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STRONG LAW OF LARGE NUMBERS WITH RESPECT TO A SET-
VALUED PROBABILITY MEASURE’

BY MapaN L. Puri AND DAN A. RALESCU

Indiana University and University of Cincinnati

In this paper we define the expected value of a random vector with
respect to a set-valued probability measure. The concepts of independent and
identically distributed random vectors are appropriately defined, and a strong
law of large numbers is derived in this setting. Finally, an example of a set-
valued probability useful in Bayesian inference is provided.

1. Introduction. This research is motivated by the following consideration: there are
instances in Bayesian estimation when the prior probability is not known precisely. In
such situations DeRobertis and Hartigan (1981) suggest using an interval of measures
rather than a single prior, and extend the Bayes theorem in this setting. This idea is
reminiscent of upper and lower probabilities (see Koopman, 1940, and Dempster, 1967).
The risk R(, 8) associated with a decision function § is a random variable in the Bayes
setting (since the unknown parameter 8 is assumed to be a random variable). The main
question then is: how one can evaluate the average risk when the prior measure is not
known precisely. The concept which seems to be useful in such situations is that of a set-
valued measure (see Debreu and Schmeidler, 1970, and Artstein, 1972) with respect to
which the expectation of a random variable is evaluated.

In Section 2 we give some preliminaries on set-valued measures, and we define the
expected value. In Section 3 we prove a strong law of large numbers with respect to a set-
valued probability. In Section 4 we give an example of a set-valued probability measure.

2. Expectation with respect to a set-valued probability measure. The concept
of a set-valued measure was defined in connection with the integral of a set-valued function
(see Debreu and Schmeidler, 1970).

Let Q be a set, o/ a o-algebra of subsets of 2, and 2(R") the collection of all subsets of
R". A set-valued measure is a function IT: .o/ — 2(R"), such that (i) IT(A) # ¢ for every A
€ , (ii) II(U714,) = ¥ 51 I1(4)) for every disjoint family {4,};, A, € «.

Here the sum Y %-; B; of subsets of R" is defined as the collection of all vectors b =
Y51 by where b, € B; and Y51 || b;|| < ce.

In what follows we consider only bounded set-valued measures (such that II(Q) is
bounded). It follows that for such measures, IT(¢) = {0}.

A selection p of Il is a vector-valued measure p:.o/ — R”, such that p(A4) € I1(A) for
every A € .

An atom of the set-valued measure Il is an event A € &/ with II(A) # {0} and such that
A; C A implies IT(A;) = {0} or II(4A\A4,) = {0}. A set-valued measure with no atoms is
called nonatomic.

The following theorem due to Artstein (1972) will be used in the sequel:

THEOREM 2.1. (a) If Il is bounded, nonatomic set-valued measure, then I1(A) is convex
for every A € .

(b) If I1 is bounded set-valued measure, then, for every A € o and x € I1(A), there
exists a selection p. of Il such that p(A) = x.
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A set-valued probability on Q is a set-valued measure I1: .o/ — 2([0, 1]) such that
1 e I1(Q).

A set-valued probability space is a triple (2, <7, IT) where II is a set-valued probability.

Without loss of generality, one can assume that IT is absolutely continuous with respect
to a probability measure P on ; IT < P, that is, for a set A € o/ for which P(A) = 0, we
have IT(A) = {0}. (see Artstein, 1972).

Let X: Q2 — R" be a random vector such that Ep(| X||) = [« || X|| dP < . The expected
value of X with respect to II is defined as fo X dII = {fq X dp:p is a selection of IT}.
According to Theorem 2.1 (b) it is clear that [o XdII # ¢ if Ep(]| X||) < 0.

3. Strong law of large numbers. Let (2, <, II) be a set-valued probability space,
and let X: 2 — R" be a random vector. Then X induces a set-valued probability on the
Borel sets in R™ (denoted by £,) in the following way:

B € %#,, IIx(B) =II(X € B).

The random vectors X;, i = 1 defined on (2, <7, II) are independent if I1(X; € B;, X; €
B, ..., X; € B) = II(X; € By).-- II(X; € B)) where the product of subsets M and N of
[0, 1] is defined by MN = {mn:m € M, n € N}. They are identically distributed if
Ilx,= ... =1Ilx, = -... Clearly these concepts generalize the classical concepts of inde-
pendent and identically distributed random vectors (with respect to an ordinary. probability
measure).

Finally, we need another notation: if x € R", and A C R", then

d(x, A) = infeea|| x — a|.

We now prove our main theorem.

THEOREM 3.1. Let X;, i = 1 be independent and identically distributed random
vectors defined on a set-valued probability space (R, o7, I1) such that I1 < P where P is
a probability measure. If Ep(|| X1]|) < o, then d((1/n) Y31 X;, fo X1 dII) — 0 almost
everywhere with respect to I1.

Proor. Clearly, if p is a selection of IT (which exists according to Theorem 2.1 (b)), it
is not true in general that X,, i = 1 are independent and identically distributed with respect
to u.

To prove the theorem, we will show the following:

There exists a probability measure @ on £ which is a selection of IT and such that X;,
i = 1 are independent and identically distributed with respect to @, and Eq(|| X1]]) < co.

Let @(A) = sup II(A) for every A € & The fact that @ is a probability measure follows
from Proposition 3.1 of Artstein (1972). Also it is clear that Q(X; € B) = Q(X; € B) for
every B€ %, and i = 11i.e, X;, { = 1 are identically distributed.

To prove that X;, { = 1 are independent, it suffices to show that @(X; € B, X; € By)
= Q(X; € B))Q(X; € B;) for every B, B, € %,. By the definition of independence, it
suffices to show that sup(MN) = sup M sup N where M, N C [0, 1]. This being easy to
establish, the desired independence follows.

Since IT < P, it follows from classical results that Ep(]|X1||) < « implies [q | X;| d@
< 00,

We now prove that @ is a selection of IT. From Theorem 2.1(b) there exists a probability
measure §; which is a selection of Il. Clearly @:(4) = @(A) for every A € &, but this
implies that @, = Q.

Now from the classical law of large numbers, it follows that (1/n) Y }-1 X; » Eq¢(X1)
almost everywhere with respect to @. Thus

1 1
d(; 2;‘;1 }(j, f Xl dn) = l l ; 27=1 X, - EQ(Xl) l l - O,
Q

andso d((1/n) Y71 X, fo X1 dII) — 0 almost everywhere (Q).
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The definition of @ implies that the above convergence actually holds almost everywhere
with respect to II, that is, II(}-: X;/n-+%4 [e Xi dII) = {0}. This completes the proof.

4. An example. The strong law of large numbers proved in Section 3 is a generaliza-
tion of the classical law of large numbers.

The simplest example of a set-valued probability measure is provided by an interval of
measures (as studied by DeRobertis and Hartigan, 1981). More precisely let P; and P; be
two finite measures on (£, /) such that P;(A) = P»(A) for every A € &/, and let P; be a
probability measure. Let I1: .o/ — 2([0, 1]) be defined as

(4.1) II(A) = [P1(A), P:(4)], A€«

Clearly Il(¢) = {0} and 1 € I1(£2).
Let {4}, be a disjoint family, A; € /. We must show that II(U5-; 4)) = ¥ 71 II(4)).
This is equivalent to

2= [Pi(A), Po(A)] = [E5-1 Pi(4)), E7-1 P2(4)].
The above equality follows from the formulas
inf Y51 [P1(4)), P2(A)] = Y51 Pi(4)),
sup Y51 [Pi(4)), Px(A))] = Y51 P2(A)),

and from the convexity of ¥ 5-: [P1(4)), P2(4,)].

Thus IT defined by (4.1) is a set-valued probability. Also II is absolutely continuous
with respect to P;.

If X:Q — R"is a random vector such that Ep, (]| X||) < o, then the expected value of X
(as defined in Section 2) is given by fo X dII = {Ep(X): P, = P < P,} where P is a finite
measure.

If Xi;, i = 1 are independent and identically distributed with respect to II (given by
(4.1)) and note that the latter condition is equivalent to the fact that X;, i = 1 are
identically distributed with respect to P; and P,, then the law of large numbers given by
Theorem 3.1 implies

infp <p<p, — 0 almost everywhere with respect to P-.

1
- Y1 X — Ep(X))

It is interesting to note that, under certain hypotheses, every set-valued probability is
of the form (4.1).

THEOREM 4.1. LetI1: o/ — 2([0, 1]) be a nonatomic set-valued probability measure
such that T1(R) is closed. Then T1(A) = [Pi(A), P:(A)] for every A € o, where P, is a
measure and P, is a probability measure such that P;(A) < P;(A), A € «.

Proor. Denote P;(A) = inf I1(A) and Py(A) = sup I1(A), A € /. We show that P; and
P; are measures. Let {A;}; be a disjoint family of sets in .. Then, clearly
4.2) Py (UZ; A) =inf(Y 21 I1(4))) = ¥ =21 inf TI(4)) = ¥ 721 Pi(A)).

Let ¢ > 0. Then there exists x, € II(4,) such that x; < inf II(4,) + &2/, j = 1.
Thus Y 71 x; < Y %1 inf II(A4)) + &. From (4.2), the series Y % inf I1(4,) is convergent. So
Y51 2 € Y51 I1(4)). Consequently

(4.3) inf(} 51 I1(A))) = Y 5-1 inf TI(A)) + e.
Since £ > 0 is arbitrary, it follows from (4.2) and (4.3) that
Pi(UF-1 A)) = ¥ 51 Pi(A)).

Now Pi(f2) = inf II(Q2) € II(R2) since II(2) is closed. From Theorem 2.1(b), there exists a
selection @, of IT such that @:(2) = P1(R). Since P, = @, we have P, = Q, so Py is a
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selection of II. Similarly P; is a selection of II, and obviously P;(Q) = 1. Finally, since
(from Theorem 2.1 (a)) II(A) is convex for every A € &, it follows that II(A) = [P1(A),
P;(A)], A € o, which was to be proved.

REMARK. It may be noted that the intervals of probability measures (DeRobertis and
Hartigan, op. cit.) are restandardized when computing expectations and posterior proba-
bilities, so that the ranges of expectations for set-valued probabilities and for intervals of
probabilities do not coincide.
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