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OCCUPATION TIME LIMIT THEOREMS FOR THE VOTER MODEL

By J. THEODORE Cox' AND DAvVID GRIFFEATH?

Syracuse University and University of Wisconsin

Let {n%(x)}, s = 0, x € Z* be the basic voter model starting from product
measure with density 8(0 < # < 1). We consider the asymptotic behavior, as
t — oo, of the occupation time field { T}.cz¢, where TF = fin%(x) ds. Our
main result is that, properly scaled and normalized, the occupation time field
has a (weak) limit field as ¢ — o, whose covariance structure we compute
explicitly. This field is Gaussian in dimensions d = 2. It is not Gaussian in
dimension one, but has an “explicit” representation in terms of a system of
coalescing Brownian motions. We also prove that lim,... T /t = 8 a.s. for d
= 2 (the result is false for d = 1). A striking feature of the behavior of the
occupation time field is its elaborate dimension dependence.

0. Introduction. A prominent theme in contemporary mathematical physics is the
dimensional dependence of the critical phenomena for a given system. Empirical evidence
and simulation suggest that many physical models, e.g. the Ising model and bond perco-
lation on Z¢, have one mode of behavior in high dimensions and quite different modes in
each of the low dimensions. Very roughly, if d is large enough the interaction is negligible,
whereas strength of dependence distinguishes each low dimension. For the Ising model
“large enough” means d = 5 (cf. [1]), for (unoriented) percolation d = 7 [18]. Since rigorous
results along these lines are hard to come by, our primary objective in this paper is to
illustrate the theme of critical dimensionality as evidenced by one of the simplest
interacting particle systems, the so-called voter model [5], [12].

Let S = {all subsets of Z%}, Sp = {finite subsets of Z¢}, and for n € S write n(x) =
1(xen . The (basic) voter model 7, is the S-valued Markov process having flip rates at each
x € Z¢ at time ¢:

n(x) > 1 —m(x) atrate (2d)7'[{y:|y —x|=1m(y) #n(x)}].

Clifford and Sudbury [5] showed that the ergodic theory of the voter model is qualitatively
different in low dimensions and in high dimensions. Denote by n¢ the voter model started
in Bernoulli product measure py (0 < 6 < 1), with us{n(x) = 1} = 6. If d = 1 or 2, then

(0.1) Pmie )=10—-0po+0u as t— o
(= means weak convergence). For d = 3 on the other hand,
0.2) Pl € )=,

where vy is an extreme invariant measure with density 6. Holley and Liggett [12] indepen-
dently discovered the same result, and gave a detailed analysis of the set of invariant
measures. In terms of the sample paths, (0.1) indicates clustering while (0.2) indicates
stability. Thus the dichotomy (0.1) vs. (0.2) is already an example of critical dimensionality.
Concerning the clustering when d = 1, see [4]; the macroscopic structure of »; (renormal-
ization limit) when d = 3 is determined in [3]. See also [13].

To prove (0.1) and (0.2) one uses a duality equation which connects the voter model
with a system of coalescing random walks. For our purposes it is expedient to derive this
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connection from Harris’ graphical representation [11]. Start with the space-time diagram
Z? x [0, ). For each pair of distinct x, y € Z? with |y — x| = 1, draw (oriented) arrows
from (x, 7%) to (y, 7%) (n =1, 2, -..) where the 7%, — 7% are ii.d. exponential with
mean (2d)!(r%, = 0). The resulting random scheme 2 is called the percolation substruc-

ture. By a path up from (x,, to) to (x., t,) in ? we mean a sequence of space-time points

(xO, t()), (xO) tl)) (xl) tl), ftty (xn—I, tn)’ (xn, bl),

with increasing time coordinates #., such that for each % there is an arrow from
(xr-1, tz) to (xz, &) and no arrow arrives at x; at any time u € (&, tr+1). See [9] for more
details and a picture. Now the voter model 57 with initial state n € S can be represented
as

n#(x) =1 if3 apathfrom (z,0) to (x,¢t) forsome z€&n,
=0 otherwise.

Moreover, on % = 2 restricted to Z¢ X [0, ¢] one can consider a dual substructure P,
obtained by reversing time and reversing the direction of all arrows. If we define dual
processes (77; 0 < s < t) on £, as above except that no arrow should leave x; in (¢, t+1),
then this dual system consists of coalescing random walks, and we immediately obtain
the duality equation

(0.3) PmINA=D)=PHiNn=3J) (A€ S),

since both sides express the probability of no path in the substructure connecting n X {0}
and A X {t}. Integrate (0.3) against yus to get

(0.4) PN A=0)=E{1-8)h.

The results (0.1) and (0.2) follow easily from (0.4) and simple properties of coalescing
random walks. Recurrence of the individual walks translates into clustering of the corre-
sponding voter model, while transience corresponds to stability. See [5], [12] or [9]. Note
in particular that

(0.5) P(xenl)=6 forall x,t,

i.e. ¢ is density preserving.
In this paper we study the occupation time functionals of the voter model:

t
T§=J nd(x) ds.
0

(For the rest of the paper we fix § € (0, 1) and drop the superscript since we consider only
processes starting from nondegenerate ps.) As it turns out, the limit theory for the
occupation time fields (TF;, x € Z9) as t — o exhibits a rather elaborate dimension
dependence. Here high dimensions means d = 5, and each of the low dimension cases d
=1, 2, 3, 4 is quite distinct. To indicate the spirit of what will follow, let us begin by
computing the covariances Cov(T?, T%). From (0.5), E[T7] = 6¢ for all x, ¢, so

Cov(T?, T%) JJ E{((0) — ) (ns(x) — )] dr ds

0=r,s=t

(0.6) [P(n-(0) = ns(x) = 1) — 6*] dr ds

0=r,s=t

f [P(%-(0) = ns(x) = 0) — (1 — 6)?] dr ds.
O=r,s<t

In order to evaluate the last probability, consider the graphical representation and recall
the duality argument leading to (0.4). The only complication is now the dual random walks
start at differing times ¢ — r, ¢ — s (see Figure 1). Assume r < s and consider the following
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Fic. 1

2-particle coalescing system. Particle A is “frozen” at 0 until time ¢ — r and then begins at
a rate 1 simple random walk. Particle B stays at x until time ¢ — s and then executes
another rate 1 walk. The two walks are independent, except that if they collide after time
t — r then they coalesce into one and perform a single rate 1 walk from then on. Letting N
be the number of particles in this system at time ¢, the duality trick yields

0.7) P(n,(0) = ns(x) = 0) = E[(1 - 0)"],
and hence
(0.8) P-(0) =ns(x) =0) — (1 — 0)* =6(1 — §)P(N = 1).

Note that the distance between particle B and particle A is x for time ¢ — s, then evolves
as a rate 1 random walk until time ¢ — r, at which time the difference random walk changes
to a rate 2 random walk until the particles collide. Henceforth X, will denote simple rate
1 random walk, P, the law of X, started at x. Introduce the “last exit” variables:

L,=sup{t=u:X, =y}, w=0,y€EZ9,
L’ =sup{t < ©:X, =y},

defining the empty sup to be 0 in each case. Then after a simple change of time scale we
get

(0.9) P(N=1)=P(L%,>s—r)=Py(Li,>s—r).
By monotonicity
Py(Li>s—r)=Po(Lisr>s—r)=<Py(L3s>s—r)
so we have
20(1 —

0 t
(0.10) —tl f E[Lf]1ds= tCov(T}, TF) <
0

201 -0) [
———(t—a)f EO[L’ZCb] ds.
0

By monotone convergence,
(0.11) EoL:]1 Eo[L*] as s—> oo,

Decomposing according to the time of the last exist from 0, d = 3 we get
E|L"] = J
)

pb‘(x)y)=Px(Xs=y)) 'Yd=Pe(Xl7é0Vt)>

0

Py(L*>¢t) dt = f f Pps(0, x) ds yq dt,
0 t

where
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e=(1,0,...,0). (ya is the probability of no return in discrete time simple random walk;
e.g., ys = .659.) Since p,(0, x) = O(s™%?),

0

(0.12) Eo[L*] = ya f sps(0, x) ds < © provided d= 5.

0

Finally, combining (0.10), (0.11) and (0.12) we conclude that

o

(0.13) limy—,.t 'Cov(T?, TF) = 20(1 — ) Ydf sps(0, x) ds
0
in dimensions d = 5.
The computation (0.13) suggests that in 5 or more dimensions the random field of
occupation times, normalized in the usual way, should converge to a limit as ¢ — co:

{Tf—at
Vit

where ¢ = {£(x)},ez¢ is translation invariant with the above covariance function. We will
prove such a limit theorem, and show that £ is Gaussian. In four or fewer dimensions, as
it turns out, one must choose a normalizer o(f) greater than Jt to obtain a limiting field.
(The covariances of the occupation times grow more rapidly due to the stronger interac-
tion.) Appropriate choices are:

}xEZ" =

o(t) =t (d=1),

=t/VInt (d=2),

(0.14) =3 (d=3),
=Vtlnt (d=4),

=t (d=5).

With o so defined there is a limit field £ in each dimension such that

{T?—ot

prey }=£ as t— o,

For d = 4, however, we find that the limiting covariances are constant. In other words, the
limit field is totally correlated. To get a nontrivial covariance structure it is necessary to
consider limits of scaled fields:

[f()x] _ 0[‘
(0.15) {—;—m——} =¢ as t— oo,
o

(For r € R? let [r] be the nearest lattice point to r, with some convention in case of ties.)
It seems reasonable to expect a “natural” scaling f(¢) under which ¢ has nontrivial
covariances, such that the limit is totally correlated when scaled by g with lim,_,..g(¢) /f(¢)
= 0, and such that the limit is a product field when scaled by g with lim, ,..g(t)/f(t) = .
This scenario holds in dimensions other than 4; the natural scalings are:

fy=vt (d=3),
(0.16)
=1 (d = 5).

In dimension 4 there is no natural scaling. Rather, by taking
0.17) fity =t (d=4,a=0),

one gets a distinct limit for each a € [0, !]. All are independent mixtures of the totally
correlated limit (a = 0) and the product limit (a = %).
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Having determined the correct normalization and scaling, we are able to compute the
covariance function of ¢ explicitly in each dimension. Write

Cov(£(x), £(y)) =0(1 - 6)C(y — x).

Exact expressions for C(x) dimensions 1, 2 and 3 will be derived in Section 3. Here we
simply describe the tail behavior: as | x| — oo,

C(x) ~ ci| x| P4 (d=1),

(0.18) ~c|x| e (d=2),
~ c3 | x |—6e—3[x[2/4 (d = 3)’
~ calx[? (d=5),

where c¢; = 128/, ¢, = 32, ¢3 = 64ys/(37)¥? and for d = 5, ca = d’yan ¥?I'(d/2 — 2), T the
gamma function. As mentioned above, in four dimensions C(x) = C,(x) is constant,

(0.19) C.(x) =-87—723 (1-2a)" (d=4),

and according to (0.13),

0

(0.20) C(x) = 2yq j sps(0, x) ds  (d=5).

0

In Sections 4 and 5 we prove more: the limit field ¢ is Gaussian in 2 or more dimensions,
but not dimension 1. To summarize, the main result of the paper is as follows.

THEOREM 1. With o defined by (0.14) and f by (0.16)-(0.17), there is a random field
¢ = {&)rezasuch that (0.15) holds. ¢ has covariance function (1 — 6)C(x) satisfying
(0.18)-(0.20), and is Gaussian iff d = 2.

We also prove a law of large numbers for the occupation time in two or more dimensions.

THEOREM 2. Ast— oo,
Ti/t— 6 almost surely if d=2.

(There is no law of large numbers if d = 1.)

Occupation time strong laws for other particle systems are discussed in [9].

Our proofs will be divided into six main parts. Section 1 contains a derivation of the
generalized duality equation we will need, and some preliminary random walk estimates.
In Section 2 we compute the variance of 7 in order to determine the appropriate
normalizer o. Section 3 contains the more intricate covariance calculations required to
obtain the right scaling f and limiting covariance C(x). The proof of Theorem 1 is
completed in Section 4 for d = 2, and in Section 5 for d = 1. Finally, we finish the proof of
Theorem 2 in Section 6.

A few references to related work are in order here. There are results similar to some of
ours in a very nice paper by Iscoe [14] on weighted occupation times for the measure-
valued branching processes introduced by Dawson [7]. In fact, it was Iscoe’s work and the
intriguing parallelism between Dawson’s process and the voter model which motivated
the present paper. The parallel only occurs for d = 3, and only the scaling f(¢) = 1 is
considered in [14]. On the other hand, Iscoe treats a wider class of models. (Our case
corresponds to his @« = 2.) Random walks for which E,[L°] < « are sometimes called
strongly transient. They appear, in various contexts, in the work of Port [19], Jain and
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Orey [10], Lawler [15] and Aizenmann [1]. The last two references contain beautiful
examples of critical dimension in physical models (self-avoiding random walks and the
Ising model respectively). The distinguishing feature in high dimensions (d = 5) is strong
transience.

1. Preliminaries. The key tool needed for our limit theorems is a duality equation
which generalizes (0.6). To state it, we introduce the following processes, all defined on a
common percolation substructure 2;:

(%1, 81), ++ -, (Xn, Sn))
= the system of coalescing rate 1 simple random walks starting at sites
xi, the walk from x; frozen until time s;, and such that two walks
coalesce only after both are unfrozen (n =1, x; € Z¢, 0 < s, < t);
Xi(x, 8) = n:((x, 5))
= a rate 1 simple random walk frozen at starting state x until time s;

Nt((xly 31), trty (xn, sn)) = |ﬁt((xl) sl), trty (xn) Sn))l.

We will make extensive use of the following:

DuaLity EQuaTION. Ifx; €Z% s;=0(1<i=<n) and t = s = max(sy, - - - } Sy), then
(11 P (x) =1V 1=<i<n)

= E[oN/((xnt—sx),- - (%, t—s,.))].

The proof extends the one for (0.6) described in the introduction. Namely, the duality
trick shows that

P(ns,(xt) =0V=i=n)= E[(l _ 0)N.((x:,s—s.),~--,(xn,s—s,.))]’
since both sides represents the probability that no path connects the ps-distributed initial

state with any of the (x;, s;). Since the dynamics of the voter model are symmetric in 0’s
and 1’s we have

P(n,(x) = 1V 1 = i=n) = E[gNss) - Gnsms)]
Finally, the more convenient form (1.1) follows from the observation that

ﬁu((xly tl)v trty (xn’ tn)) =d TAlu+v((xl, tl + U), trtty (xn, tn + U))

provided u = max(t;, - - -, £,).

We also collect here various estimates for rate 1 simple random walk X, on Z¢ which we
will need in later sections. Recall that p.(x, y) = P.(X, = y), and introduce the Green’s
function and hitting times:

u

&mw=fnmwa,mw=@&w
0

=inf{t=0:X,=x) (=0 if X,#xV¢).

Remember also that ys = P.(mo = ). In the asymptotics which follow ~ has the usual
meaning: f(t) ~ g(t) as t — oo if lim,_f (£)/g(t) = 1.

PROPOSITION 1. As u — ,

d/2
(1.2) Pu(0, 0) ~ (i) ,
27y
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and

d \""T ue(x, u) d|x|?
13 o = (55) [t oo

where lim,—...sup:|e(x, u)| = 0.

ProoF. Results P9 and P10 in Chapter II of [20] are easily adapted to our continuous
time setting.

PROPOSITION 2. Asu— oo,
Cw - G ~ '  (d=1),
(1.4) ~a (d=2),
~ aqu922 (d = 3),

where a; = (2 — «/5)/«/77, a; = In 2/7, and for d = 3, aq = (d/27)%?2/(d — 2))
(1 =279,

Proor. Use (1.2) in G(2u) — G(u) = [Z p,(0, 0) dt.
PROPOSITION 3. Ast— o
Pro>t) ~ Bit™? d=1),
(1.5) ~ Bo/In ¢t (d=2),
~ Ya (d=3),
where B = (2/7)"* and B; = 7.

Proor. If Y, denotes discrete time simple random walk, 7 its hitting time for 0,
—tyn

(16) Pu(ro> ) = z;oe—m’i Pur > n).

From [20, pages 167, 381], as n — o

2 1/2
Pt >n) ~ (E) d=1)

(1.7)
~a/lnn (d=2).
Ford =3,
(1.8) im0 Pe(To > t) = P10 = ) = Pe(7 = ) = y4 > 0.

Use (1.6), (1.7) and (1.8) to show (1.5).

2. Variance calculations. In Section 0 we saw that Var(T'?) ~ Ct if d = 5. Here we
show that in each dimension d the variance of T'¢ grows asymptotically like ¢*(¢), where
o is given by (0.14). Our computations are based on the formula

2.1) Cov(T?, T3 =26(1 —6) Py(Li+,>s—r) drds,
0=r<s=<t
obtained by combining (0.6), (0.8) and (0.9). We will use results from the last section to

estimate the right side. To begin, a “last time at 0” decomposition like the one leading to
(0.12) yields :

s+r
Py(Lisr > s —r) = per(0, x) + f Pu(0, X)Pe(1o > s + r — u) du.

§=r
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It is easy to check, using (1.2) and the inequality p.(0, x) =< p.(0, 0) that

lim,_. 0~ %(¢) Ps+r(0, x) drds = 0.
0=r<s=t
Consequently,
Cov(T?, T?) 201—0) [ ! o
02(;) ¢) 0 i dr i ds B Pu(0, X)Pe(to > s +r — u) du.

The change of variables

and integration over the variable r yields

Cov(T?, T?) - 401 —-0)
a*(8) a3(¢)

(2.2) J dv J dw P.(to > 2w)[G2,(0, x) — G»(0, x)].
0 0

Using (2.2), we now show that as £ — o,

V(t) = [0(1 — 8)6*(t)] Var(T) — 2 — V2 (d=1),

(2.3) —2In2 (d=2),
— 8.32. 772212 ~ 1)y; (d =3),

— 87 %4 (d=4).

The case d = 5 has already been dealt with. The low dimension cases will be handled
individually, with the aid of (2.2), (1.4) and (1.5).
d = 1. By taking M sufficiently large one can approximate V(t) arbitrarily closely by

t—M

t—-M t—v
V(t) = 4t72 J’ dv j dwp; Qw) av? ~ 4v2 ay f1¢72 j vt — v)% dv
M M

M

1

~ 4v2 B, J s2(1 — s)V2 ds,

0

ast— oo,

d = 2. Inthe same way we have

t—M t—v
V(t) = 4a28:t%In tj j (In 2w) ™! dw

M M

t—M
dazfst™In tJ [1n(2t - 2v) ln 2M f (In 2w)2}’

M

this last from integration by parts. The contribution from the second and third terms in
brackets is negligible as ¢ — «. A change of variables and bounded convergence give

t—M t—v 1-M/t 1 —s
t?Int ———dv= —s) =
n f @ —gy W =In¢ L o =250 © f -2

M /t

Nl =

Thus V(t) ~ 202 2.
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d=3. Ford=3, Pro>2v) ~ysas v—> . So as { — o,

t t—v t
16
V(t) ~ 4a3y3t_3/2 f dUl)_l/2 j dw = 401373 t_3/2 j (tv_1/2 bl Ul/z) dl) ~ ? o3Y3.
) )

0

d = 4. This case is similar to the last:
t t—v
V(t) ~ 4a4v4(t1n £)7! J dov™ f dw ~ 4aqys.
) )

Upon substituting the explicit values of the constants as and Ba given in Section 1, we
obtain (2.3) as desired.

3. Covariance calculations. In this section we show that under the scaling f(¢)
given by (0.16)-(0.17), the normalized occupation times have nontrivial covariances.
Specifically, we prove that

Cov(T?, TV

70— 0% C@

(3. ].) limt-—>oo
with C(x) satisfying (0.18)-(0.19).

Using (2.2), let us rewrite the left side of (3.1) (asymptotically in ¢) as

2t t t—v
~ 40‘2(t)[ f dup, (0, [x V1)) J dv f P.(ro > 2w) dw
0 u/2 o

- J dup.(0, [x V1)) f du J P.(70 > 2w) dw]
0 u 0

=40 (O[L©®) — L©)].

Ford=1,2,3, ‘-Wé ‘put f(¢) = Vt and use (1.3) and (1.5) to estimate I, I,. (For brevity we
will omit details which show that the error terms are negligible.) We assume below that x
# 0, since the variances were obtained in the last section.

4 2 3/2
J u—1/2e—|x|2t/2u(t _ g) du
32 mt? Jo

© 2 3
37 o s+ |x|2

after the change of variables s = | x |%¢/2u — | x |?/4, and similarly,

d=1. Ast— o,

t2L(8) ~

t2L(t) ~ 16 | x| e =172 ) s%2 _—ﬂ'l x|’ 3e's ds
37 b 2s + | x| ’

So C(x) exists, and by dominated convergence,

512 128
limye o] x| %e74C (x) = = f s e ds =——.
. 37 )

ka
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d = 2. The calculation is similar but more involved. Two integrations by parts
followed by a change of variables yield

o 2OL(t) ~ B = f dup. (0, [x V£]) f dv f _dw_
b /2 " In 2w

~lent - U
. J dup.(0, [x V£]) f e ¢

2
-y
2t—M A 2
- Bgln t 1 e_lxlzt/u du
2mt? In(2t — u)

oo 5 3
=4 |x|—6e—|x|z/2j Int ( | x| 2) st ds
I °M/(4t—2) ln[ 4st ] 2s + | x|

2s + | x|?

as t — «. By dominated convergence, we get

o 2 3
x
o 2(t)L(t) ~ 4 | x| e | s? ———ll—f e*ds as t— o,
R 2s + | x|

In the same way,
_ L e A
2 ~ = 6, —lx|2 2f _ 11 s
o 2(t) Lx(t) 2|x| e fo s<s+|x|2 e’ds as t— oo,
Hence C(x) exists, and
limps| x [™72C (x) = 16 J s?e™ ds = 32.
0

d = 3. Since P.(10>t) ~ vs.

2t 2
o (ON(E) ~ 3/2 J pu(0, [x ‘/2])(1‘ - E) du
2t b 2

‘Y 3 3/2 2t 2

3 - —3|x|2t/2u

~ 57 (%) f 3/2(15 - 2) e A2 gy
0

24 3 —a — * X 2 52
— 3}’2 x| e 3|x{2/4 52 Ed o) ecds
™ o

4s+ 3 | x|

as t — o, Similarly,

o 2 5/2
o X t)I(¢) ~ | x| Ce 32 J sz<—ll—> e *ds
3/2f A 25+ 3 |x|®

as t — «. So C(x) exists and

3

96y; [~
limygo] x |°e*74C (x) = WQ/; J §287%%™ ds = 64ys/(3m)*%
0
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To finish the verification of (0.18), let us now determine the tail behavior of C(x) for
d = 5. In light of (0.20), it suffices to check that

©

d

42 e
(3.2) limyy o xI"“‘J up.(0, x) du = <—> J §TU21g=d/2s g
)

R 2

A change of variables shows that the right side equals ¢, as specified below (0.18). By the
local central limit theorem, if | x| is large and 8 < 1 we should have

o d d/2 rs-x2
led—4j upu(o’ x) dx ~ led—4(_) J u—d/2+le—d|x|2/2u du
) 9|

2 o

d d/2 8!
= - s—d/2+le—d/2.s ds,
27 5

giving the desired result as § — 0. This approximation is made rigorous as follows. First,
it is easy to see that

sl
(3.3) lims_o| x |~ J up.(0, x) du = 0 uniformly in x,
0
and that
(3.4) limg | % |47 f up.(0, x) du =0 uniformly in x.
5112

In addition, over the range from §| x |? to 8| x|* one needs a refinement of (1.3):
_apl €lx, wu? d|x|?
(3.5) p.(0, x) = (27u) d/z[_|3dT + d‘”%xp(— 2_u s
where lim, _..sup.| e(x, )| = 0. See [17]. Using (3.5) it is not hard to check that for any 0
<<,
8- a2
(3.6) Limyyye 2 |47* f

LR

Together, (3.3), (3.4) and (3.6) justify (3.2) as desired.
The final covariance computation is (0.19) for d = 4. From (1.3) if y # 0,

2v 2
2 21y|?
G2v(0’ y) - GU(O, y) ~f (_) eXp(— |y| ) du
v U u

2
7|y [?

d d/2
[upu(oy x) - (ﬂ) u—d/2+1e—d|x|2/2u] du=0.

=1 _ ,=2yI2/v
(e e )

as v — oo. Thus, by (2.2),

t t—v
o X(®)Cov(T?, T?) ~ML dv dwle /" — g=21/0]
m|y|° ¢tlnt R

_80(1— )y 1

[’
- - t — AP0 _ =2 vY gy
7|y tlnt_[) (&= v)e € ldv
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Consequently, setting y = [¢°x], as t — oo.

8‘Y4 1

o2
(&) Calx) ~ Tt

1
f (1 ——)[exp( t*| x [*/v) — exp(—2¢*| x */v)] — P dv

t|—£(|/|x|2 9
= gy_i 1- |Jf_|2u e (1 — e du.
7% Int =

If a = % this last expression is asymptotically 0. If 0 < a < % we find that

£l 2 612 | 2
8ys 1 x
o) Cul) ~ 2 (1 - w) wtan=80 L (u—l _|_|_) du

2 Int 2 72 Int ), 12

B [ln(tl_%/mlz)il ~ 8;721 1 - 2a)

7’ In¢

as claimed. Further details are left to the reader.

REMARK. It seems appropriate here to point out that we could have_ considered
generalized random fields (as in [3]) instead of the fields {747} ;.. That is, let ¢ be
the Schwartz space of rapidly decreasing functions on R and define

T?=Y crp@)(Ti—t0), pEF?
and
oY) = @(y/f(r), yE R

Instead of Theorem 1 we could prove that the fields {77} ¢« converge weakly as ¢ — o
to a generalized random field {£(p)} e Whose covariance structure can be computed
using the results of this section. Since the proper choice of f(¢) for d = 5 is f(t) = 1, we
have chosen to present our results in the “lattice” setting.

4. The proof of Theorem 1 (d = 2). The argument for (0.15) is modelled after the
proof of Theorem 3 in [3]. We use the method of semi-invariants, referring the reader to
[3] and the additional references given there for background on this approach. For fixed
N=1l,and x;, -+, xy € Z% let

[xf®) _ g
t
o(t)

To show that the limit variable ¢ exists, and is Gaussian with covariance function C(x), it
suffices to prove that

Sn(¢) = the mth semi-invariant of ¥,

lim;..S,(f) =0 forall m=3.

(S1(¢) = 0 since ET? = tf, and Sz(t) — Za’j=1 C(x, — x;) by the results of the last section.)
Given m random variables Y, --., Y,, (distinct or not), let ©, (Y1, -+, Y,) denote the
mth order Ursell function of the Y; (cf. [3]). Some straightforward combinatorics yields

t t
Sn(t) = 67™(2) Zli\l’,...,im=1 f dsy « - J dsmum('rlsl(zil)y ctty 775,,,(21',,,)):
0 0

where z; = [x:f(£)], so to prove the theorem it suffices to show that

t t
(4.1) Supy‘ezdo_m(t) J ds; - J dsmum('rlsl (1), «--, Ns,, (m)) —0
0 0

ast— oo,
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The first step in the demonstration of (4.1) is a straightforward generalization of
Proposition 2 in [3] to our “space-time setting”, so we omit the proof.

LemMa. There is an absolute constant K, such that ify; € Z% s;=0(1 = i=m) and
t = max(sy, -+, Sm), then

Un (s (31), + 23 M5, (Ym)) = Kn P(Ne((y1, £ —81), =+, (O, t— 82)) = 1).
To simplify notation, observe that

t t
J d31 oo J dsmP(Nt((ylyt_sl)) crey (ym,t_sm)) = 1)
0 0

t t
=J dsi «-+ f dsn P(N:((y1, &1), =+, (¥m, 82)) = 1).
) 0
In view of this and the Lemma, it remains to prove that
t t
4.2) supy,ez0 " (t) j dsy - -- J dsn P(Ne((y1, 81), +++, (¥my $m)) =1) = 0
) 0

for m = 3. Fortunately this is somewhat simpler than the analogous task in [3]. Write

p((y1, 81)s +++y (Ymy Sm)) = P(Ne(31, 81), <+, Om, ) = 1),

t t
Ft(x’ S5 X1y 00y xk) =J dsl . J dskpt((xy S), (xly sl)y crcy (xky Sk)),
0 0

and
®(t) =T%(0, 0; 0).
We will show that there are constants C(k) < oo, k2 = 1, such that

4.3) SUDg20,2, 5, m Lt (%, 85 %1, %, - -+, 1) = C(R)D(8)",
and that
®(t) = O(t/Int) (d=2)
44) = O(t'?) (d=3)
= O(In?t) (d=4)
= 0(Q1) (d = 5).

Together, (4.3) and (4.4) imply (4.2). (Put e =m — 1, (x, $) = (¥m, Sm).)
To prove (4.3) we will need two observations:

(4.5) 0:((0, 0), (0, s)) decreases in s,

and
(4.6) T (xo, s0; X1, X2, +++, x) = Te (%0, 0; X1, « -+, x22) + ' (%1, 0; X0, X2, + -+, X&)
+ oo+ Telxr, 0; X0, X1, +++, Xp—1).

Claim (4.5) follows from the remarks leading to (0.9). For (4.6), break the region of

integration (0 <s;<¢;1<i=<Fk}intok + lparts: (0 <=sp=s;=<t;1<i<k},{0=s =
$i<ti=0,2=<i<Pk}, ..., {0=s,=s=<¢t;0=<1i=k— 1}. On the first region we have
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t t t
J dslj ds; f dsrp:((%o, S0), (%1, 81), + =+, (X, S))

So So
t t t
SJ ds: J’ dsy +-- J dsrpe((x0, 0), (%1, 81 — So), =+, (%, St — So))
S0 So S
t t
sf dsy .- J dsep: ((x0, 0), (X1, S1), +++, (Xk, )
0 1]

=T (x0, 05 X1, +++, Xz).
The second region is typical of the rest:
S0 t t
J dslj dsg -+ - f dsrp: (%o, S0), (%1, 81), <+, (X&, 8))
o EN KN
S0 t t
sj dslj dsp - -- f dsrp:((xo, o — 81), (%1, 0), (%2, S2 — 81), +++, (%, & — 81))
0 8 KN
t t t
sj dslf dsp - J dskp: ((x1, 0), (%0, 51), (22, &), « -+, (%, S))
0 0 0
= I (x1, 0; x0, Xz, ==+, Xn).

The remaining regions are handled similarly; summing we get (4.6).
Let us now check (4.3) fork=1.If0=sy<s, <,
2t—sp—s)
pe((xo, So), (x1, 81)) = j Pu(0, x0 — x1) Pe(1o > 2t — o — 81 — u) du

81— 80
+ Pat—s,-5,(0, X0 — x1)
2t—s9— s
(4.7) SJ' pu(O, O)Pe(’l'o > 2t — So — 81 — u)du
+ p2l—sﬂ—sl (0; 0)
= pt((O, SO)’ (0; sl))'
Similarly the inequality holds for 0 < s; < sy =< ¢, so using (4.6) we find that
Ti(xo, s0; 21) = I'4(0, s0; 0) = 2(2).

Thus (4.3) holds for £ = 1 with C(1) = 2.
We proceed by induction, assume (4.3) for 2 = m — 1, and consider the case 2 = m. Fix
Xo, X1, ¢+ v, Xm € Z%, S0, 81, +++, 8m = 0. Given a subset 7 = {i, -+, i1} of {0, 1, ---, m}, let

7(7) = min{t: t= S, forall 1 SJS ! and Nt((xil, Sil), ey, (xil, Sl'l)) = 1}.

Roughly, 7(7) is the hitting time of cardinality 1 for the 7 subsystem of coalescing walks.
Now let {7, 7°} be a nontrivial partition of {0, 1, .., m}, and write

(4.8) pe((%o0, S0), (%1, 81), *++, (Xm, $n)) =X (may P(Ae(m)),
where
Ay (m) = {Ne((x0, S0)y +++, (Xm, Sw)) =1 and
({i,j}) =7({0,1, ---,m}) forall i€En,jE 7).
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The decomposition (4.8) is made by considering the “ancestors” of the particles in the last
collision. For 7 C {0, 1, -+, m},y € Z% u = 0, abbreviate

’ﬁt(ﬂ) = ﬁt((xi, Si)iEw), Pt ('77', (y, u)) = Pt((xi, Siien ,(y, u)).

Without loss of generality we may assume |7 | > 1, in which case we claim that
t

(4.9) P(Ai(m) = ny P(r(n) € du, qu(m) = {y}Dp: (7, (¥, w)).

0

In fact, one can represent
t t
wawzmjjmmmwmm=Mﬁwm@@ww&L
0 Jo

s(m) N (n€) =D for 0= s=<max{y, v},
and 7s(7) = Ms(7°) for some s € [max{u, v}, t]),

where 7.(7¢) is a coalescing system which is independent of n.(w), 7(7°) the corresponding
hitting time. Constructions of this sort are described in [9], for example. Furthermore, the
right side is majorized by

Zy,zf J P(r(m) € du, u(m) = {y}, 7(7°) € dv, 7u(7°) = {2},
0 0

and 7y(7°) = Y,(y, u) for some s € [max{y, v}, t]),

where Y. (y, u) is a random walk starting from y at time u which is independent of both
7.(7) and 71.(7°). The last expression equals

zwffmmmwmm=MWWﬂemeH&L
and 7u(m) = Yu(y, u) forsome s € [max{y, v},¢t])
=Y. J: J:P(e-(vr) € du, Nu(7) = {y}) P(r(7°) € dv, 7, (n°) = {2},
and  N:((x;, 8i)iene, (3, w)) = 1).

Summing on z and integrating over v we get (4.9), and so

Ti(x0, So0; X1, =+ +, Xm)

(4.10) ¢ ¢ ¢
= Yima9) f dsy --- f dsn Zyj P(r(7) € du, fu(m) = {y})p:(7°,(y, u)).
o o o

From now on assume s, = 0. If {7, #°} # {{0}, {1, 2, ---, m}}, we may assume that
0 € 7, in which case the corresponding term in the above sum is

t
= f ds, Zyj P(r(m) € du, Mu(7m) = {y}) X f dsjpe(7°, (y, u)).
ien—{0} 0 yen
By the induction hypothesis each such term is

= C(|#)@ ()™ f dsipi(m) < C(|7|=1) C (|7 )@ (¢)™.

1€ 7—{0)
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Moreover, the {{0}, {1, 2, ..., m}} term is (taking = = {1, 2, - .-, m})

f ds, ZyJ P(7(m) € du, qu(m) = {y}p:((x0, 0), (3, u))
iew [

t
SJ ds; Zyj P(r(n) € du, nu(7) = {y})e((0, 0), (0, 51)),
ien 0
applying (4.7), the fact that u = s; and (4.5). The last expression is
t t
= stlpz((O, 0), (0, s1)) J' dsp «-- J dsmpe(m)
() ()

=C(m—1)®@)" - ®(t) = C(m — 1)®(¢)™,
again by induction. To summarize, assuming (4.3) for £ =< m — 1 we have shown that
Ft(x’ 0’ X1y c0 0y xm) = Z(w,vr“) C(lﬂ | _l)C(Iﬂc I)q)(t)m~

In light of (4.6), then, (4.3) holds for 2 = m with

C(m) = (m + 1) 37" (’”;’ 1) C()Cm—j) (C)=2).

Finally, for (4.4), decompose as in Section 2 to get
t 2t—u
O(t) ~ f duj Pv(0,0) P10 > 2t — u—v) dv
(] u
t
= J P.(10 > 28)[G(2t — 2s) — G(t — s)] ds.
)
By (1.4) and (1.5), as t — o,
* ds
(t) = o(J —) (d=2),
A Ins

t—1
O(J (t—s)"@ 272 ds) (d=3).
o

Thus (4.4) holds, and the proof of Theorem 1 in dimensions d = 2 is complete.

REMARK. In five or more dimensions, since Var(7T¥9) = O(¢), the central limit theorem
for T? follows from a generalization of the Newman-Wright invariance principle [16] for
associated variables. See [6].

5. The proof of Theorem 1 (d = 1). To complete the argument for Theorem 1, it
remains only to show that in one dimension

(5.1) TV, = 8 as t— oo,

The limit & is clearly non-Gaussian since it lives on [0, 1]%, and the centered limit ¢ in
(0.15) is given by £(x) = &(x) — 6. (5.1) is an application of a beautiful invariance principle
for coalescing Brownian motions due to Arratia [2]. Here we will simply describe the limit
£, referring the reader to [2] for the proof of convergence. Coalescing Brownian motions
on R, as the name suggests, is an infinite particle system of Brownian motions moving
independently on the real line, except that whenever two particles collide they coalesce
into one. The exotic feature of this system c, is that it starts with a particle located at
every x € R. Letting c;(x) denote the position of the particle started at x after time ¢, co(x)
= x Vx € R. By any time ¢ > 0, however, the process has collapsed to a discrete countable
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set of occupied positions:
VxER, t>03i€Z, xi(t)ER: c(x)=ux(t).

Thus the sample paths of ¢, comprise a sort of inverted Brownian tree with binary
branching which “explodes” as ¢ |, 0. If one rescales the voter model and embeds it in R via

ni(x) = e ([xVE]) (O=s=1),

then Arratia has shown that as ¢ — o, 1 converges weakly to a limit = which can be
constructed from c;, 0 < s < 1. Informally, the construction goes as follows. The Brownian
tree formed by c; divides R X [0, 1] into countably many regions. Independently label each
region 1 with probability 8, 0 with probability 1 — 8. The connected components of 0’s and
1’s obtained in this manner form the limiting space-time field which describes the scaled
cluster structure of the voter model. Namely, = is given by

Es(x) =1 if (x, s) belongs to a component of 1’s,
=0 otherwise.
For the field of occupation time functionals we get

t 1
(T ez = (t_l J R(ERL2) du) = (f 75(x) dS)
0 0

x€Z

1
— (J Zs(x) ds) as t— o,
0

xeZ

1
(o(x)) = (J Es(x) d8>
)

is the desired representation. The connection between the voter model and coalescing
Brownian motions lies in the fact that the borders between extant regions of the form
{y € Z: y € 97} execute coalescing random walks. Again, see [2].

x€Z

Thus

6. The proof of Theorem 2. Our law of large numbers follows from the semi-
invariant estimates of the last section, Chebyshev’s inequality and the Borel-Cantelli
lemma. The case d = 2 is the hardest; to incorporate it we use a nice technique from
Etemadi [8]. Since

E[(T? — 6t)*] = Si(t) + 3S3(2),
for d = 2 the estimates (4.3) and (4.4) yield
E[(T? - 6t)'] = O(-(-ﬁl;;—)g)
Hence for any r > 1,
P(|r T — 0| >¢) < e r *"[(TH» — 6r™)*]1 = O(n7?).
By Borel-Cantelli,
r"Tym—0 as. n— oo,
Since T is increasing, if 7" < ¢ < r"*! then
Y r ) < t 71T < r(r ™D Thn).
Thus

T,
P(é < lim inf,_,. -t—‘ < lim sup;.= th = 0r) =1
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for each r > 1. Let r | 1 through the rationals to finish the proof.

REMARKS. The strong law for d = 2 is rather curious in light of (0.1). The discussion
of the previous section shows that there is no law of large numbers in one dimension. It
seems most likely that Theorems 1 and 2 will continue to hold when the voter model starts
from any measure in the domain of attraction of »,, in particular for the stationary process
1. It should at least be possible to identify a large class of “regular” initial states to which
the limit laws apply.
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