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Assume that we have a measure p on Sl;(R), the group of 2 X 2 real
matrices of determinant 1. We look at measures y on Sl; (R) supported on two
points, the Bernoulli case. Let P’ be real projective one-space. We look at
stationary measures for 4 on P’ The major theorem that we prove here gives
a general sufficiency condition in the Bernoulli case for the stationary meas-
ures to be singular with respect to Haar measure and nowhere atomic.
Furthermore, this condition gives the first general examples we know about of
continuous singular invariant (stationary) measures of P' for measures on
Sk (R).

1. Introduction. Assume that we have a measure p on Sl (R), the group of 2 X 2 real
matrices of determinant 1. Let P’ be real projective one-space, the quotient space of
R?\ {0} with the equivalence relation v ~ kv for any v € R*\ {0} and % € R\{0}. Sk (R) acts
on P%; hence, given g € SL(R) and x € P!, gx € P! in a well-defined way. Given yu, we say
that v (a probability measure on P’) is a stationary measure for p if for all continuous
functions /:P' — R,

f f(x) dv(x) =f J f(gx) du(g) du(x).

Furstenberg (1963) proved that in this setting, there always exists at least one stationary
measure for u on P'. These stationary measures are useful objects: in this same paper
(Furstenberg, 1963, Theorem 8.5, page 424), the stationary measures are used to give a
formula for the almost sure limit of suitable norms of products of random matrices.

Here we look at measures u on S/; (R) supported on two points; i.e., u(A) = p >0, u(B)
=1 — p >0, where A, B are elements of Sl;(R). We call this the Bernoulli case. Harris
(1956) proved a nice result assuring absolute continuity of stationary measures in a fairly
general setting. Harris’ theorem, however, assumes a technical condition not satisfied in
the Bernoulli case.

The major theorem that we prove here gives a general sufficiency condition in the
Bernoulli case for the stationary measure(s) to be singular (with respect to Haar measure)
and nowhere atomic. Furthermore, this condition gives the first general examples we know
about of continuous singular invariant (stationary) measures on P* for measures on Sl; (R).

2. Notation.

DEFINITION 1. Let a, b € R. Define a \/ b := max(a, ), and a A b := min(a, b).

We will define two parametrizations of P'. The first will give P in §-coordinates, § €
[0, «), while the second will give P in cotangent coordinates, i.e., we will associate to P!
the real line with infinity added.

Both of these parametrizations assume that we have chosen coordinates on R? and
depend on the particular choice of coordinates. Certainly, if we are working with matrices
(as opposed to linear transformations), we have tacitly made such a choice.
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DEFINITION 2. We define a bijection z: P' — [0, 7). A point of P, call it ¢, is the
equivalence class of all vectors v such that v = u[$5{] for some u € R\{0} and some fixed
0 € [0, 7). Then define z(¢): = 6.

DEFINITION 3. We define a bijection y: P' — R U {«}. A point of P’ call it ¢, is either
the equivalence class of all vectors v such that v =u(}) for some u € R\{0} and some fixed
A € R, or is the equivalence class of all vectors of the formu(§) for some u € R. In the
former case, define y(¢) := A; in the latter case, define y(t) := oo.

We've already noted that Sl (R) acts on P' in a well-defined way; i.e., gx makes sense
for g € Sl (R) and x € P. Indeed, for any specific g € Sl (R), the map G: P' — P* given
by G(x) := gx is a bijection. To see how a matrix in Sl (R), g, acts on the parametrizations
of P! given by Definitions 2 and 3, we have

DEeFINITION 4. For g € S (R), define a bijection Z(g): [0, #) — [0, 7) by Z(g)(0) =
z2g271(9).

DeFINITION 5. For g € Sl (R), define a bijection Y(g): R U {o} - R U {x} by
Y(g)A) :=ygy '(\) for all A € R U {0}.

For a given g € SI,(R), we can be more explicit about Z(g) and Y(g). Let ta™: R U
{0} — [0, 7) be the inverse of the map tan: [0, 7) — R U {«}. Letn(¥) :=ta"'(v/u), for
(%) € R®\{0}. Then it is easy to check that Z(g)(0) = n og(s%{). Also, leto(%) := (u/v) if v
# 0, and let o(%) := o (where 0:R*\ {0} — R U {®}). Then for A € R, it is again easy to see
that Y(g)(A) = o ° g(1), and for {0}, Y(g)({}) = 0 °£(5).

We will often (tacitly) use the trivial facts that for g1, g2 € SL(R), Z(g182) = Z(g1)Z(&:)
and Y(g182) = Y(g1)Y(g&).

We finish this section with two notation-saving definitions.

DEFINITION 6. For 6 € [0, ), let e(8) := (5)).
DEFINITION 7. Let diag(a, ) := (49).

3. Statement of the main theorem. We have a natural Haar measure da of total
mass 1 on P'. Any non-singular linear transformation takes da into an equivalent measure.
So any linear change of coordinates on R? defines another Haar measure dg, which is also
equivalent to da. Let C be the class of all measures equivalent to any of these measures.

Just as for elements of S/; (R), non-singular linear transformations act in a well-defined
way on P'. We will be considering linear transformations 7: R?> — R? such that T has
determinant 1 and has 2 distinct real eigenvalues. Each eigenvalue corresponds to a point
of P!, namely, to each of the eigenvalues corresponds a 1-dimensional family in R? of
eigenvectors for T, and to each of these 1-dimensional families corresponds a point of P’
Call the point of P' corresponding to a given eigenvalue the eigenpoint for that eigenvalue
of T.

Given 2 points of P', ¢ and s, note that P'\{¢, s} has 2 connected components. Finally,
for a measure v on P', we say that v is continuous if v(¢) = 0 for all ¢ € P'.

We now have (a rather long)

AssuMpPTION 1. T and T are 2 linear transformations of RZ — RZ, each of determinant
1. Ty and T3 both have distinct real eigenvalues, and no eigenvector of T' is an eigenvector
of T,. Denote the eigenvalues of T by A1, A1z and those of T% by Ag1, Aze. For i = 1, 2 since
AitAiz = 1 and A;; and A;; are distinct, | A;i| # | Aiz|. Hence without loss of generality we can
assume that | Ai| > [Ag|fori=1,2. Fori=1,2,j =1, 2, let v;; € P' be the eigenpoint for
A; i of T;.
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We can now state the main theorem of this paper.

THEOREM 1. Let Ty, T; be 2 linear transformations of R*— R? satisfying Assumption
1. Let pu be a probability measure on the space of linear transformations of R®*— R?, such
that u(Ty) = p, u(T2) = q .= 1 — p, where 0 < p < 1. Let U and V be the 2 connected
components of P'\ {v11, va1 }. Assume that via, Us2 are both in U, or both in V. Without loss
of generality, assume that both are in U. Also assume that T1(V U {vi1} U {va1}) N T2(V
U {vu1} U {va1}) = 0. Pick v on P!, a stationary measure for . Then

i) v(VU {vu} U {va}) = 1and

(ii) v is continuous singular with respect to any ¢ € C.

4. Main lemmas. The following two lemmas are easily proved; the proofs are
omitted.

LeMMA 1. Let T be a linear transformation of R* — R? such that det T =1 and T
has distinct real eigenvalues \; and \z. Let v;, i ='1, 2 be the eigenpoints (€ P*) for A; of
T. Then the flow goes from the smaller eigenpoint towards the larger eigenpoint. More
precisely, we can assume (without loss of generality) that |\;| > | Xz|. Pick x € P' such
that x & {v1, vs}. Then P"\{x, v:} has 2 connected components—call them U, V. Assume
(without loss of generality) that v, € U. Then

(i) Tx € Vand
(ii) asn— o, T"x — v, (in the topology of P*).

LEMMA 2. Assume that T, T» satisfy the conditions of Theorem 1. Then there exist
7/4 < 01, 6, < 7 and a coordinate system on R* such that for these coordinates

(i) the parametrization z: P' — [0, ) satisfies z(v11) = 0, z(va) = 7/4, 2(vi2)= 61,
2(ve2) = 05, and

(ii)) Z(g1) ([0, 7/4]) N Z(g:)([0, 7/4]) = 9B, where g; is the matrix in this coordinate
system for T,,i =1, 2.

We break the proof of Theorem 1 into manageable chunks. First we see that v is
continuous, after which we show (i) of Theorem 1. Next, we find a set that enables us to
prove Theorem 1 (ii), and finally, we prove (ii).

5. Proof that v is continuous. Assume that v has an atom. Then there exists ¢t € P!
such that v({¢t}) > 0. So we pick # such that v({t,}) is a maximum; i.e., for all ¢ € P,
v({t}) = v({to}). Since v is stationary for u, v({tc}) = pv({Ti't}) + qu({T37't}). But
since v({T1'%}) < v({tc}), and v({T3"t}) < v({tc}), it follows that v ({to}) = v({T1"t})
=v({T3"%}). Upon applying this procedure to v({T1'%}) and v({T3't,}), we see (induc-
tively) that foralln € Z,, v({T1"%}) = v({T2"t}) = v({t,}). But since only finitely many
distinct # can satisfy v({£}) = v({t;}) (where t; € P"), it follows that there exist i, j, k, m
€ Z. such that TT'ty = Tty and T:*ty = T:™ ¢y, where i # j, k # m. Assume (without loss
of generality) that i > j, £ > m. Then t, = Ti ¢y, to = TE ™¢,.

Recall from linear algebra, that if a nonsingular linear transformation S: R> — R? has
2 distinct real eigenvalues, then there are only 2 distinct 1-dimensional families of
eigenvectors in R for S. Thus, ¢, = Tt implies £, = v1; or viz. (Take S = T{™))

Similarly, we see that ¢ = T4~ ™t, implies that # = vz; or vz.. But now we’ve reached a
contradiction, since by assumption, the four points vi1, va1, U1z, Uz are distinct. Hence v is
continuous.

6. Proof of (i). It suffices to do this proof in a coordinate system. Pick #/4 < 6y, 6,
< 7 and a coordinate system on R? such that (i) and (ii) of Lemma 2 hold. Then it suffices
to show that v(z7'[0, 7/4])= 1.
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Let g: be the matrix for T; in this coordinate system, i = 1, 2. We first must see that
Z(g7 ([0, w/4]) D [0, /4], for i = 1, 2. This follows from Lemma 1.

As an immediate consequence of what we’ve just noted, we get (inductively) the
following: Let h;, i =1, --- , n be such that ;= g, or g2 forall i, i =1, - - - , n. Then Z (h;!
-+« h1)([0, w/4]) D [0, w/4].

Next, we’ll see that given 0 < 6 < 7, there exists n € Z. and Ay, - - - , h,, h; = g1 or g, for
all i, such that Z (A, - - - h,) (0) € [0, 7/4]. We’ve already seen this for 0 < § < 7/4; namely,
let h; = g1 and n = 1. Now pick 7/4 < 8 < .

CAse L. 6: < 6,. (Recall that z(v12) = 6y, 2(ve2)= 6;.) For § < 6,, Lemma 1 implies that
Z(8%)(0) := én, where ¢, — 7/4. In particular, there exists N such that ¢, < 6;. Again by
Lemma 1, Z(g7)(¢n) := ¥n, where ¥, — 0 (for all n, ¥, € (0, 6,)), so there exists M such
that ya € [0, 7/4]. Thus Z(g¥g¥) € [0, =/4].

For 8 > 0:, Z(g%) (0) := ¢n, where ¢, — 7/4 (from below, by Lemma 1. That is, ¢, €
(62, m) U [0, 7/4).). Thus there exists N such that Z(g%') := ¢n € [0, 7/4]. And if § = 6, by
Lemma 1, Z(g1) (6) := ¢ € (62, 7). So apply the above argument to Z(g;)(f), and get that
there exists N such that Z(g5'g:) () € [0, =/4].

Cask II. This argument is similar to that for Case I, and is omitted.

We now prove

LEmMMA 3. Givenn € Z,,and h;,i=1, .., n, where h, = g or g for all i, then

v(ha' +-+ A1 (270, 7/4])\27"[0, 7/4]) = 0.

Proor. The proof is by induction on n. Since v is stationary for u, v(z7'[0, 7/4]) =
pu(gi' (270, 7/4])) + qu(g3" (z7'[0, m/4])). Since Z(g:*)([0, m/4]) D [0, m/4] fori =1, 2,
we can rewrite the above equation (using that gz~ = z27'Z(g)(9)) as

v(z7'[0, 7/4]) = p(v(z7'Z(gT")[0, 7/40\27"[0, m/4]) + v(z7'[0, 7/4]))
+qW(z"'Z(g2")[0, 7/4\27'[0, 7/4]) + v(z7'[0, 7/4])).
Since p + ¢ = 1 and 0 < p < 1, we see that
v(z7'Z(gz")[0, 7/40\27[0, 7/4]) = v(z7'Z(g1")[0, 7/4\z""[0, w/4]) = O,

and hence the statement of the lemma is true for n = 1.

The general induction step is similar to the n = 1 case and is left to the reader.

Let D be the set of all sequences Ay, -- -, h, such that h; =g, or g2 foralli=1, ... , n,
and such that n € Z,. D is countable. Let

M :=h;" ... hi'(z7'[0, 7/4]), and let @ := z7[0, 7 /4].

By Lemma 3, ¥p v(M\Q) = 0, and hence v(Up(M\@)) = 0. Thus (since @ is fixed)
v((UpM)\@Q) = 0. But we claim that UpM = P,

To see this, pick ¢t € P' and A, - - , h.(where n € Z, and h; = g, or g, for all {) such
that Z(h; -+ h,)z(t) € [0, w/4). For this sequence (A, - -, h,), we see that h; - - - A, (t)
=2"'Z(hy -+ ha)z(t) €27'[0, 7/4], and hence t E b - - - ATl (270, 7/4]) = M, as desired.

Hence v(P'\Q) = v((UpM)\Q) = 0, and hence v(z [0, 7/4]) = 1, as desired.

7. An important set. We now start to prove Theorem 1 (ii). Pick 6; € (6z, #) N
(61, 7) and 04 € (7/4, 6:) N (7/4, 6,), By Lemma 1, Z(g:)([05, ) U [0, 6,]) C [65, =) U [0,
04], for i = 1, 2. Let x; := 27%(6;), for i = 3, 4.

Now make a linear coordinate change (i.e., pick new coordinates on P') such that in
these coordinates

z2(x3) =0, 2(x4) = 7/2, 2(v11) := 05, 2(va1) := b5,
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where
0<b;<bs<m/2,
and
/2 < 2(vr2), 2 (V) <.
In these coordinates,
v(z7'[6s, 66]) = 1.

Let T; be given by the matrix A; in this coordinate system, ¢ = 1, 2.
Let y be Haar measure for this coordinate system; that is, y is a probability measure on
P! such that

y(z7[67,05]) = (0s — 6;) /7 for 0<@; <0<

To prove Theorem 1(ii), it suffices to find a compact set A such that v(A) =1and y(A)
=0.
Since in the previous parametrization

Z(g)([0s, 7) U [0, 6,]) C [65, 7) U[O,0,] for i=1,2,
we have that in this parameterization,
Z(h)[0,7/2] C [0, 7/2], for i=1,2.
CramM. For any Borel set, v(A) = 1 implies that v(h;A U h:A) = 1.
Proor. For any Borel set T, v(T) = pv(A7'T) + qu(h:'T). Let T := hiA U hA.
Then
PU(AT (A U hA)) + qu(ha' (AU hA)) = v(mA U hA).

The left side of this equation = pv(A) + qu(A) = v(A) =1, and hence v(h;A U h:A) = 1.
Let F be the set of all sequences k., - - - , k1 such that k; = h; or h; for all i. Define

An = Upky «+« ki (27'[05, 66]);

A, is compact. Note that A, = h1A, U hyA,. The preceding claim implies that v(A,) =
1foralln € Z..

Let A ;== N%-;1 A,; A is compact. Take any sequence ki, - - - , kn,+1 With &; = h; or h;, for
all i. Then

Z(k1)[05, 06] C [05, 0(;],
and hence
Z(kn+1 +++ k1) ([05, 05]) C Z(knsy + -+ k) ([65, 06]).

Since z7'Z (kn+1 + -+ k2)([05, 8s]) C A,, we have that A,.; C A, for all n € Z,. Since the A,
form a decreasing sequence of sets, v(N5-14,) =v(4) = 1.

8. Proof of (ii). Using A as in Section 7, in order to prove (ii), it remains to see that
v(A) = 0. In order to do this, we use cotangent coordinates. (Recall Definitions 3 and 5.)
We have two parametrizations of P', z and y. Hence we have a map &: [0, 7) — R U {0}
given by §(6): = yz~'(6); by unraveling definitions, we see that § = cot. As a consequence,
we have that for g € SI;(R), and 8 € [0, =), cot(Z(g)(0)) = Y (g)(cot 6)(since both equal
ygz~'(#)). We now have another easily proved lemma, whose proof is omitted.

LEMMA 4. Take0<a < b= . Then
87 ([a, b)) = [67(b), 67 (a)];
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furthermore,

0=67(b) <67 (a)=7/2, and |87(b) — 6 Ya)|=<|b— al.

To see that y(A) = 0, it suffices to show (given ¢ > 0, arbitrary) that y(A) < ¢, and so
it suffices to find N such that y(Ax) < e.

Given N, let B := the set of all sequences (kw, - - - , k1) with k; = h; or h, for all i. Let
ki=Fky-- k.

Since Z (%) is continuous and bijective from [0, 6s] into itself, we have

FormuLa 1. Z(k)[65, 6s] = [, B], where
a:=Z(k)(0) NZ(k)(0:) and B:=Z(k)(0s)\ Z(k)(O5).
It follows immediately that
Y(An) = (Xp| Z(R)(0s) — Z(k)(05)]) /7.
Next, we claim that
28| Z(k)(0s) — Z(%)(05) | < ¥5| Y (k) (cot 65) — Y (k)(cot 65)].

Note that Y (k)([cot 66, cot 65]) C [cot b6, cot 8], and that 6 'Y (%)(cot 05) =Z(k)(05),
i = b, 6. This now follows at once from the second part of Lemma 4.

So define Fn := (35| Y(k)(cot 8s) — Y (k)(cot 65)) | /7. We'll be done with Theorem 1 if
we can find M € Z, such that Fyy <e.

By the choice of the new coordinate system, and Lemma 1, we see that Y (A;)(cot 85)
= cot 05, Y (h2)(cot 05) € (cot 8, cot 65), Y (h:)(cot 8s) € (cot b5, cot 85), and Y (h2)(cot b5)
= cot 5.

Recall that in the previous coordinate system, Z(g:)[0, 7/4] N Z( g2)[0, =/4] =

Thus in the new coordinate system, Z(h:)[0s, 6s]1 N Z(h2)[65, 6s] = 0. If a €
Z(h1) [05, 65], and B € Z(h2)[65, 5], then o < B. Thus, given

a € Y (hi)[cot b, cot 651, B € Y (h2)[cot s, cot 65],

we see that a > g.

Let r := cot s, s := Y (h2)(cot 85), t := Y (h;)(cot 8), u := cot 65. We thus see that
r<s<t<u,and hence Fi, which=|s —r| + |u — t|, < .

We claim that

Foii=Q—r(t—s)/su—r))F,

for all n. Let A :=r(¢t — s)/s(u — r). Clearly 0 < A < 1. Once we show the claim, we deduce
that F,,; < (1 — A\)"F1, and since F; < o we will have that there exists M such that Fi,
<e.

Thus it suffices to see that F,.; =< (1 —A)F,foralln € Z,.

Pick r = 7 < Y =< u. We claim that Y (5:)(7) < Y(h:)@). If Y = u, Y (hi)(§) = u, and
hence this follows from Lemma 1. If y < , just as in the verification of Formula 1, we see
that Y (h)[y, u] = [Y ()W), u]. Since Y (h,) is a bijection from R U {0}—>R U {c},
Y(h) W) # Y (A1) (7). If Y (h1)(¢) < Y(h1)(7), then

(since  Y(h)[r,u]C[r,u]), Y(h)(r) € [Y ()W), u]

and thus Y (4:)(r) = Y(h1)(p) for some p € [y, u], a contradiction; hence Y (h)(1) <
Y (h)(¥).

Similarly, for » < 7 < ¢ < u, Y(h2)(1) < Y(h2)(). Pick a sequence ki, --- , by with %,
= hi or h; for all i. It is immediate by induction and the above that for r < 7 < ¢y < u,
Y(&)(1) < Y(R)(Y).

To see that Fy.; = (1 — A)Fy, it suffices to see that

| Y(Rh1)(r) — Y (kh1) (@) | + | Y (kh)(r) — Y (k) (@) | < (1 =N) | Y (R)(r) — Y (R)(u) |
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for any sequence in B. Thus it suffices to see that
(Y(B)@) — Y(R)(®) + (Y(R)(s) — Y(RY(F) = (L =AY (R) (&) — Y(R)(r)),
or that
A= (Y(®)@) — Y(&)(s))/(Y(R) () — Y(k)(r))

for any sequence in B.

So pick (kn, +++, k1) € B,and let & = ky - .- k1. Write k as(§ 3), where we know that
ad — be = 1 (since hi, hz have determinant one). We also know that Y (%)[0, ] C (0, x)
(by Lemma 1), and thus Y (%)(0) # o, Y (k)(®) # . Since k(0, 1)’ = (b, d)’, and k(1, 0)’
= (a, c¢)’, we deduce that d # 0, ¢ # 0.

CramM. d/c>0.

Assume that d/c < 0. Then k(m, 1)’ = (am + b, cm + d)’. For m = —d/¢, (—d/c)a + b
# 0, for otherwise bc — ad = 0, a contradiction. Since —d/c > 0, and since am + b is
continuous (in m), there exists & > 0 such that both (—d/c¢) + & and (—d/c) — & are >0,
and both a((—d/c) + &) + b, a((—d/c) — &) + b are nonzero and of the same sign as
a(—d/c) + b. .

k((—d/c) + e, 1) = (a((—=d/c) + &) + b, c((—d/c) + &) + d)’
= (a((—d/c) + &) + b, c &)’,

and
k((—d/c) — &, 1)’ = (a((=d/c) — &) + b, c((—=d/c) — &) + d)’
= (a((—d/c) — &) + b, — c &)’.
Hence
Y (&) ((—d/c) + &) = (a((—d/c) + &) + b)/ce
and

Y(R)((=d/c) — &) = (a((—=d/c) — &) + b)/(—c&).

However, (a((—d/c) + &) + b)/c & and (a((—d/c)— &) + b)/(—c &) are of opposite sign,
contradicting the assumption that both are in (0, «). Thus d/c > 0.

k(m, 1) = (am + b, cm + d)’, for any m € (0, ). Thus (Y (k)(¢) — Y (&)(s))/(Y (k) (u)
— Y(k)(r)) = J/L, where J := ((at + b)/(ct + d)) — ((as + b)/(cs + d)) and L := ((au +
b)/(cu + d)) — ((ar + b)/(cr + d)). After some cancellation (and expansion of products)
we see that J = (ad — bc)(t — s)/(ct + d)(cs + d) = (¢t — s)/(ct + d)(cs + d), and
(similarly) L = (u — r)/(cr + d)(cu + d). Thus J/L = (¢ — s)(cr + d)(cu + d)/(u —r)
«(ct + d)(cs + d).

To finish the proof, we want to see that J/L = A = r(t — s)/s(u — r). Thus, to finish the
proof of (ii) it suffices to see that (cr + d)(cu + d)/(ct + d)(cs + d) = r/s, which
is equivalent to seeing that (r + (d/c))(u + (d/c))/(t + (d/c))(s + (d/c)) = r/s.
However, since d/c > 0, we have that (v + (d/c))/(t + (d/c)) = 1 (since u > t)
and (r + (d/c))/(s + (d/c)) = r/s. Hence J/L is indeed = A, and thus F,.; < (1 — A)F, for
all n € Z... The proof of Theorem 1 is now completed.

9. Notes. Call V the subset of Sl; (R) X Sl (R) such that (4, B) € Vif and only if for
allp,qwithp +¢=1,pqg>0,if u(A) =p, u(B) = q, u(SL:(R) /A, B) = 0, then any induced
invariant measure on P' is continuous singular. Then V contains an open set. Thus our
class of binomial cases giving singular invariant measures is fairly large.

The major restrictions in Theorem 1 are that we assumed vi2, v32 were both in U, or
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both in V(a betweenness condition on the eigenpoints), as well as
T1(VU {011} U {1)21}) n Tz(VU {1)11} U {1121}) = ﬂ

(a disjointness assumption). It would be quite interesting to investigate analogous theorems
to Theorem 1 in the cases where these restrictions weren’t satisfied. In particular, in
Theorem 1, the stationary measures turned out to resemble Cantor measure. However, if
we don’t have the disjointness assumption, it seems easy to prove that any stationary
measure must be supported on an interval of P,

Finally, the techniques of this paper should allow us to estimate suitable almost sure
limits for products of certain Bernoulli random matrices, using the previously referred to
formula in Furstenberg (1963). The key difficulty with the use of that formula is in
integrating against a stationary measure, while the proof of Theorem 1(ii) enables us to get
our hands on a useful singular set.
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