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RENEWAL THEORY FOR M-DEPENDENT VARIABLES

BY SVANTE JANSON

Uppsala University

LetS,,n=1,2, ..., denote the partial sums of a stationary m-dependent
sequence of random variables with positive expectation. The first passage
times min{n: S, > ¢} are investigated. Several results are extended from the
case of independent variables.

0. Introduction. Let {X,}T be a stationary m-dependent sequence of random vari-
ables. (X will be used to denote a generic variable in the sequence.) The nonnegative
integer m will be fixed throughout the paper. The purpose of this paper is to study the
sequence of partial sums S, = Y7 X;, and the stopping times 7(¢) = min{n: S, > ¢}, when
X has positive expectation. In particular, we are interested in the existence and the
asymptotic behaviour of the moments of 7(¢) and the overshoot S,; — t for various
integrability conditions on X.

For independent variables (the special case m = 0) such problems have been extensively
studied, see e.g. [7] and the references listed therein. Some of these results are generalized
in this paper.

Related problems, including a version of Blackwell’s renewal theorem, are treated for
dependent sequences by Berbee [2].

Section 1 uses martingale theory to establish some basic results for the sequence {S,}
and arbitrary stopping times, most notably a version of Wald’s lemma (Theorem 1.1).

Section 2 applies these results to the renewal times 7(¢). Using these more complicated
martingale results, the proofs for the independent case hold with only minor modifications.
One of the main results is E7(t) = t/EX + o(t"") as t — », provided E | X|" < o.

Section 3 contains a refinement for the case X = 0. Then E7(¢) = ¢/EX + O(1), provided
EX? < o,

_ Section 4 is devoted to applications.

1. Martingales and stopping times. In this section we make the following assump-
tions.

(i) {X.}1" is a stationary sequence of random variables adapted to an increasing

sequence of o-fields { %.} I on a probability space (2, %, P).

(ii) m is an integer such that {X,+;} ZZm+1 is independent of %, for every n.

(ili) p = EX exists (in this section not necessarily positive).

(iv) 7is a stopping time relative to { %#.}.

Let %, = {&, Q) for n < 0. We define S, = Y7 X, and U, = E(Sp+m — (n + m)p| %),
n=0.(Forn=0let U,=0.)

Let Vo=Un— (S, —np) =EQT: Xnri—p) | %) and AU, = U, — Upo1 =X, —p+ V,
- Voer.

If EX? < ®, let ¥* = Cov(Xy, Sn+m) = Var X, + 2 Y71 Cov(X,, Xn+,)(n > m). Note that
v? =1lim,_.» (1/n) Var S, = 0.

LemMma 1.1. {U,}G isa martingale.'

Proor. E(Unlg-bn—l) = E(Sn+m - (n + m)ﬂlvg'——l) = n 1+ E(Xn+m ﬂl%—l) =

Unp-:.
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THEOREM 1.1. IfX =0 as. or ET < x, then
ES,im = (Er + m)p.

Proor. By Lemma 1.1, E(S;An+m — (t A N + m)p) = EU,.an = EU, = 0. Thus,
ES. An+m = (E(1 A N + m))p. For positive X, the result follows by monotone convergence
as N — . If Er < », we use the decomposition X, = X7, — X;.

For independent variables (m = 0) this theorem reduces to Wald’s lemma ES; = Em
This formula fails for m-dependent variables, but Theorem 1.1 gives a useful substitute.

We next turn to the variance of S,+» — (r + m)p (cf. [4] for m = 0). We single out a
special case as a lemma.

LEMMA 1.2. Assume that EX? < o and that t is a bounded stopping time. Then

EUlim= (Et+m)y* + EViip.
Proor. We may assume that p = 0. (Otherwise, we replace X, by X, — u.) Since
I(r=i—- m) is %_m-1-measurable,
EU%n=E Yicrsm@U)? = E 35 I(r 2 i — m)(AU)*
=Y E(l(r=i—m)E(AU)?| Fi-n-1)).
Furthermore AU; = X; + V; — Vi_;, which by orthogonality yields
E(AU:)? | %-1) = E(X: + Vi)? | Fi-1) — E (V21| Fizr)
and
E((AU)?| F-m-1) = EX? + 2X;V; + V? — V41| Fi-m-1).
Using Vi = E(X%1 X;+j| %) we obtain X;V; = E (31" X, X.;| %) and (by assumption (ii))
EX?+2XiVi| Ficm-1) = EX? + 237 XiXisj| Ficm-1) = EQX? + 237 XiXiv)) = v?
Consequently,
E(QU)? Fim-r) =7* + E(V? — VE1| Ficm-r)
and
EU%n=3EI(r=i-m)y* + E(V} = V1| Fi-n-1))
=YPEI(rzi—-m)y*+ V- VE)=ETI™ * + VP - V&)
= (Er+ m)y* + EV%,,
THEOREM 1.2. Assume that EX* < ® and Et < «. Then
(i) EU%. = (Er+m)y’+ EVZ,,

i) E(S;4m— (r+ m)u): = (Er+ m)y — 2E (S;+2m — Sram — mp) (Sr4m — S, — mp)
(ili) E(Sy+2m — (r + 2m)u)* = Er-y* + E(Szm — 2mp) .

ProoF. Again, for convenience, we assume that p = 0. By Hélder’s and Cauchy-
Schwarz’ inequalities,

Vinem = E(QT X anv+i)2 | Fonn) < mE(}T X2an+il Fonn) = mE(ZH'm X2| Fnn).

Theorem 1.1 applied to {X%} shows that Y1*™ X% is integrable. Hence, the family
{EQ™ X%| Zian))}R=1 is uniformly integrable [11, Lemma IV-2-4]. Thus, {VZAn+m} is
uniformly integrable and, since Vian+m = Viem a5, EVianim — EVZ,,, a8 N — o,

Since, by Lemma 2, E Y{"V*™ (AU;)? = (E(r A N) + m)y? + EVZ\n+m, monotone
convergence yields E ¥1*™ (AU;)* = (ET + m)y® + EV%,,, < « and (i) follows from [4,
Theorem 1].



560 SVANTE JANSON

Since U,sm = Srem + Vism and Urem = E(S,42m| Frtm),
(Bt + m)y? = EU%pm — EViin = E(Ussm — Vier)(Usim + Vi)
= ES:sm(2U;+m — Sr4m)
= 2ES,+mSr+2m — ES%m = ES%ip + 2ES, +m(Sr+2m — Srm)
= ES}in + 2E(Sr42m — Sr4m)(Srem — 8;) + 2E (S;49m — S;4m)S;.

(i) fouOWS from E(Sf+2m - Sf+m)Sf = E(E(S-r+2m - f+m| %)S-r) =0.
To prove (iii), note that by the computation above

ES?+2m - ETY2 = E(Sf+2m — 28,4 mSriom + Sf+m) + m‘Y2 = E(E(S:+2m — f+m)2 |~977) + m'Yz~

However, E ((S;+am — S:+m)?| %) is a constant independent of . Hence ES%.z, — E7y*

does not depend on 7, and the trivial case r = 0 shows that it equals ES%,, which proves
(iii).

In the next section we shall study a family of stopping times, keeping {X.)} fixed.
Therefore, we shall use o (E7) to denote quantities 8(7) = 8(r, {X,.}) such that, for fixed

{Xx},
sup{|8(r)|/Er: v is a stopping time such that A < E7 < o}

is finite for any A > 0 and converges to 0 as A — . o ((E7)"") etc. are defined similarly.
Next, we collect some important consequences of Theorems 1.1 and 1.2.

COROLLARY 1.1. Assume that E|X|" < o, where 1 < r < «. For stopping times t such
that ET < oo,
(i) E|X:|" = o(ET)
(i) E|X.|=o((ET)"")
(iii) E | S‘r+m - S‘rlr = O(ET)
(iv) E|S;+m — S:| = o((ET)'/")
(v) ES, = Er-p + o((ET)'").
Furthermore, if r = 2,
i) ||S; = 72 = VEry + o((Er)™")
(vil) E(S, — mw)% = Ery® + o((E7)'/2*'/7),
If r = o (X is bounded), (ii) (trivially) and (iv) — (vii) hold with o replaced by O.

Proor. By Theorem 1.1 applied to { | X.|"},
E|X.|"<sEYT™|Xi|"= (Er + m)E| X|".

This estimate is improved to “o0” in the following standard way. Let ¢ > 0 and let X}, = X,-
I(|X.| > A) and X = X,, — X, where A is so large such that E | X}|" < &. Then

E|X,|"=E|X|" + E|X"|" < (Er + m)E|X'|" + A" <¢Er + C,.

This proves (i). (ii) follows by Lyapunov’s inequality. (iii) and (iv) are proved similarly,
using Holder’s inequality |S,+m — Si|” = |IF Xoi|” = m™' TP | Xoai|”. (v) follows
immediately from (iv) and Theorem 1.1.

If r = 2, Theorem 1.2 (iii) yields

I Srs2m — (v + 2m)p|2 = VEry + O((E7) V).

Since || Sr+2m — Sr+m|l2 is constant (cf. the proof of Theorem 1.2), and || S;+m — S:[2 < || Sr+m
— S| = o((E7)'") by (iii), (vi) follows from Minkowski’s inequality. (vii) is obtained by
squaring. The modifications in the case r = « are easy.

Finally, we give an estimate for arbitrary moments of S, — 7u. For the independent
case, see [7] and [8].
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LEMMA 1.3. Letl =<r < o and r; = max(r/2, 1). Suppose that E| X|" < o, E7" < o
and EX = 0. Then, for any non-negative integer k,

E| %51 EXnia| #)|" < Crr s ETE | X|".

(Cpm,rx is @ universal constant.)

Proor. Ifk>m, E(X,+x| %) = EX,+r =0 and there is nothing to prove. We perform
an induction on k (backwards) and r, assuming the estimate to hold for r, £ + 1 as well as
for r/2 and any k (if r = 2).

Yiei EXpie]l %) = 31 (EXni| ) — EXnir| 1)) + X1 EXKsrs1| %) — EXevnr| ).

By the cinequalities, it suffices to estimate the three terms on the right-hand side
separately. The estimate holds for the second term by the induction hypothesis, and for
the third term by

E|EXspe1| #) " < E| Xponns|” < EST™ | Xi|” = (Er + m)E| X|"

(if & < m, otherwise the term vanishes).
The first term above is a stopped martingale and we use the Burkholder-Gundy
inequality [6]

E|Y1 (E(Xnrt| %) — EXnsi| Fa-)) |" = CGEQ,
where the square function @ is defined by
@ =31 (EXnsr| F) — E(Xn+2|Fa-1))? = T1 2(E Xnsx| F5)* + E (Xnsr| Fa-1)?)
<=2¥1 EXpsr| %) + 2 31 EXpsrs1| )2

We will estimate the /2th moment of the first sum, the second sum is treated the same
way. We look at two cases separately.
Ifr=2,

EQiI EXnit| 7))? = E 31 | EXpsr| %) |" = E 31 E(| Xoia|"| %)
=Y EU(r=n — mE(| Xuwx|'| %))
£ Y7 Ellr = n — mE| Xu|” = (Er + mE|X|".
If r> 2, let 02 = EX2 Then
Y1 EXns| #)? = T1 EXnsr| %) = 70" + 1 E(X7er — 0° | F).
E(r6%)"? <= Er”? E| X|" and by the induction hypothesis applied to {X2 — o7},
E|Si E(X2ux — 0%| F) |2 = CrppopEr™VAVE | X? — o2|"72

Thus, for any r, EQ" = E(Q%"* = Cp,rxE7"E | X|". The proof is complete.

THEOREM 1.3. Suppose that E|X|" < o, where 1 =r < .
(i) IfEr,Et"? <o, thenE|S, — 1u|" < Cn,(ET + Er")E|X|" < .
(ii) If Ex" < oo, then E|S,|" < Cpn,ETE| X|" < 0.

Proor. (i) follows by taking 2 = 0 in Lemma 3 (applied to {X, — u}) and (ii) is an
immediate consequence.

2. Renewal theory. From now on, we assume that p = EX > 0. We shall study the
stopping times 7(¢) defined in the introduction. (We may take %, = #(Xi, .-, X,).) By
the law of large numbers 7(¢) < « a.s. Also, 7(t) — « and thus E1(¢) — « as t — .
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For completeness, we include the following theorem which is proved exactly as for
independent variables.

THEOREM 2.1.

Q) ()/t— 1/pas.

(i) S,p»/t—1as.

(i) IfE|X|"<»,1=<r<2, then r(t) — t/un = o(t"") a.s. and S,y — t = o(t*") a.s.

(v) IfEX® <  and y* % 0, then Otk N(O, 1).

o

Proor. By the law of large numbers S,/n — p and X,./n — 0 a.s. as n — ». Hence
S;0/7(t) > p and X, )/7(¢) — 0 a.s. as ¢ — o, which imply ¢/7(f) — p a.s., from which (i)
and (ii) follow.

(iii) is proved similarly, cf. [7; Theorem 28].

(iv) follows from the central limit theorem, Anscombe’s theorem [1] and the estimate
S0y =t/ N —p 0 (which follows e.g. from Theorem 2.2 (iii) below).

In the remainder of this section we shall combine the martingale estimates of Section
1 with arguments from [7] to estimate moments.

LEmMA 2.1. Foranyt=0, Et(t) < .

Proor. Define X7, = X, A A, where A is a large constant such that u’ = EX’ > 0. Let
S, and 7’(t) have the obvious meanings. Then S;, < S, whence 7'(£) = 7(£). Thus, it suffices
to show that E7'(¢) < . Since S, = tforn < 1'(t),and X! = A, S, <t+ (m + 1)A forn
= 7/(¢) + m. Hence, by Theorem 1.1,

(E7"(() AN + m)p” = EStoanem < t + (m + 1A.

By monotone convergence, Et’(t) < (t + (m + 1)A)/p’ < .

THEOREM 2.2. Suppose that E |X|" < o, where 1 <r < «. Then, as t — x,
(i) Er@) =t/u+ otV
(i) E(S;—t)" =o(t)
(iii) ES.q —t=o(t).
Furthermore, if r > 2,
(iv) Var 7(t) = ty*/u® + o(t/**'/")
) E(r(t) — t/p)® = ty*/u® + o(t/***/7),
Ifr = o (X is bounded) these estirates (except (ii)) holds with o replaced by O.

REMARK 2.1. For positive variables, (i) and (iii) will be sharpened, but we postpone
this to the next section.
ProoF. Observe that
0< S, — t=X, .
Hence, using Corollary 1.1 (ii) and (v),
) t = ES.y + o((E7(¢))"") = Er(t)p + o((E7(£))"").
Thus, ¢ — o implies
t/Er(t) > p, ie. Er(t)/t—> 1/n as t— oo,

Hence, all terms o((E7(£))/") may be replaced by o(¢/") and (i) follows from the compu-
tations above. (i) and (iii) follow from Corollary 1.1 (i) and (ii). If r = 2, (ii) yields
| Sir — tll2 =< || Svier — |- = o(t*"). By Corollary 1.1 (vi),

It = r@)pllz = VEr@)y + o(t") = Vt/uy + o(t7")
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and (v) follows by squaring. (v) and (i) yield (iv). The modifications for r = o are omitted.

THEOREM 23. Letl=<r<oo.
(i) IfE(X*) < » then ES’¢ < © and ES7y/t"— 1 ast— oo.
(i) IfE(X™)" < o then ET(t)" <  and Et(t) /"> p™ as t — oo.

Proor. (i) E(X}),) = o(Er(t)) = o(t) by Corollary 1.1 and Theorem 2.2.- Thus,
| S:ey = £l =< || X¥0 Il » = o(¢") and || S. || - = ¢ + o(¢"/"). (ii) We assume that E | X|" <
oo, (Otherwise truncate as in the proof of Lemma 2.1. Cf. [7; Theorem 2.3].) For r = 1 there
is nothing new to prove. If r > 2 we assume, by induction on r, that the theorem holds for
r/2. Thus, with r; = max(r/2, 1), Et(¢)" = O(¢"*). By Theorem 1.3 (i).

E|S.» — 7()n|" = CEr(t)"E|X|" = O(t"™).
Thus
| Seey = 7@ |l = OE™").
Minkowski’s inequality and (i) finally yield
| 7@l =t + O@") =t + o(t).

REMARK 2.2 Under the hypothesis of Theorem 2.3, {S.()/t}s: and {r(¢)/¢}:1, respec-
tively, are uniformly integrable. This follows from a combination with Theorem 2.1.

REMARK 2.3. (i) may be compared to Theorem 3.1 which shows that (for X = 0)
E(S, — t)" is bounded as ¢t —  if and only if EX"*' < oo,

REMARK 24. Since X{ = S,, the converse of (i) holds, viz. if ES}; < o for some ¢
=0, then E(X*)" < . For independent summands, the converse of (ii) also holds [7], but
for m-dependent variables this is not true, as is shown by the following example.

ExampLE 2.1. Let r > 1. Let {£.}3 be positive i.i.d. random variables such that
P, <1) > 0and E¢;, = . Define
X ={—a i Ga<1<én

1+ ¢.-1 otherwise.

Then {X,} is 1-dependent, E(X~)" = o, but E7(¢)” < . In fact, since every negative X, is
more than cancelled by the next one, 7(¢) < 2(¢ + 1).

REMARK 2.5. Several of the results may be extended to the case p = +oo, ie.
EX™ < oo, EX* = o, by truncation. For instance, with X’ = X A ¢, where ¢ is large enough,
(E7'(t) + m)EX’ = ES'¢y+m < (m + 2)t. Hence E7(t) = E7'(t) = (m + 2)t/E(X A\ t). Thus,
E7(t)/t > 0 = 1/p. Some results can be extended to 0 < r < 1, e.g. E(X*)" < 0 & ES7,
< 00,

3. Further results. Theorem 2.2 is not completely satisfactory since the error terms
are coarser than what presumably is required. For independent variables it is e.g. known
that (in the non-lattice case) Et(¢) — t/u converges to a finite limit, provided only that
EX? < 0. We have not been able to prove this for m-dependent variables, but with the
extra assumption X = 0 we now will prove a somewhat weaker result (Theorem 3.1). Cf.
[2, Chapter 3] and [10] for related material.

LEMMA 3.1. Assume that X = 0 a.s. and that EX™ < o, where 1 < r < . Then
E(S.¢p+m — )1 = 0(1).

Proor. Extend {X,.}7T to a doubly infinite stationary sequence {X,}Z.. We may
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assume that & = R™ and that {X,}Z. are the coordinate functions. Let T denote the
measure preserving shift mapping € — © defined by X,(Tw) = X1 (w).

We extend the definition 7(¢, w) = inf {n = 0:S,(w) > ¢} to all real . Thus 7(¢, w) = 0 for

t < 0. Let @(t, 0) = (Sr¢uw+m(w) — €)™ Thus, for ¢t < 0, ¢(t) = (S, — ). Since Sn(w) =
Xi(w) + Sp-1(Tw), n > 0, it follows that

7t w) = 7(t = X1(w), Tw) + 1, t=0,
and A
o(t, w) = p(t — X1(w), Tw) = ¢(t — Xo(Tw), Tw), t=0.
Thus,

f o(t, w) dP = J’ o(t — X (Tw), Tw) dP = J’ ot — X (w), w) dP, t= 0.

Let » be the measure I(0 < s < X,) ds dP on R X Q. The total mass of » equals J XodP
=up.Ift=0,

f(p(t—s,w)dv— ]J’ @(t —s,w) dsdP = ff ¢(u, w) du dP

and
f Pt — s, w) dv — f o(—s, w) dv
=fj Itzu>t—Xo) —I(0=u>—-Xo))p(u, ) du dP
=ff Itz=u>0) —It—Xo=u>—-Xo))p(u, w) du dP

= J’j I(t = u > 0)(p(u, w) — pu — X, w)) du dP

t
=f (f‘P(U,w) dP—jtp(u—X),w) dP) du=0.
()

jtp(t—s,w)dv=jtp(—s,w)dv= J’f (Sn + s ! ds dP

0=s<Xj

Thus,

s]%(Xo+Sm)’dP=-}ES;+1<®s t=0.

Let A denote this common value of [ ¢(t — s, ) dvy, ¢ = 0. 7(¢) and S;¢)+m are non-
decreasing functions of ¢. Thus

Sity+m — t = Sreemyem — E+h) +h,  h>0.

For simplicity, we assume that r < 2, in which case ¢(¢, w) < (¢ + A, w) + 2"". (The proof
for r > 2 is similar, using (¢ + 8)" = (1 + ¢)a” + C...b", ¢ > 0.)
Choose 6 > 0 such that P(X > §) > 0. Then, if £ = 0,
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)
) f o(t, w)I(Xo = 8§) dP < f J ot + h, wI(Xo=8) dP dh + 8"
o

8
=J f¢(t+8—s,w)I(X028)des+8’
0
sffI(Xo>s>0)¢(t+8—s,w)des+8'=A + 4"

Furthermore, if ¢ = 0,

P, w) = p(t — X1(w), Tw) = ¢, Tw) + X1 (w) .
By iteration,

o, w) = p(t, T"w) + X1 ()™ + + oo 4+ Xpn(w)™L
Thus, since X is independent of ¢(t, 7™w),

f o(t, wI(Xo < 8) dP = f o(t, T"w)I(Xs < 8) dP + mEX™™
= P(X, < §) f o(t, T"w) dP + mEX™™' = P(X < §) f (¢, w) dP + mEX]™".

Combining these two estimates we obtain

f o(t, w) dP < A/8 + 8! + P(X < 8) f o(t, 0) dP + mEX".

Since [ ¢(¢, w) dP = E(S:)+m — ¢)"" is finite by Corollary 1.1,
ES:pyim — ) '=(A/0+ 81 + mEX™')/P(X = §).

THEOREM 3.1. Assume that X =0 a.s.

(i) EX* <o e Er(t) = t/p+ O(1)

(i) EX"<o=Er(t) =t/u+ot*)ast—o> o, 1<r<2
(i) EX"<0 = E(S,y—t)"'=0(1),1<r< o,

Proor. If EX? < oo, then Er(t)p = ES,¢)+m — mp = t + O(1) by Theorem 1.1 and

Lemma 3.1.
If EX" < o, 1 < r < 2, we combine Lemma 3.1, Theorem 2.2 and Corollary 1.1 by

Holder’s inequality to obtain
E(S:)+m = 8) = (E(S:+m — )"V "M E(Srtysm — 8)7)>" = 0(£2™),
and (ii) follows by Theorem 1.1.

The direct implication of (iii) follows immediately from t}}e lemma and 0< S,y — ¢t <

S‘r{t)+m -t
To prove the converse implication of (iii), assume that E(S,,) — £)"' < M, 0 < ¢ < oo,

Then :

T Srm—l
r f Siy =)t dt= f r(S,e — )1 dt
0 0

Sy,
= E‘{(T)—lf r(S,. _ t)r—l dt = Z'{(T)—l X; > I(T)—-l (Xn A A)r.

S,

n—1
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Theorem 1.1, this estimate and Fubini’s theorem yield
(E1(T) + m)EXX A A) = EX{"*™ (X, N AY

T
= E(r f Sy =) dt + (m + 1)A’) =rTM + (m + 1A".
0

We divide this by 7T and take the limits as first 7'— o and then A — o to obtain r'EX”
< rM and EX” < rMp. To show that pu < o, we assume temporarily that EX” < c where
p =< 1. By Theorem 1.1 (E7(T) + m)EX? = E Y™ X2 = E(X1"™" X,)* = T*, T > 0.
Since E(X A A)” = A’P(X > A) we obtain, choosing 7'= A" in the inequalities above,
EXPrM + m + 1)A" = EXP(E7(A”) + m)E(X N A)" = APA'P(X > A).

Thus P(X > A) = CA~, which implies that EX? < o for ¢ < rp. Since EX™! <« by
Remarks 2.4 and 2.5, we may iteratively improve the exponent by this argument until we
reach p = EX < co. This completes the proof of EX" — .

The converse implication of (i) follows from this and Theorem 1.1.

REMARK 3.1. If EX® < o, then
T
j (Sryem — 8) dt = TPV (X2/2 + Xo T81 Xnwi) + 0X7/2 + Xoiny X7 Xei1y+i)
o

for some 8, 0 < 8 < 1. Using E(X2/2 + Y21 XoXnri| Facm-1) = Y2/2 + (m + Y)p?, one
obtains

T
E j (Sf(t)...m - t) dt = E ZI(TH'M (Xﬁ/2 +27;1 Xan+i) + O(T)
)

= (Er(T) + m)(v¥/2 + (% + m)p®) + o(T) = (¥*/2p + (m + %)W) T + o(T).

Hence

T T
1j Er(t) — ¢ 1j VL |
- | —dt=— (ES,¢y+m —t) dt —m > — +—.
T J, ® uT J, 2% 2

We conjecture that E7(t) — t/u— y?/2u® + % as t — oo (with minor modifications when X
has a lattice distribution) (this is true for independent variables), but we have not been
able to prove this.

REMARK 3.2. Similarly (1/T) [§ E(S. — ¢} dt » EX"/ru as T — . We conjecture
that E(S,¢ — £)"' — EX"/ru (in the non-lattice case).

REMARK 3.3. In the case of independent variables, it is often possible to reduce
theorems to the case of positive variables by the introduction of the ladder variables {Y,.}
defined by No = 0, Nix; = 7(Sy,) and Y; = Sy, — Sw_,. This fails for m-dependent variables,
at least in its simplest version. The following example shows that, in general, {Y,} is
neither stationary nor m-dependent.

ExaMmpLE 3.1. Let {£,}5 be iid. r.v. with P(§, = 0) = P(§, = 1) = %. Define {X.} by
2 if £&-1=0, £&=0

X, = 4 if 5,,-1=0, £n=1
" -1 if 5,_1=1, £n=0
5 if &u=1, &=1

{X.} is 1-dependent.
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The ladder variables take the values 1, 2, 3, 4, 5. They constitute a Markov chain with
transition matrix
% 0 % 0
o 0 % 0
P=<4% 0 % 0 %
Yo 0 Y4 0 %
Yo 0 U 0 %

The initial distribution =, = (%, %, %, %, %) differs from the stationary one .. = (%, %, %,
Y%, Y5). Thus, the ladder variables are not identically distributed. Furthermore, if Y, and
Y+m+1 Were independent for some m, n = 1, the rows of P™** would have to coincide. This
would imply that P™*! = P>, which is impossible since the entries in P™*! are dyadic
rationals, while P” contains % and %. Hence {Y.} is not m-dependent for any m.

4. Applications. Our first application is due to Carl-Gustav Esseen. For further
results, see [5].

ExaMPLE 4.1. Let {£.}7 be independent random variables, uniformly distributed on
(0, 1), and set X, = I({,+1 < &2). Then {X,.} is 1-dependent. 7(k — 1) = inf {r:S, = k} equals
the position of the k£th decrease in the sequence {£.}. Thus L, = 7(k — 1) — 7(k — 2) is the
length of the kth increasing run. L, may be interpreted as the length of the Zth run of a
“very long” random permutation. In this example, u = % and y® = %2 (from EX® = % and
EX X, = %). Thus, by Theorems 2.2 and 3.1

ES? Ly =Er(n—1) =2n + O(1)
Var(¥7 L) = Var 7(n — 1) = 2n/3 + O(n"?).

The following example yields new proofs of some results on how many random letters
are required until a given sequence occurs. (See [3], [9] and further references given there.)
We only consider the simplest case.

ExaMPLE 4.2. Let {£,}7 be independent, uniformly distributed random letters from
an alphabet with N letters. Let a; - - - am+1 be a fixed sequence of m + 1 letters and define
Xn=I(£n e gn+m=al s am+1)'

Let L, = 7(k — 1) — 7(k — 2). L, is the distance from the (2 — 1)th to the £th occurrence
of a; +++ am+1. In this case Ly, Ls, - - . are independent and identically distributed. Thus,
Theorem 2.2 implies, with e, = I(a; « -+ &% = Qm+2—t *+* Qm+1), that EL, = 1/u = N™' n
=2

Var(L,) = v2/u® = N™ (N™ 4 s YT euN* —2m — 1), n=2.
It is easily seen that EX, ¢+ = E(Xp+i| X, = 1) = €nr1-:N %, i =0 - .. m. Thus
ES,0y+m = ES:0) + Y21 EXo04i = 1 + YT €me1miN - = Y7 g, N,

By Lemma 1.1 ES,q+m = (E7(0) + m)N~™! whence EL; = Er(0) = ¥7*! &;N* — m. With
some effort one obtains, using Theorem 1.2,

Var L; = (37" &N*)? = I (2i — De;N°.

REMARK 4.1. These examples are of the form X, = @(&,, - -+, &), With &, ii.d,; it is
an interesting and apparently open problem whether every stationary m-dependent se-
quence can be written in this way.

Note added in proof. The lattice variable version of the conjecture in Remark 3.1
is false, see Janson, Runs in m-dependent sequences (to appear).
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