RENEWAL THEORY FOR M-DEPENDENT VARIABLES

By Svante Janson

Uppsala University

Let S_n , $n=1,2,\cdots$, denote the partial sums of a stationary m-dependent sequence of random variables with positive expectation. The first passage times $\min\{n: S_n > t\}$ are investigated. Several results are extended from the case of independent variables.

0. Introduction. Let $\{X_n\}_1^\infty$ be a stationary m-dependent sequence of random variables. (X will be used to denote a generic variable in the sequence.) The nonnegative integer m will be fixed throughout the paper. The purpose of this paper is to study the sequence of partial sums $S_n = \sum_{i=1}^n X_i$, and the stopping times $\tau(t) = \min\{n: S_n > t\}$, when X has positive expectation. In particular, we are interested in the existence and the asymptotic behaviour of the moments of $\tau(t)$ and the overshoot $S_{\tau(t)} - t$ for various integrability conditions on X.

For independent variables (the special case m=0) such problems have been extensively studied, see e.g. [7] and the references listed therein. Some of these results are generalized in this paper.

Related problems, including a version of Blackwell's renewal theorem, are treated for dependent sequences by Berbee [2].

Section 1 uses martingale theory to establish some basic results for the sequence $\{S_n\}$ and arbitrary stopping times, most notably a version of Wald's lemma (Theorem 1.1).

Section 2 applies these results to the renewal times $\tau(t)$. Using these more complicated martingale results, the proofs for the independent case hold with only minor modifications. One of the main results is $E\tau(t)=t/EX+o(t^{1/r})$ as $t\to\infty$, provided $E\mid X\mid^r<\infty$.

Section 3 contains a refinement for the case $X \ge 0$. Then $E_{\tau}(t) = t/EX + O(1)$, provided $EX^2 < \infty$.

Section 4 is devoted to applications.

- 1. Martingales and stopping times. In this section we make the following assumptions.
 - (i) $\{X_n\}_1^{\infty}$ is a stationary sequence of random variables adapted to an increasing sequence of σ -fields $\{\mathscr{F}_n\}_1^{\infty}$ on a probability space $(\Omega, \mathscr{F}_{\infty}, P)$.
 - (ii) m is an integer such that $\{X_{n+i}\}_{i=m+1}^{\infty}$ is independent of \mathcal{F}_n for every n.
 - (iii) $\mu = EX$ exists (in this section not necessarily positive).
 - (iv) τ is a stopping time relative to $\{\mathscr{F}_n\}$.

Let $\mathscr{F}_n = \{\emptyset, \Omega\}$ for $n \leq 0$. We define $S_n = \sum_{1}^n X_k$ and $U_n = E(S_{n+m} - (n+m)\mu \mid \mathscr{F}_n)$, $n \geq 0$. (For $n \leq 0$ let $U_n = 0$.)

Let
$$V_n = U_n - (S_n - n\mu) = E(\sum_{i=1}^m (X_{n+i} - \mu) \mid \mathscr{F}_n)$$
 and $\Delta U_n = U_n - U_{n-1} = X_n - \mu + V_n - V_{n-1}$.

If $EX^2 < \infty$, let $\gamma^2 = \text{Cov}(X_n, S_{n+m}) = \text{Var } X_n + 2 \sum_{i=1}^m \text{Cov}(X_n, X_{n+i}) (n > m)$. Note that $\gamma^2 = \lim_{n \to \infty} (1/n) \text{ Var } S_n \ge 0$.

LEMMA 1.1. $\{U_n\}_0^{\infty}$ is a martingale.

PROOF.
$$E(U_n|\mathscr{F}_{n-1}) = E(S_{n+m} - (n+m)\mu|\mathscr{F}_{n-1}) = U_{n-1} + E(X_{n+m} - \mu|\mathscr{F}_{n-1}) = U_{n-1}.$$

Received March 1982; revised September 1982.

AMS 1980 subject classifications. Primary, 60K05; secondary 60G40, 60G42.

Key words and phrases. Renewal theory, first passage times, m-dependent variables.

THEOREM 1.1. If $X \ge 0$ a.s. or $E_{\tau} < \infty$, then

$$ES_{\tau+m} = (E\tau + m)u$$

PROOF. By Lemma 1.1, $E(S_{\tau \wedge N+m} - (\tau \wedge N + m)\mu) = EU_{\tau \wedge N} = EU_0 = 0$. Thus, $ES_{\tau \wedge N+m} = (E(\tau \wedge N + m))\mu$. For positive X, the result follows by monotone convergence as $N \to \infty$. If $E\tau < \infty$, we use the decomposition $X_n = X_n^+ - X_n^-$.

For independent variables (m = 0) this theorem reduces to Wald's lemma $ES_{\tau} = E\tau\mu$. This formula fails for m-dependent variables, but Theorem 1.1 gives a useful substitute.

We next turn to the variance of $S_{\tau+m}-(\tau+m)\mu$ (cf. [4] for m=0). We single out a special case as a lemma.

LEMMA 1.2. Assume that $EX^2 < \infty$ and that τ is a bounded stopping time. Then

$$EU_{\tau+m}^2 = (E\tau + m)\gamma^2 + EV_{\tau+m}^2.$$

PROOF. We may assume that $\mu = 0$. (Otherwise, we replace X_n by $X_n - \mu$.) Since $I(\tau \ge i - m)$ is \mathscr{F}_{i-m-1} -measurable,

$$EU_{\tau+m}^2 = E\sum_{i \leq \tau+m} (\Delta U_i)^2 = E\sum_{i=1}^{\infty} I(\tau \geq i-m)(\Delta U_i)^2$$
$$= \sum_{i=1}^{\infty} E(I(\tau \geq i-m)E((\Delta U_i)^2 | \mathscr{F}_{i-m-1})).$$

Furthermore $\Delta U_i = X_i + V_i - V_{i-1}$, which by orthogonality yields

$$E((\Delta U_i)^2 | \mathscr{F}_{i-1}) = E((X_i + V_i)^2 | \mathscr{F}_{i-1}) - E(V_{i-1}^2 | \mathscr{F}_{i-1})$$

and

$$E((\Delta U_i)^2|\mathscr{F}_{i-m-1}) = E(X_i^2 + 2X_iV_i + V_i^2 - V_{i-1}^2|\mathscr{F}_{i-m-1}).$$

Using $V_i = E(\sum_{i=1}^m X_{i+i} | \mathscr{F}_i)$ we obtain $X_i V_i = E(\sum_{i=1}^m X_i X_{i+i} | \mathscr{F}_i)$ and (by assumption (ii))

$$E(X_i^2 + 2X_iV_i|\mathscr{F}_{i-m-1}) = E(X_i^2 + 2\sum_{i=1}^m X_iX_{i+j}|\mathscr{F}_{i-m-1}) = E(X_i^2 + 2\sum_{i=1}^m X_iX_{i+j}) = \gamma^2.$$

Consequently,

$$E((\Delta U_i)^2 | \mathscr{F}_{i-m-1}) = \gamma^2 + E(V_i^2 - V_{i-1}^2 | \mathscr{F}_{i-m-1})$$

and

$$EU_{\tau+m}^{2} = \sum_{i=1}^{\infty} E(I(\tau \ge i - m)(\gamma^{2} + E(V_{i}^{2} - V_{i-1}^{2} | \mathscr{F}_{i-m-1})))$$

$$= \sum_{i=1}^{\infty} E(I(\tau \ge i - m)(\gamma^{2} + V_{i}^{2} - V_{i-1}^{2})) = E\sum_{i=1}^{\tau+m} (\gamma^{2} + V_{i}^{2} - V_{i-1}^{2})$$

$$= (E\tau + m)\gamma^{2} + EV_{i-m}^{2}.$$

Theorem 1.2. Assume that $EX^2 < \infty$ and $E\tau < \infty$. Then

- (i) $EU_{\tau+m}^2 = (E\tau + m)\gamma^2 + EV_{\tau+m}^2$
- (ii) $E(S_{\tau+m}-(\tau+m)\mu)^2=(E\tau+m)\gamma^2-2E(S_{\tau+2m}-S_{\tau+m}-m\mu)(S_{\tau+m}-S_{\tau}-m\mu)$
- (iii) $E(S_{\tau+2m}-(\tau+2m)\mu)^2=E\tau\cdot\gamma^2+E(S_{2m}-2m\mu)^2$.

PROOF. Again, for convenience, we assume that $\mu=0$. By Hölder's and Cauchy-Schwarz' inequalities,

$$V_{\tau \wedge N+m}^2 \leq E\left(\left(\sum_{i=1}^m X_{\tau \wedge N+i}\right)^2 \middle| \mathscr{F}_{\tau \wedge N}\right) \leq mE\left(\sum_{i=1}^m X_{\tau \wedge N+i}^2 \middle| \mathscr{F}_{\tau \wedge N}\right) \leq mE\left(\sum_{i=1}^{\tau+m} X_n^2 \middle| \mathscr{F}_{\tau \wedge N}\right).$$

Theorem 1.1 applied to $\{X_n^2\}$ shows that $\sum_{1}^{\tau+m} X_n^2$ is integrable. Hence, the family $\{E(\sum_{1}^{\tau+m} X_n^2 | \mathscr{F}_{\tau \wedge N})\}_{N=1}^{\infty}$ is uniformly integrable [11, Lemma IV-2-4]. Thus, $\{V_{\tau \wedge N+m}^2\}$ is uniformly integrable and, since $V_{\tau \wedge N+m} \to V_{\tau+m}$ a.s., $EV_{\tau \wedge N+m}^2 \to EV_{\tau+m}^2$ as $N \to \infty$.

Since, by Lemma 2, $E \sum_{i}^{\tau \wedge N+m} (\Delta U_i)^2 = (E(\tau \wedge N) + m)\gamma^2 + EV_{\tau \wedge N+m}^2$, monotone convergence yields $E \sum_{i}^{\tau + m} (\Delta U_i)^2 = (E\tau + m)\gamma^2 + EV_{\tau + m}^2 < \infty$ and (i) follows from [4, Theorem 1].

Since
$$U_{\tau+m} = S_{\tau+m} + V_{\tau+m}$$
 and $U_{\tau+m} = E(S_{\tau+2m} | \mathscr{F}_{\tau+m}),$

$$(E\tau + m)\gamma^2 = EU_{\tau+m}^2 - EV_{\tau+m}^2 = E(U_{\tau+m} - V_{\tau+m})(U_{\tau+m} + V_{\tau+m})$$

$$= ES_{\tau+m}(2U_{\tau+m} - S_{\tau+m})$$

$$= 2ES_{\tau+m}S_{\tau+2m} - ES_{\tau+m}^2 = ES_{\tau+m}^2 + 2ES_{\tau+m}(S_{\tau+2m} - S_{\tau+m})$$

$$= ES_{\tau+m}^2 + 2E(S_{\tau+2m} - S_{\tau+m})(S_{\tau+m} - S_{\tau}) + 2E(S_{\tau+2m} - S_{\tau+m})S_{\tau}.$$

(i) follows from $E(S_{\tau+2m} - S_{\tau+m})S_{\tau} = E(E(S_{\tau+2m} - S_{\tau+m} | \mathscr{F}_{\tau})S_{\tau}) = 0.$

To prove (iii), note that by the computation above

$$ES_{\tau+2m}^2 - E\tau\gamma^2 = E(S_{\tau+2m}^2 - 2S_{\tau+m}S_{\tau+2m} + S_{\tau+m}^2) + m\gamma^2 = E(E(S_{\tau+2m} - S_{\tau+m})^2 | \mathscr{F}_{\tau}) + m\gamma^2.$$

However, $E((S_{\tau+2m}-S_{\tau+m})^2|\mathscr{F}_{\tau})$ is a constant independent of τ . Hence $ES_{\tau+2m}^2-E\tau\gamma^2$ does not depend on τ , and the trivial case $\tau = 0$ shows that it equals ES_{2m}^2 , which proves

In the next section we shall study a family of stopping times, keeping $\{X_n\}$ fixed. Therefore, we shall use $o(E\tau)$ to denote quantities $\delta(\tau) = \delta(\tau, \{X_n\})$ such that, for fixed $\{X_n\},$

$$\sup\{|\delta(\tau)|/E\tau: \tau \text{ is a stopping time such that } A < E\tau < \infty\}$$

is finite for any A > 0 and converges to 0 as $A \to \infty$. $o((E\tau)^{1/r})$ etc. are defined similarly. Next, we collect some important consequences of Theorems 1.1 and 1.2.

COROLLARY 1.1. Assume that $E|X|^r < \infty$, where $1 \le r < \infty$. For stopping times τ such that $E\tau < \infty$.

- (i) $E |X_{\tau}|^r = o(E\tau)$
- (ii) $E|X_{\tau}| = o((E\tau)^{1/r})$
- (iii) $E |S_{\tau+m} S_{\tau}|^r = o(E\tau)$
- (iv) $E |S_{\tau+m} S_{\tau}| = o((E\tau)^{1/r})$
- (v) $ES_{\tau} = E\tau \cdot \mu + o((E\tau)^{1/r}).$

Furthermore, if $r \geq 2$,

- (vi) $||S_{\tau} \tau \mu||_2 = \sqrt{E\tau}\gamma + o((E\tau)^{1/r})$ (vii) $E(S_{\tau} \tau \mu)^2 = E\tau\gamma^2 + o((E\tau)^{1/2+1/r}).$

If $r = \infty$ (X is bounded), (ii) (trivially) and (iv) – (vii) hold with o replaced by O.

PROOF. By Theorem 1.1 applied to $\{|X_n|^r\}$,

$$E |X_{\tau}|^r \le E \sum_{1}^{\tau+m} |X_i|^r = (E\tau + m)E |X|^r.$$

This estimate is improved to "o" in the following standard way. Let $\varepsilon > 0$ and let $X'_n = X_n \cdot$ $I(|X_n| > A)$ and $X_n'' = X_n - X_n'$ where A is so large such that $E|X_n'|^r < \varepsilon$. Then

$$E |X_{\tau}|^r = E |X_{\tau}'|^r + E |X_{\tau}''|^r \le (E_{\tau} + m)E |X'|^r + A^r < \varepsilon E_{\tau} + C_{\varepsilon}.$$

This proves (i). (ii) follows by Lyapunov's inequality. (iii) and (iv) are proved similarly, using Hölder's inequality $|S_{\tau+m} - S_{\tau}|^r = |\sum_{i=1}^m X_{\tau+i}|^r \le m^{r-1} \sum_{i=1}^m |X_{\tau+i}|^r$. (v) follows immediately from (iv) and Theorem 1.1.

If $r \ge 2$, Theorem 1.2 (iii) yields

$$||S_{\tau+2m} - (\tau + 2m)\mu||_2 = \sqrt{E\tau}\gamma + O((E\tau)^{-1/2}).$$

Since $||S_{\tau+2m} - S_{\tau+m}||_2$ is constant (cf. the proof of Theorem 1.2), and $||S_{\tau+m} - S_{\tau}||_2 \le ||S_{\tau+m}||_2$ $-S_{\tau}||_{r} = o((E\tau)^{1/r})$ by (iii), (vi) follows from Minkowski's inequality. (vii) is obtained by squaring. The modifications in the case $r = \infty$ are easy.

Finally, we give an estimate for arbitrary moments of $S_{\tau} - \tau \mu$. For the independent case, see [7] and [8].

LEMMA 1.3. Let $1 \le r < \infty$ and $r_1 = \max(r/2, 1)$. Suppose that $E \mid X \mid^r < \infty$, $E\tau^{r_1} < \infty$ and EX = 0. Then, for any non-negative integer k,

$$E\left|\sum_{n=1}^{\tau} E\left(X_{n+k}\middle|\mathscr{F}_{n}\right)\right|^{r} \leq C_{m,r,k} E \tau^{r_{1}} E\left|X\right|^{r}.$$

 $(C_{m,r,k} \text{ is a universal constant.})$

PROOF. If k > m, $E(X_{n+k} | \mathscr{F}_n) = EX_{n+k} = 0$ and there is nothing to prove. We perform an induction on k (backwards) and r, assuming the estimate to hold for r, k+1 as well as for r/2 and any k (if $r \ge 2$).

$$\sum_{n=1}^{\tau} E(X_{n+k}|\mathscr{F}_n) = \sum_{1}^{\tau} \left(E(X_{n+k}|\mathscr{F}_n) - E(X_{n+k}|\mathscr{F}_{n-1}) \right) + \sum_{1}^{\tau} E(X_{n+k+1}|\mathscr{F}_n) - E(X_{\tau+k+1}|\mathscr{F}_\tau).$$

By the c_r -inequalities, it suffices to estimate the three terms on the right-hand side separately. The estimate holds for the second term by the induction hypothesis, and for the third term by

$$E | E(X_{\tau+k+1} | \mathscr{F}_{\tau})|^r \le E |X_{\tau+k+1}|^r \le E \sum_{i=1}^{\tau+m} |X_i|^r = (E\tau + m)E |X|^r$$

(if k < m, otherwise the term vanishes).

The first term above is a stopped martingale and we use the Burkholder-Gundy inequality [6]

$$E\left|\sum_{1}^{\tau}\left(E\left(X_{n+k}\middle|\mathscr{F}_{n}\right)-E\left(X_{n+k}\middle|\mathscr{F}_{n-1}\right)\right)\right|^{r}\leq C_{r}EQ^{r},$$

where the square function Q is defined by

$$Q^{2} = \sum_{1}^{r} (E(X_{n+k}|\mathscr{F}_{n}) - E(X_{n+k}|\mathscr{F}_{n-1}))^{2} \le \sum_{1}^{r} 2(E(X_{n+k}|\mathscr{F}_{n})^{2} + E(X_{n+k}|\mathscr{F}_{n-1})^{2})$$

$$\le 2 \sum_{1}^{r} E(X_{n+k}|\mathscr{F}_{n})^{2} + 2 \sum_{1}^{r} E(X_{n+k+1}|\mathscr{F}_{n})^{2}.$$

We will estimate the r/2th moment of the first sum, the second sum is treated the same way. We look at two cases separately.

If $r \leq 2$,

$$\begin{split} E(\sum_{i=1}^{n} E(X_{n+k} | \mathscr{F}_{n})^{2})^{r/2} &\leq E \sum_{i=1}^{n} |E(X_{n+k} | \mathscr{F}_{n})|^{r} \leq E \sum_{i=1}^{n} E(|X_{n+k}|^{r} | \mathscr{F}_{n}) \\ &\leq \sum_{i=1}^{m} E(I(\tau \geq n - m)E(|X_{n+k}|^{r} | \mathscr{F}_{n})) \\ &= \sum_{i=1}^{m} EI(\tau \geq n - m)E|X_{n+k}|^{r} = (E\tau + m)E|X|^{r}. \end{split}$$

If r > 2, let $\sigma^2 = EX^2$. Then

$$\sum_{1}^{\tau} E(X_{n+k} | \mathscr{F}_{n})^{2} \leq \sum_{1}^{\tau} E(X_{n+k}^{2} | \mathscr{F}_{n}) = \tau \sigma^{2} + \sum_{1}^{\tau} E(X_{n+k}^{2} - \sigma^{2} | \mathscr{F}_{n}).$$

 $E(\tau\sigma^2)^{r/2} \leq E\tau^{r/2} E|X|^r$ and by the induction hypothesis applied to $\{X_n^2 - \sigma^2\}$,

$$E \left| \sum_{1}^{r} E(X_{n+k}^2 - \sigma^2 | \mathscr{F}_n) \right|^{r/2} \le C_{m,r/2,k} E \tau^{\max(r/4,1)} E \left| X^2 - \sigma^2 \right|^{r/2}.$$

Thus, for any r, $EQ^r = E(Q^2)^{r/2} \le C_{m,r,k} E\tau^{r_1} E|X|^r$. The proof is complete.

THEOREM 1.3. Suppose that $E|X|^r < \infty$, where $1 \le r < \infty$.

- (i) If $E\tau$, $E\tau^{r/2} < \infty$, then $E | S_{\tau} \tau \mu |^r \le C_{m,r} (E\tau + E\tau^{r/2}) E | X |^r < \infty$.
- (ii) If $E\tau^r < \infty$, then $E \mid S_\tau \mid^r \le C_{m,r} E\tau^r E \mid X \mid^r < \infty$.

PROOF. (i) follows by taking k = 0 in Lemma 3 (applied to $\{X_n - \mu\}$) and (ii) is an immediate consequence.

2. Renewal theory. From now on, we assume that $\mu = EX > 0$. We shall study the stopping times $\tau(t)$ defined in the introduction. (We may take $\mathscr{F}_n = \mathscr{F}(X_1, \dots, X_n)$.) By the law of large numbers $\tau(t) < \infty$ a.s. Also, $\tau(t) \to \infty$ and thus $E\tau(t) \to \infty$ as $t \to \infty$.

For completeness, we include the following theorem which is proved exactly as for independent variables.

THEOREM 2.1.

- (i) $\tau(t)/t \rightarrow 1/\mu$ a.s.
- (ii) $S_{\tau(t)}/t \rightarrow 1$ a.s.
- (iii) If $E|X|^r < \infty$, $1 \le r < 2$, then $\tau(t) t/\mu = o(t^{1/r})$ a.s. and $S_{\tau(t)} t = o(t^{1/r})$ a.s.

(iv) If
$$EX^2 < \infty$$
 and $\gamma^2 \neq 0$, then $\frac{\tau(t) - t/\mu}{\sqrt{\gamma^2 t/\mu^3}} \rightarrow_d N(0, 1)$.

PROOF. By the law of large numbers $S_n/n \to \mu$ and $X_n/n \to 0$ a.s. as $n \to \infty$. Hence $S_{\tau(t)}/\tau(t) \to \mu$ and $X_{\tau(t)}/\tau(t) \to 0$ a.s. as $t \to \infty$, which imply $t/\tau(t) \to \mu$ a.s., from which (i) and (ii) follow.

- (iii) is proved similarly, cf. [7; Theorem 28].
- (iv) follows from the central limit theorem, Anscombe's theorem [1] and the estimate $(S_{\tau(t)} t)/\sqrt{t} \rightarrow_P 0$ (which follows e.g. from Theorem 2.2 (iii) below).

In the remainder of this section we shall combine the martingale estimates of Section 1 with arguments from [7] to estimate moments.

LEMMA 2.1. For any $t \ge 0$, $E_{\tau}(t) < \infty$.

PROOF. Define $X_n' = X_n \wedge A$, where A is a large constant such that $\mu' = EX' > 0$. Let S_n' and $\tau'(t)$ have the obvious meanings. Then $S_n' \leq S_n$ whence $\tau'(t) \geq \tau(t)$. Thus, it suffices to show that $E\tau'(t) < \infty$. Since $S_n' \leq t$ for $n < \tau'(t)$, and $X_i' \leq A$, $S_n' \leq t + (m+1)A$ for $n \leq \tau'(t) + m$. Hence, by Theorem 1.1,

$$(E\tau'(t) \wedge N + m)\mu' = ES'_{\tau(t)\wedge N+m} \leq t + (m+1)A.$$

By monotone convergence, $E\tau'(t) \leq (t + (m+1)A)/\mu' < \infty$.

THEOREM 2.2. Suppose that $E|X|^r < \infty$, where $1 \le r < \infty$. Then, as $t \to \infty$,

- (i) $E\tau(t) = t/\mu + o(t^{1/r})$
- (ii) $E(S_{\tau(t)} t)^r = o(t)$
- (iii) $ES_{\tau(t)} t = o(t^{1/r}).$

Furthermore, if r > 2,

- (iv) Var $\tau(t) = t\gamma^2/\mu^3 + o(t^{1/2+1/r})$
- (v) $E(\tau(t) t/\mu)^2 = t\gamma^2/\mu^3 + o(t^{1/2+1/r})$.

If $r = \infty$ (X is bounded) these estimates (except (ii)) holds with o replaced by O.

REMARK 2.1. For positive variables, (i) and (iii) will be sharpened, but we postpone this to the next section.

PROOF. Observe that

$$0 < S_{\tau(t)} - t \leq X_{\tau(t)}.$$

Hence, using Corollary 1.1 (ii) and (v),

$$t = ES_{\tau(t)} + o((E\tau(t))^{1/r}) = E\tau(t)\mu + o((E\tau(t))^{1/r}).$$

Thus, $t \to \infty$ implies

$$t/E\tau(t) \to \mu$$
, i.e. $E\tau(t)/t \to 1/\mu$ as $t \to \infty$.

Hence, all terms $o((E\tau(t))^{1/r})$ may be replaced by $o(t^{1/r})$ and (i) follows from the computations above. (ii) and (iii) follow from Corollary 1.1 (i) and (ii). If $r \ge 2$, (ii) yields $||S_{\tau(t)} - t||_2 \le ||S_{\tau(t)} - t||_r = o(t^{1/r})$. By Corollary 1.1 (vi),

$$\|t - \tau(t)\mu\|_2 = \sqrt{E\tau(t)}\gamma + o(t^{1/r}) = \sqrt{t/\mu}\gamma + o(t^{1/r})$$

and (v) follows by squaring. (v) and (i) yield (iv). The modifications for $r = \infty$ are omitted.

Theorem 2.3. Let $1 \le r < \infty$.

- (i) If $E(X^+)^r < \infty$ then $ES_{\tau(t)}^r < \infty$ and $ES_{\tau(t)}^r / t^r \to 1$ as $t \to \infty$.
- (ii) If $E(X^-)^r < \infty$ then $E_T(t)^r < \infty$ and $E_T(t)^r/t^r \to \mu^{-r}$ as $t \to \infty$.

PROOF. (i) $E(X_{\tau(t)}^+)^r = o(E\tau(t)) = o(t)$ by Corollary 1.1 and Theorem 2.2. Thus, $\|S_{\tau(t)} - t\|_r \le \|X_{\tau(t)}^+\|_r = o(t^{1/r})$ and $\|S_{\tau(t)}\|_r = t + o(t^{1/r})$. (ii) We assume that $E|X|^r < \infty$. (Otherwise truncate as in the proof of Lemma 2.1. Cf. [7; Theorem 2.3].) For r = 1 there is nothing new to prove. If r > 2 we assume, by induction on r, that the theorem holds for r/2. Thus, with $r_1 = \max(r/2, 1)$, $E\tau(t)^{r_1} = O(t^{r_1})$. By Theorem 1.3 (i).

$$E |S_{\tau(t)} - \tau(t)\mu|^r \le CE\tau(t)^{r_1}E |X|^r = O(t^{r_1}).$$

Thus

$$||S_{\tau(t)} - \tau(t)\mu||_r = O(t^{r_1/r}).$$

Minkowski's inequality and (i) finally yield

$$\|\tau(t)\mu\|_{L^r}=t+O(t^{r_1/r})=t+o(t).$$

REMARK 2.2 Under the hypothesis of Theorem 2.3, $\{S_{\tau(t)}/t\}_{t\geq 1}$ and $\{\tau(t)/t\}_{t\geq 1}$, respectively, are uniformly integrable. This follows from a combination with Theorem 2.1.

REMARK 2.3. (i) may be compared to Theorem 3.1 which shows that (for $X \ge 0$) $E(S_{\tau(t)} - t)^r$ is bounded as $t \to \infty$ if and only if $EX^{r+1} < \infty$.

REMARK 2.4. Since $X_1^+ \leq S_{\tau(t)}$, the converse of (i) holds, viz. if $ES_{\tau(t)}^r < \infty$ for some $t \geq 0$, then $E(X^+)^r < \infty$. For independent summands, the converse of (ii) also holds [7], but for *m*-dependent variables this is not true, as is shown by the following example.

Example 2.1. Let r > 1. Let $\{\xi_n\}_0^{\infty}$ be positive i.i.d. random variables such that $P(\xi_n < 1) > 0$ and $E\xi_n' = \infty$. Define

$$X_n = \begin{cases} -\xi_n & \text{if } \xi_{n-1} < 1 < \xi_n \\ 1 + \xi_{n-1} & \text{otherwise.} \end{cases}$$

Then $\{X_n\}$ is 1-dependent, $E(X^-)^r = \infty$, but $E_\tau(t)^r < \infty$. In fact, since every negative X_n is more than cancelled by the next one, $\tau(t) < 2(t+1)$.

REMARK 2.5. Several of the results may be extended to the case $\mu = +\infty$, i.e. $EX^- < \infty$, $EX^+ = \infty$, by truncation. For instance, with $X' = X \wedge t$, where t is large enough, $(E\tau'(t) + m)EX' = ES'_{\tau(t)+m} \le (m+2)t$. Hence $E\tau(t) \le E\tau'(t) \le (m+2)t/E(X \wedge t)$. Thus, $E\tau(t)/t \to 0 = 1/\mu$. Some results can be extended to 0 < r < 1, e.g. $E(X^+)^r < \infty \Leftrightarrow ES^r_{\tau(t)} < \infty$.

3. Further results. Theorem 2.2 is not completely satisfactory since the error terms are coarser than what presumably is required. For independent variables it is e.g. known that (in the non-lattice case) $E\tau(t) - t/\mu$ converges to a finite limit, provided only that $EX^2 < \infty$. We have not been able to prove this for m-dependent variables, but with the extra assumption $X \ge 0$ we now will prove a somewhat weaker result (Theorem 3.1). Cf. [2, Chapter 3] and [10] for related material.

LEMMA 3.1. Assume that $X \ge 0$ a.s. and that $EX^r < \infty$, where $1 < r < \infty$. Then $E(S_{\tau(t)+m} - t)^{r-1} = O(1)$.

PROOF. Extend $\{X_n\}_{\infty}^n$ to a doubly infinite stationary sequence $\{X_n\}_{-\infty}^\infty$. We may

assume that $\Omega = R^{\infty}$ and that $\{X_n\}_{-\infty}^{\infty}$ are the coordinate functions. Let T denote the measure preserving shift mapping $\Omega \to \Omega$ defined by $X_n(T\omega) = X_{n+1}(\omega)$.

We extend the definition $\tau(t,\omega)=\inf\{n\geq 0: S_n(\omega)>t\}$ to all real t. Thus $\tau(t,\omega)=0$ for t<0. Let $\varphi(t,\omega)=(S_{\tau(t,\omega)+m}(\omega)-t)^{r-1}$. Thus, for t<0, $\varphi(t)=(S_m-t)^{r-1}$. Since $S_n(\omega)=X_1(\omega)+S_{n-1}(T\omega)$, n>0, it follows that

$$\tau(t, \omega) = \tau(t - X_1(\omega), T\omega) + 1, \qquad t \ge 0,$$

and

$$\varphi(t, \omega) = \varphi(t - X_1(\omega), T\omega) = \varphi(t - X_0(T\omega), T\omega), \quad t \ge 0.$$

Thus,

$$\int \varphi(t,\omega) \ dP = \int \varphi(t-X_0(T\omega), T\omega) \ dP = \int \varphi(t-X_0(\omega), \omega) \ dP, \qquad t \ge 0.$$

Let ν be the measure $I(0 \le s < X_0)$ ds dP on $R \times \Omega$. The total mass of ν equals $\int X_0 dP = \mu$. If $t \ge 0$,

$$\int \varphi(t-s,\omega) \ d\nu = \iint_{0 \le s \le \chi_0} \varphi(t-s,\omega) \ ds \ dP = \iint_{1 \ge t \le J-\chi_0} \varphi(u,\omega) \ du \ dP$$

and

$$\int \varphi(t-s,\omega) \ d\nu - \int \varphi(-s,\omega) \ d\nu$$

$$= \iint (I(t \ge u > t - X_0) - I(0 \ge u > -X_0))\varphi(u,\omega) \ du \ dP$$

$$= \iint (I(t \ge u > 0) - I(t - X_0 \ge u > -X_0))\varphi(u,\omega) \ du \ dP$$

$$= \iint I(t \ge u > 0)(\varphi(u,\omega) - \varphi(u - X_0,\omega)) \ du \ dP$$

$$= \int_0^t \left(\int \varphi(u,\omega) \ dP - \int \varphi(u - X_0,\omega) \ dP \right) du = 0.$$

Thus,

$$\int \varphi(t-s,\omega) \ d\nu = \int \varphi(-s,\omega) \ d\nu = \int \int_{0 \le s < X_0} (S_m + s)^{r-1} \ ds \ dP$$

$$\leq \int \frac{1}{r} (X_0 + S_m)^r \ dP = \frac{1}{r} ES_{m+1}^r < \infty, \qquad t \ge 0.$$

Let A denote this common value of $\int \varphi(t-s, \omega) d\nu$, $t \ge 0$. $\tau(t)$ and $S_{\tau(t)+m}$ are non-decreasing functions of t. Thus

$$S_{\tau(t)+m} - t \le S_{\tau(t+h)+m} - (t+h) + h, \quad h > 0.$$

For simplicity, we assume that $r \le 2$, in which case $\varphi(t, \omega) \le \varphi(t + h, \omega) + h^{r-1}$. (The proof for r > 2 is similar, using $(a + b)^r \le (1 + \varepsilon)a^r + C_{r,\varepsilon}b^r$, $\varepsilon > 0$.)

Choose $\delta > 0$ such that $P(X > \delta) > 0$. Then, if $t \ge 0$,

$$\begin{split} \delta \int \varphi(t,\omega) I(X_0 \geq \delta) \ dP \leq \int_0^\delta \int \varphi(t+h,\omega) I(X_0 \geq \delta) \ dP \ dh + \delta^r \\ &= \int_0^\delta \int \varphi(t+\delta-s,\omega) I(X_0 \geq \delta) \ dP \ ds + \delta^r \\ &\leq \int \int I(X_0 > s > 0) \varphi(t+\delta-s,\omega) \ dP \ ds + \delta^r = A + \delta^r. \end{split}$$

Furthermore, if $t \ge 0$,

$$\varphi(t, \omega) = \varphi(t - X_1(\omega), T\omega) \le \varphi(t, T\omega) + X_1(\omega)^{r-1}$$

By iteration,

$$\varphi(t, \omega) \leq \varphi(t, T^m \omega) + X_1(\omega)^{r-1} + \cdots + X_m(\omega)^{r-1}$$

Thus, since X_0 is independent of $\varphi(t, T^m \omega)$,

$$\int \varphi(t, \omega) I(X_0 < \delta) \ dP \le \int \varphi(t, T^m \omega) I(X_0 < \delta) \ dP + mEX^{r-1}$$

$$= P(X_0 < \delta) \int \varphi(t, T^m \omega) \ dP + mEX^{r-1} = P(X < \delta) \int \varphi(t, \omega) \ dP + mEX_1^{r-1}.$$

Combining these two estimates we obtain

$$\int \varphi(t, \omega) \ dP \leq A/\delta + \delta^{r-1} + P(X < \delta) \int \varphi(t, \omega) \ dP + mEX^{r-1}.$$

Since $\int \varphi(t, \omega) dP = E(S_{\tau(t)+m} - t)^{r-1}$ is finite by Corollary 1.1,

$$E(S_{\tau(t)+m}-t)^{r-1} \leq (A/\delta + \delta^{r-1} + mEX^{r-1})/P(X \geq \delta)$$

Theorem 3.1. Assume that $X \ge 0$ a.s.

- (i) $EX^2 < \infty \Leftrightarrow E\tau(t) = t/\mu + O(1)$
- (ii) $EX^r < \infty \Rightarrow E\tau(t) = t/\mu + o(t^{2-r}) \text{ as } t \to \infty, 1 < r < 2$ (iii) $EX^r < \infty \Leftrightarrow E(S_{\tau(t)} t)^{r-1} = O(1), 1 < r < \infty$.

Proof. If $EX^2 < \infty$, then $E\tau(t)\mu = ES_{\tau(t)+m} - m\mu = t + O(1)$ by Theorem 1.1 and Lemma 3.1.

If $EX^r < \infty$, 1 < r < 2, we combine Lemma 3.1, Theorem 2.2 and Corollary 1.1 by Hölder's inequality to obtain

$$E(S_{\tau(t)+m}-t) \leq (E(S_{\tau(t)+m}-t)^{r-1})^{r-1}(E(S_{\tau(t)+m}-t)^r)^{2-r} = o(t^{2-r}).$$

and (ii) follows by Theorem 1.1.

The direct implication of (iii) follows immediately from the lemma and $0 < S_{\tau(t)} - t \le$

To prove the converse implication of (iii), assume that $E(S_{\tau(t)} - t)^{r-1} \leq M$, $0 < t < \infty$. Then

$$r \int_0^T (S_{\tau(t)} - t)^{r-1} dt \ge \int_0^{S_{\tau(T)-1}} r (S_{\tau(t)} - t)^{r-1} dt$$

$$= \sum_{1}^{\tau(T)-1} \int_{S_{n-1}}^{S_n} r (S_n - t)^{r-1} dt = \sum_{1}^{\tau(T)-1} X_n^r \ge \sum_{1}^{\tau(T)-1} (X_n \wedge A)^r.$$

Theorem 1.1, this estimate and Fubini's theorem yield

$$(E\tau(T) + m)E(X \wedge A)^{r} = E \sum_{1}^{\tau(T) + m} (X_{n} \wedge A)^{r}$$

$$\leq E \left(r \int_{0}^{T} (S_{\tau(t)} - t)^{r-1} dt + (m+1)A^{r} \right) \leq rTM + (m+1)A^{r}.$$

We divide this by T and take the limits as first $T \to \infty$ and then $A \to \infty$ to obtain $\mu^{-1}EX^r \le rM$ and $EX^r \le rM\mu$. To show that $\mu < \infty$, we assume temporarily that $EX^p < \infty$ where $p \le 1$. By Theorem 1.1 $(E\tau(T) + m)EX^p = E\sum_1^{r+m}X_n^p \ge E(\sum_1^{r+m}\dot{X}_n)^p \ge T^p$, T > 0. Since $E(X \land A)^r \ge A^rP(X > A)$ we obtain, choosing $T = A^r$ in the inequalities above,

$$EX^{p}(rM+m+1)A^{r} \geq EX^{p}(E\tau(A^{r})+m)E(X\wedge A)^{r} \geq A^{rp}A^{r}P(X>A).$$

Thus $P(X > A) \le CA^{-rp}$, which implies that $EX^q < \infty$ for q < rp. Since $EX^{r-1} < \infty$ by Remarks 2.4 and 2.5, we may iteratively improve the exponent by this argument until we reach $\mu = EX < \infty$. This completes the proof of $EX^r \to \infty$.

The converse implication of (i) follows from this and Theorem 1.1.

REMARK 3.1. If $EX^2 < \infty$, then

$$\int_0^T \left(S_{\tau(t)+m} - t \right) dt = \sum_1^{\tau(T)-1} \left(X_n^2 / 2 + X_n \sum_{i=1}^m X_{n+i} \right) + \theta(X_{\tau(T)}^2 / 2 + X_{\tau(T)} \sum_{i=1}^m X_{\tau(T)+i} \right)$$

for some θ , $0 \le \theta \le 1$. Using $E(X_n^2/2 + \sum_{i=1}^m X_n X_{n+i} | \mathcal{F}_{n-m-1}) = \gamma^2/2 + (m + \frac{1}{2})\mu^2$, one obtains

$$\begin{split} E \int_0^T \left(S_{\tau(t)+m} - t \right) \, dt &= E \sum_1^{\tau(T)+m} \left(X_n^2 / 2 + \sum_{i=1}^m X_n X_{n+i} \right) + o(T) \\ &= \left(E \tau(T) + m \right) (\gamma^2 / 2 + (\frac{1}{2} + m) \mu^2) + o(T) = (\gamma^2 / 2\mu + (m + \frac{1}{2})\mu) T + o(T). \end{split}$$

Hence

$$\frac{1}{T} \int_{0}^{T} \frac{E\tau(t) - t}{\mu} dt = \frac{1}{\mu T} \int_{0}^{T} (ES_{\tau(t)+m} - t) dt - m \to \frac{\gamma^{2}}{2\mu^{2}} + \frac{1}{2}.$$

We conjecture that $E\tau(t) - t/\mu \to \gamma^2/2\mu^2 + \frac{1}{2}$ as $t \to \infty$ (with minor modifications when X has a lattice distribution) (this is true for independent variables), but we have not been able to prove this.

REMARK 3.2. Similarly (1/T) $\int_0^T E(S_{\tau(t)} - t)^{r-1} dt \to EX^r/r\mu$ as $T \to \infty$. We conjecture that $E(S_{\tau(t)} - t)^{r-1} \to EX^r/r\mu$ (in the non-lattice case).

REMARK 3.3. In the case of independent variables, it is often possible to reduce theorems to the case of positive variables by the introduction of the ladder variables $\{Y_n\}$ defined by $N_0=0$, $N_{i+1}=\tau(S_{N_i})$ and $Y_i=S_{N_i}-S_{N_{i-1}}$. This fails for m-dependent variables, at least in its simplest version. The following example shows that, in general, $\{Y_n\}$ is neither stationary nor m-dependent.

EXAMPLE 3.1. Let $\{\xi_n\}_0^\infty$ be i.i.d. r.v. with $P(\xi_n=0)=P(\xi_n=1)=\frac{1}{2}$. Define $\{X_n\}$ by

$$X_n = \begin{cases} 2 & \text{if} \quad \xi_{n-1} = 0, \quad \xi_n = 0 \\ 4 & \text{if} \quad \xi_{n-1} = 0, \quad \xi_n = 1 \\ -1 & \text{if} \quad \xi_{n-1} = 1, \quad \xi_n = 0 \\ 5 & \text{if} \quad \xi_{n-1} = 1, \quad \xi_n = 1. \end{cases}$$

 $\{X_n\}$ is 1-dependent.

The ladder variables take the values 1, 2, 3, 4, 5. They constitute a Markov chain with transition matrix

$$P = \begin{cases} 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0\\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0\\ \frac{1}{4} & 0 & \frac{1}{4} & 0 & \frac{1}{2}\\ \frac{1}{4} & 0 & \frac{1}{4} & 0 & \frac{1}{2}\\ \frac{1}{4} & 0 & \frac{1}{4} & 0 & \frac{1}{2} \end{cases}$$

The initial distribution $\pi_1 = (\frac{1}{6}, \frac{1}{4}, \frac{1}{8}, \frac{1}{4})$ differs from the stationary one $\pi_{\infty} = (\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6})$. Thus, the ladder variables are not identically distributed. Furthermore, if Y_n and Y_{n+m+1} were independent for some $m, n \ge 1$, the rows of P^{m+1} would have to coincide. This would imply that $P^{m+1} = P^{\infty}$, which is impossible since the entries in P^{m+1} are dyadic rationals, while P^{∞} contains $\frac{1}{6}$ and $\frac{1}{3}$. Hence $\{Y_n\}$ is not m-dependent for any m.

4. Applications. Our first application is due to Carl-Gustav Esseen. For further results, see [5].

EXAMPLE 4.1. Let $\{\xi_n\}_1^\infty$ be independent random variables, uniformly distributed on (0,1), and set $X_n=I(\xi_{n+1}<\xi_n)$. Then $\{X_n\}$ is 1-dependent. $\tau(k-1)=\inf\{n:S_n=k\}$ equals the position of the kth decrease in the sequence $\{\xi_n\}$. Thus $L_k=\tau(k-1)-\tau(k-2)$ is the length of the kth increasing run. L_k may be interpreted as the length of the kth run of a "very long" random permutation. In this example, $\mu=\frac{1}{2}$ and $\gamma^2=\frac{1}{12}$ (from $EX^2=\frac{1}{2}$ and $EX_1X_2=\frac{1}{6}$). Thus, by Theorems 2.2 and 3.1

$$E \sum_{1}^{n} L_{k} = E\tau(n-1) = 2n + O(1)$$

$$Var(\sum_{1}^{n} L_{k}) = Var \tau(n-1) = 2n/3 + O(n^{1/2}).$$

The following example yields new proofs of some results on how many random letters are required until a given sequence occurs. (See [3], [9] and further references given there.) We only consider the simplest case.

EXAMPLE 4.2. Let $\{\xi_n\}_1^{\infty}$ be independent, uniformly distributed random letters from an alphabet with N letters. Let $\alpha_1 \cdots \alpha_{m+1}$ be a fixed sequence of m+1 letters and define $X_n = I(\xi_n \cdots \xi_{n+m} = \alpha_1 \cdots \alpha_{m+1})$.

Let $L_k = \tau(k-1) - \tau(k-2)$. L_k is the distance from the (k-1)th to the kth occurrence of $\alpha_1 \cdots \alpha_{m+1}$. In this case L_2 , L_3 , \cdots are independent and identically distributed. Thus, Theorem 2.2 implies, with $\varepsilon_k = I(\alpha_1 \cdots \alpha_k = \alpha_{m+2-k} \cdots \alpha_{m+1})$, that $EL_n = 1/\mu = N^{m+1}$, $n \ge 2$

$$Var(L_n) = \gamma^2/\mu^3 = N^{m+1}(N^{m+1} + s \sum_{1}^{m} \varepsilon_k N^k - 2m - 1), \qquad n \ge 2.$$

It is easily seen that $EX_{\tau(k)+i} = E(X_{n+i} | X_n = 1) = \varepsilon_{m+1-i} N^{-i}, i = 0 \cdots m$. Thus

$$ES_{\tau(0)+m} = ES_{\tau(0)} + \sum_{i=1}^{m} EX_{\tau(0)+i} = 1 + \sum_{1}^{m} \varepsilon_{m+1-i} N^{-i} = \sum_{1}^{m+1} \varepsilon_{i} N^{i-m-1}$$

By Lemma 1.1 $ES_{\tau(0)+m} = (E\tau(0) + m)N^{-m-1}$ whence $EL_1 = E\tau(0) = \sum_{i=1}^{m+1} \varepsilon_i N^i - m$. With some effort one obtains, using Theorem 1.2,

$$\operatorname{Var} L_1 = (\sum_{i=1}^{m+1} \varepsilon_i N^i)^2 - \sum_{i=1}^{m+1} (2i-1)\varepsilon_i N^i.$$

REMARK 4.1. These examples are of the form $X_n = \varphi(\xi_n, \dots, \xi_{n+m})$, with ξ_n i.i.d.; it is an interesting and apparently open problem whether every stationary *m*-dependent sequence can be written in this way.

Note added in proof. The lattice variable version of the conjecture in Remark 3.1 is false, see Janson, Runs in m-dependent sequences (to appear).

Acknowledgment. This paper was initiated by a lecture by Carl-Gustav Esseen on a run process (Example 4.1). I thank him and Allan Gut for helpful and stimulating discussions. I thank the referee for pertinent observations.

REFERENCES

- [1] Anscombe, F. J. (1952). Large-sample theory of sequential estimation. *Proc. Cambridge Phil. Soc.* 48 600-607.
- [2] Berbee, H. C. P. (1979). Random walks with stationary increments and renewal theory. *Math. Centre Tract* 112, Amsterdam.
- [3] Blom, G, and Thorburn, D. (1982). How many random digits are required until given sequences are obtained. J. Appl. Probab. 19 518-531.
- [4] Chow, Y. S., Robbins, H., and Teicher, H. (1965). Moments of randomly stopped sums. Ann. Math. Statist. 36 789-799.
- [5] ESSEEN, C.-G. (1982). On the application of the theory of probability to two combinatorial problems involving permutations. Proc. Seventh Conf. Probab. Theory, Braşov.
- [6] GARSIA, A. M. (1973). Martingale Inequalities. Benjamin, Reading.
- [7] Gut, A. (1974). On the moments and limit distributions of some first passage times. Ann. Probab. 2 277–308.
- [8] Lai, T. L. (1973). On uniform integrability in renewal theory. Bull. Inst. Math. Acad. Sinica 3 99-105.
- [9] Li, S. R. (1980). A martingale approach to the study of occurrence of sequence patterns in repeated experiments. Ann. Probab. 8 1171-1176.
- [10] MATTHES, K. (1963). Stationäre zufällige Punktfolgen I. J. ber. Deutsch. Math. Verein. 66 66-79.
- [11] NEVEU, J. (1975). Discrete-Parameter Martingales. North-Holland, Amsterdam and Oxford.

Uppsala University Department of Mathematics Thunbergsvägen 3 S-75238 Uppsala, Sweden