g(—6o) = 1.

The authors do not know how to solve the problem (3.9)-(3.10). It would be of interest to
solve this when a = 1. T. McConnell has pointed out that the following Dirichlet problem
for A in R? is equivalent to solving (3.9)-(3.10) for a = 1 and D = {(r, ) : | §| < 6}. Consider
the problem

(3.13) Au=0in R3\F
(3.14) ulx) =|x|P,x€F={(r0,2):7=|0|> 6, 2 =0}

where x = (r, 0, 2) is given in cylindrical coordinates. The solution has the stochastic
representation

u(x) = E*| Br|?

where B; is a Brownian motion in R*and T = inf{¢ > 0: B, € F}. The Brownian motion
will hit F only if B} = 0; so it suffices to consider B, only when B} = 0 or to consider X,

= (B}, B?) where v, is the inverse local time of B} at 0. Since y, has index % and is
independent of (B}, B?), X, is the symmetric Cauchy process, a = 1, on R Problem (3.13)-
(3.14) may be then replaced by (3.9)-(3.10). Thus the original problem in R® is now a one
dimensional problem. Whether this is a reduction is not clear.

4. An I” equivalence between maximal functions. In this section we establish an
L” equivalence between a deterministic and a probabilistic maximal function for positive
o-harmonic functions on the unit ball on R™(n = 2).
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Let X, be symmetric stable, T = inf{f > 0:|X;| > 1} and define the probabilistic
maximal function by

u*(w) = sups<r | u(Xe(w))|.

The deterministic maximal function requires a slightly different Stolz domain than in the
classical case a = 2. If we begin with z € R", 2> | z| > 1, define w(z) to be the point on the
ray through the origin and z such that 1 — |w(z)| = | z| — 1. Now fix 0, % > 0 > 0 and let

T,(z) = the interior of the convex hull of B(0, ¢) .U {w(z2)}.

If 2 — 0 > |z| > 1, T',(2) looks like the ordinary Stolz domain but does not touch
{x:|x| =1}. When | 2| =2 — 0, I;(2) = B(0, 0). We set

N,u(2) = supzer, @ | u(x)]|.
Finally, defining the measure
m(dy) = P1(0, ) dy,
we have the following theorem:

TuEOREM 4.1. There exist positive constants pu, Cpa, 0 < p < o, such that if u is
nonnegative and a-harmonic in B(0, 1) then

Cpoa J (N, u(2))?m(dz) < E°(u*)p = Cpa J _ (Nou(2))’m(dz).
n R

ProoF. We require two lemmas. Expressions of the form ¢(¢), c(o, a, n) will denote
constants depending only on the indicated parameters, not necessarily the same from use
to use.

LEMMA 4.2. There exists a constant ¢ = ci(o, a, n) > 0 such that if \ >0, E = {y €
B(O, 1)¢:N,u(y) > A}, G =U.egc I';(2), then
inf,c genpo,yP’[Xr € E] = a1
Proor oF LEMMA 4.2. When E = ¢, G° N B(0, 1) = ¢ and there is nothing to prove.
If E # ¢, take y € G° N B(0, 1) and observe that |y | = 0. Let p = 1 — | y| and consider the

point w on the ray through the origin and y such that |w| = 1 + p. Let C, be the reflection
of B(0, o) through y onto 4B (0, 1), i.e.,

C, = {z € 8B (0, 1) : the line through y and z intersects B(0, 0)}.

This gives a set whose diameter exceeds c(a)p, where ¢(o) depends on o alone. The convex
hull of C,U {w} C E; otherwise the contradiction y € G occurs. Let

F={zeR":1=|z|=1+p/3, (1+p/3)z/|z| € the convex hull of C,U {w}}.

Note that the area of F N 8B (0, 1) (with respect to surface measure on 4B (0, 1)) exceeds
c(o)p™ ™.
Using the estimate | y — z| < c(o)p for z € F, we have

B _ 2 a/2
Py[XTEE]zP’[XTEF]=A(a,n)J' [%} ly — z|™ dz
F

1+p/3 a/2
1-—
= c(o, a, n) p"‘f J [ > Iyl] r"tdrdf
1 FraBoy LT 1

1+p/3
r
> c(o, a, n)pa/Z—npn—lf frz—_l]"‘/fdr =clo,a,n)>0. 0
1
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For z with | 2| > 1 we introduce the measures P on the paths commencing at x and
conditioned to be at z on exiting B (0, 1). These are the A-paths of Doob (1957) with A(x)
= P,(x, z). The transition density on PZ paths is given by

p*(t, x,5) =p(t, %,5) Pi(y, 2)/Pi(x, 2),
where p (¢, x, y) is the transition density for the symmetric stable process killed on exiting
B(0, 1).
LEMMA 4.3. There exists a constant ¢z = cz(o, a, n) >0 such that if|z|>1and1>
8> /(1 — o) then
infer ,)P2(X; € B(x, 8(1 — | x])), for some t = T) = c,.

ProorF oF LEMMA 4.3. If x € B(0, o) then
81— |x])>8(1—0)>0, so 0EB(x,6(1—|x]),

and there is nothing to prove. So let ¢ < | x| = p < 1. By the definition of T',(2), 1 < | z|
<2 — 0. B(x,8(1 — p)) N B(0, p)° contains the set

B={y:p=|y|=p+8(1—p)/2 (p+81—p)/2y/|y| € B(x 81 —p)}

If C. = {y/|y|:y € B}, the area of C (with respect to surface measure on B (0, 1)) exceeds
¢(0)(1 — p)* . When y € B, recalling that w(z) is the tip of T';(2) and 1 — |w(z)| = | z|
-1,

ly—z|=|y—x|+|x—w@)|+|w() - z|
=<8(1 —p) +clo)(1 —p) +2(1 — |w(2)|), since x € T,(2),
<clo)(1—p), using 1—p=1—|x|=1-|w(2)]|.
Thus, since |z| = |y| and p = |x| > o,
PYX, € B(x, 8(1 — p)),some t < T)

131(3', Z) d

= P%(X, € B,some t < T) = Al(a, n) f 2,0,y
B Pl((), z)

p* Ed " 21a/2 —n
=A(a,n)f_—[_] l_y % -2z d
s [y = o1 LIV [ =1y Ty = 2™ ay

1-|y| "
aAm,n)paf (———) ly =z dy
s\l =0

p+6(1—p)/2
=c(o,a, n)(1 —p)™" J f r? — p%) %1 — r)**r" ' dr df
Cy Yo

p+8(1-p)/2 .
=c(o,a, n)(1 —p)! f r® = p? ™21 — r)**r" ' dr
; P
and since 1 — r = (1 — (8/2))(1 — p), this last expression is
o+8(1-p)/2
=c(o, o, n)(1 — p)¥/*? J’ (r*=p* 2 rdr
I

=c(o,a,n). O

PrOOF OF THEOREM 4.1. Take A > 0 and define E as in Lemma 4.2. Choose y € E and
observe that u(x) > A for some x = x(y) € Ty, Let § = %(1 — 0)~", and using Harnack’s
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Inequality (Lemma 2.1) for the ball B(x, 1 — | x|),
u(w) = c(o, a, n)u(x) > c(o, a, n)A

for w € B(x, (1 — | x|)), and ¢(g, a, n) > 0. Thus

P(u* > c(o, &, m)A) = J PY(u* > c(o, a, n)A) P°(Xy € dy)
-

= J Pi(u* > c(o, a, n)A)m(dy)
E

= J PY(X, € B(x(y), 8(1 — | x(y)])), some ¢t < T)m(dy)
&

= c2(0, o, n)m(E), by Lemma 4.3.

Integrating pAP~! against both sides of this inequality yields the left-hand side of Theorem

4.1.
For the other inequality consider G as in Lemma 4.2 and the stopping time S =

inf{¢>0:X, & G}. Then
m(E) = P(Xr€ E)=P(Xr€E,S<T)=E"P*(Xr€E);S<T)
=ci(o, 0, n) P°(S< T), by Lemma 4.2
= ¢ Pou* > )).

The last inequality follows since for u* to exceed A, the path X, must enter G° N B(0, 1)
before T. Now multiply by pA?™* and integrate to obtain the right-hand inequality. 0O
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