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A NON-CLUSTERING PROPERTY
OF STATIONARY SEQUENCES!

BY ARIF ZAMAN
The Florida State University

For a random sequence of events, with indicator variables X;, the behavior
of the expectation E{(Xy + -+ + Xppm-1)/(Xs + - + X))} for ls k< k+
m — 1 < n can be taken as a measure of clustering of the events. When the
measure on the X’s is i.i.d., or even exchangeable, a symmetry argument
shows that the expectation can be no more than m/n. When the X’s are
constrained only to be a stationary sequence, the bound deteriorates, and
depends on k as well. When m/n is small, the bound is roughly 2m/n for k
near n/2 and is like (m/n) log n for k near 1 or n. The proof given is partly
constructive, so these bounds are nearly achieved, even though there is room
for improvement for other values of k.

1. Introduction. In considering portions of larger, but still finite strings of
random variables, the following problem arose. If X;, --., X, is part of a
stationary sequence of zeros and ones, one would not expect the ones within that
portion to clump together, intuitively because each X; is as likely as any other to
have the value one. Based on that intuitive argument, one could expect the
expression suppe s Ep{(Xi + « -+ + Xpam—1)/(X1 + .-+ + X,)} (note: 0/0 = 0)
wherel <k <k+ m—1=<n,and & is the set of stationary probability measures
on binary sequences, to behave roughly like m/n. Indeed, if the probability P is
restricted to be i.i.d. or even exchangeable, a simple symmetry argument yields a
supremum of m/n, achieved when the X; are identically 1. For the case of
stationarity, the upper bounds on the supremum'for m/n small are roughly
2m/n when k is near n/2, and like (m/n) log n for k closer to 1 or n (Theorem
7). The key result is a constructive proof that finds the P which achieves the
supremum for the two casesof m =1, k=1,and m =1, k = (n + 1)/2 (Theorem
2).

I would like to thank Professor Michael Steele for insisting that this could be
done, and Professor Larry Shepp for an improvement in the proof. I would also
like to acknowledge the many simplifications and improvements suggested by
the referee.

2. Results. We shall immediately narrow our concern to the simpler prob-
lem of finding bounds for

X
(1) Ry, = SuPPeyEP{M} for 1<k=<n.
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194 ARIF ZAMAN

Notice that the variables X+, X,.+2, - - - do not appear in the above expression,
so only the marginal distribution of (X;, ---, X,) affects the values of Ry,. A
small amount of notation is needed for the next theorem, which makes use of
this observation.

A loop is a finite sequence a;, ---, a, of zeros and ones. Subscripts out of
range will be taken circularly, so that ay = a, and @+ = a;. For a loop a and
any positive integer n, the measure P,, gives mass 1/m to each of (ay, - - -, a,),
(a27 R} an+1)’ ) (am7 M} am+n—l)-

THEOREM 1. If a binary sequence X has a stationary distribution, then the
marginal distribution of (X3, - -+, X,) can be written as a convex combination of
measures P, , for a € A,, where A, is a finite set of loops. Moreover, every P,, is
the marginal of some infinite stationary distribution.

More details, and a proof of this can be found in Zaman (1983) or Hobby and
Ylvasaker (1964). Since expectation is a linear functional, Theorem 1 allows
replacing the maximization over &/ in equation 1 by maximization over P, , for
a € A,, yielding

(2) Ry = maxeeq, Ep, ,(Xi/ Xi=1 X;).

Using the definition of P, ,, the expectation can be further decomposed into

Xk 1 o, Gk

®) EP“’"<2?=1 X,-) m 2 X1 Gisj
where m is the length of the loop a. In a completely unrelated problem, sums of
the form given in the right side of equation 3 have been given the name cyclic
sums, e.g. Daykin (1970).

Equations 2 and 3 convert the original probability problem of equation 1 into
a finite maximization of a function over a set of loops. This maximization is
performed for chosen values of k in the appendix to prove the following key
theorem.

THEOREM 2. (a) When k = 1 or n, the maximum in equation 2 is achieved for
a = 0”17 (the notation 0" refers to a block of n — 1 zeros) for some number 8
depending on n. (b) When k = (n + 1)/2 for odd n, the maximum in equation 2 is
achieved for a = 0°7'1.

COROLLARY 3. Define
(4) a(n) = supg=1(n + B)™' L, 1/i.
Then,

[a(n—l) if k=1 or n (a)

Ry, = 12/(n+1) if k=(n+1)/2 (b)
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FI1G. 1. Bounds on Ry, as a function of k, for n = 101. The area between the upper and lower bounds of
Theorem 4 is shaded to indicate the possible region for Ryn.. The different bounds are labeled by the
equation number in Theorem 4.

The corollary is actually proved as a step in proving Theorem 2, but can also

be proved by writing out equation 3 for the loops given in Theorem 2.

Using these equalities for R, , and R;+1)2,n, @ general bound for Ry, is easy to
get. Theorems 4 and 5 do just that. The bounds of Theorem 4 are depicted
graphically in Figure 1.

THEOREM 4. Define
a(k, n) = supni=s(k + B) " {(n — k)/B + X1k 1/i}.

Then
(a)
(b)
(c)
(d)

a(n—k, n) < Rgn < a(n — k)
alk—1,n) <R, <alk—1)
1/n+1—k) <Ry, <1/k
1/k=Ri,=1/(n+1—k)

when 2k—1=<n
when 2k—1=n
when 2k—1=<n
when 2k —1 = n.
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Proor. Parts (b) and (d) follow from (a) and (c) respectively, once the
symmetry condition

(5) Rk,n = Rn—k+1,n

is established. To prove this, note that if P, , is the distribution of (X, - - -, X5)
then the distribution of (X, - - -, Xi) is given by P, , for a’ = (am, - -+, a1). Now
for any loop a,

EP,,,,,(Xk/ 25"=1 Xj) = EP,,;,,,(Xn+l—k/ 27=1 Xj)

from which equation 5 follows.
The upper bound in (a) follows from Corollary 3a by

Ry, =< suppes Ep(Xp/ X3k Xj) = Rinvi-x = a(n—k).
Similarly, for part (c), the result of Corollary 3b shows that for 2k — 1 <n
Ry < suppes Ep(Xa/ Y X;) = Rige—r = 1/k.

The lower bounds have been included in the theorem to get some idea on the
room for improvement of these bounds. It is conjectured that the actual values
of Ry, are much closer to the lower bounds than to the upper bounds. The lower
bound (a) is obtained by using equation 3 to get for k < (n + 1)/2

Rk,n = Supa=0""’lﬁ,ksﬂsnEP,,(Xk/ 2;'1=1 X) )

= Suprspsn(n + B — R)H{(k — 1)/8 + Tk 1/1}.

The lower bound in (c) is achieved by letting @ = 0"*1. For that value of a, if 2k
— 1 < n then by equation 3

e X o1
PA\Sn, X;) n+1-k

It is not difficult to find loops which give even higher lower bounds, but that
does not seem to be the more fruitful direction of moving the bounds. 0

THEOREM 5.

1+ log(n — 1)

Rk,n = for n = 3.

Before giving a proof, a logarithmic approximation for the function o will be
established.

LEMMA 6.

log n — log(log n) — 1
- =
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PrOOF. Let 8* be a value of 3 which achieves the maximum in equation 4,
so that

(6) a(n) = (n + %7 3L, 1/i.
A crude bound to the harmonic series in equation 6 gives
(7 a(n) = (1 + log 8*)/(n + B*).

By calculus, the function (1 + log x)/(n + x) for x = 1 reaches its maximum
value of (log x*)/n when x* log x* = n. If n > e, log x* can be bounded by

8) log n — log log n < log x* < log n.
Plugging this information about the maximum into equation 7
a(n) = (1 + log 8*)/(n + B*) = (log x*)/n < (log n)/n,

establishing the second inequality of the lemma.

For the first inequality, let x* be as before, define 8 = [x*] (the integer part),
and for notational convenience let [ = log n — log log n which is the term on the
left side of equation 8. Then

an)=z(n+B)* 3L, 1/i = (n + x*)og x*
9) 2n+n/l)yU=n"/Q+D=n{l-1+(+ 1Y
> (- 1)/n.

The last inequality substitutes a prettier expression at the cost of some preci-
sion.

The proof of Theorem 5 then amounts to the following. By equation 5

maxi Ry, = maxe<m+1)2Rin
(10) (by Theorem 4a, ¢) =< maxp<m+12{(1/k) A a(n — k)}
(by Lemma 6) < maxp=m+1)2{(1/k) A log(n — k)/(n — k)}.

Since 1/k is decreasing and the second function increasing as k increases, the
maximum in equation 10 is attained at some k = k* for which the two functions
are equal. Thus

maxy Ry, < 1/k* = log(n — k*)/(n — k*) = {1 + log(n — k*)}/n,
where the last expression follows by some algebra. Since k* = 1, replacing it by

1 gives the claimed result in Theorem 5.0

Returning to the original problem as stated in the introduction, one can state
the following theorem based only on the definition of Ry ,.
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THEOREM 7.
suppes Ep{Zi2E ™" Xi/ Tl Xi} < TR0 Ry
For example, this proves that for any stationary measure P,

E X+ oo+ Xptm
X+ + X,

}s%{l + log(n — 1)}

and for blocks near the middle

X+ -+ X 1 n 2k + 1
E”{X_,,+...+X,}Sn+1+2l°g<n—k)S n—k

by using the values of R, , given in Theorems 5 and 4c, d.

APPENDIX

PROOF OF THEOREM 2a. The appendix will use equations 2, 3, 4, 5 and
Lemma 6 from the previous section. It is to be noted that these do not use
Theorem 2 in any way and are mainly definitional equations. To avoid repeating
awkward summations, for the loop a = a, - - -, a,, we define

S(j, k) = Xja, Si=SE—n+1,1i),
T; = ai/Si, T(f, k) = ?=j T:.

By equation 5, R1,, = R,.. We will choose to work with R,, , for which equation
3 can be written as

(A1) Ep, (Xn/ X} X;) = T(1, m)/m.

Consider the case when a is of the special form 0"1* for some integer x < n.
Working out the sums involved in equation A.1, for this a

(A2) Ep, (Xo/Ses X)) = (n = 1+ 27 T 1/i < aln — 1).

It is easy to see that in equation A.2 equality is achieved for some value of x = n
which we shall denote by 8(n — 1) (the argument n — 1 will be assumed from
now on). The proof that amongst the set of all loops, the given loop, 0711
maximizes the expectation will be done by contradiction. Assume there is some
a=ay, -, a, and ¢ > 0, for which

(A.3) TA, m)/m>a(n—1) +e.

The method of proof involves a stepwise modification of a. At each step the
previous loop will be denoted by a, and the modified one by a’. The variables m’,
for the length of a’, as well as S’ and T, will similarly be defined for a’. After
each step, for the modified sequence the inequality

(A4) T'1, m’)/m’ > a(n — 1)

will be proved. Yet after a finite number of steps, the sequence a’ will essentially
look like 0"'1#, providing the contradiction.
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Step 1. Let m’ be a multiple of m, large enough so that n/m’ <, for the ¢
in equation A.3, and also m’ > 5n (this last restriction is not necessary, but
allows the treatment of a loop as a long open string). We have a = ay, - - -, @p.
Leta’=0""a,, ---, an'.

’

To prove equation A.4 note that a/ < a;,s0 S/ = S;.Sofori=n, ..., m’ we

have T/ = T;,and fori=1, ---,n—1, T; = 1. Hence
TA, m')=s(n-1)+T'(n,m’).
Since m’ is a multiple of m,
an —1) +e< T, m)/m=TA, m’)/m’
=sfn-1)+T'A,m")}/m" =e+T'(1, m')/m’

which proves equation A.4.

Step 2. Now a = 0" 'a,, @n+1, - -+, Gm. Define b = S(n, 2n — 1). Let 0’ =
0" 11%0"ay,, - - -, Gp.

Note that a’ is simply a, with the block a,, - - -, az,—1 rearranged so that all of

its b ones are to the left of its zeros. We pause to prove the following lemma
about switching the order of a neighboring pair of 0 and 1.

LEMMA 8. Let a and a’ be two loops of the same length m, identical except
that Apyj = ar/t+j+1 =0 and arl;+j = Qpyjr1 = 1. If Ajy1 = 0, then

T(1, m) =T'(1, m).

PrROOF. The proof consists simply of noting that the only difference between
T;and T is T2n+j = T§n+j , Tn+j = Tr,z+j+1 and Tn+j+1 = Trlz+j- O

Applying Lemma 8 repeatedly over a large block yields

COROLLARY 9. If a has a block of zeros aj.1 = - - - = aj+» = 0 then construct a’
by rearranging the block ap+;j, - - -, Gn+j+b S0 that the ones are to the left of the zeros,
but otherwise a and a’ are identical. Then the conclusion of Lemma 8 is still valid.

Returning to Step 2 in the construction,

aln—-1)<TA, m)/m=T'Q1, m")/m’,
where the first inequality was established in Step 1, the second follows from
Corollary 9.

Step 3. Now a = 0" 11%0"%ay,, - -, a,. Let a’ = 0"11%0"%ay,, ---, @, s0
that m’"=m+ 3 —b.
By the definition of 3 in equation A.2,
(A.5) Tl,n+b-1)=30,1/i=(n+b—-1aln—1)
T'"Ln+B-1)=3L1/i=(n+B— Daln — 1).
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For the remaining values i = n + b, ---, m we have T; = T/, if 6= b — 1.
When 8 < b — 1 the only difference is that S; > S{s_, fori=2n, ..., 2n + b —
B8 — 2, so that in all cases

(A.6) Tn+bm)<T'(n+p,m’).
Combining equations A.5 and A.6

TA,m)—T'A,m’) < (b-Ba(n —1).
This implies equation A.4 as can be seen by this simple lemma.

LEMMA 10. If T(1, m) — T(Q, m’) = (m — m’)a and T(1, m)/m > « then
T, m’)/m’ > a.

ProoF. 0<T(A,m)—ma<T'(1l,m’)—m’a.0

Step 4. If b > (3, return to Step 2; otherwise n — b = n — (8, so the second
block of zeros in a has at least n — 3 elements. Let a. be the first occurrence of a
1in agnip-1, - - +» Gm. Nowa =0""11%0""Pqy,, - -+ , @c, - - -, am. Let a’ = 0"'1°0" q,,
c e, Qm,s0thatm’=m+2n+pB—c—1.

Note that T(1,2n — 1) = T'(1, 2n + 8 — 2), Tonts-1 =1 and T(c + 1, m) <
T’(2n + B, m’) so that

(A7) T, m)—T'A,m")=T@n,2n+3—-2)+ T.— 1.
Let d = S(2n, 2n + B — 2) so that there are n —d — 1 zeros in a,, - - -, G2n+p-2-
Then each S; fori =2n, .-+, 2n + 3 — 2 sums at most n — d — 1 zeros, and at

least d + 1 ones, i.e., each S; = d + 1. Since a; and hence T; is nonzero d times
fori=2n,.--,2n+3—2

(A.8) T@2n,2n+ B —2) <d/(d + 1).
We will separate out three cases, and in each case establish
(A9) TA,m)—-T'A,m')=(m—m")a(n — 1),

which would imply equation A.4 by Lemma 10.
CASEl. 2n+B8—1=<c<3n.Here(m—m’)=0andd =S, — 1, so equations
A.7 and A.8 imply
T, m)—T'1,m')y<(S.+1)/S.+1/S.—1=0,
establishing equation A.9.
CASE2. ¢=3nandn # 4, 6,8 or 10.

Sinced=<g8—1and m — m’ = n + 1 — B3, using equations A.7, A.8, we need
to show

(A.10) B-1)/B=(n+1-pBa(n—-1).
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TABLE 1
n B(n-1) a(n-1)
1 1 1.000000
2 1 500000
3 2 .375000
4 3 .305556
5 3 .261905
6 4 231481
7 4 .208333
8 5 .190278
9 5 175641
10 6 .163333
11 6 153125
12 6 144118
13 7 .136466
14 7 129643
15 8 123539

to prove equations A.9. Looking at Table 1, this holds for all given values of n
except 4, 6, 8, 10. For values beyond the table, equation A.7 was checked
numerically up to n = 100, and the logarithmic approximations of Lemma 6 will
be used after that. Since 8 maximizes equation A.2, we have

an = 1) = fn— 1+ (8 — D} B %

(8= gy (L)
(5o -0l

which gives a(n — 1) < 1/B. Since fa(n —1) <land (8 —1)/8 =1,

(n+1—6)a(n—1)—§;—1

=2(n+Dan—-1) -2

log(n — 1) —log log(n — 1) — 1
n—1

2

(by Lemma 6) = (n + 1)

=0 for n= 87.

The final inequality can be calculated for n = 87, and since the penultimate
expression is an increasing function of n, all larger n must also satisfy it. But
this establishes equation A.10 and hence A.9 for all n # 4, 6, 8, or 10.

CASE3. c¢=3nandn =4,6,8, or 10. This case is further broken into three
subcases each involving a verification by Table 1.
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(3a) Ifc=3nand S, > 1 then T, = % so if
B-1)/B-%=n+1-Ba(n-1)

then equation A.9 is satisfied.
(3b) Ifc=3nand S, =1 then S2n + 1, 2n + 8 — 2) = 0, and so T(2n, 2n +
B8 — 2) = Ty, < 1/8. Using this in equation A.7, we need to verify

1/86<=(n+1-Ba(n—1).
(3c) Ifc>3nthen m — m’ =n + 2 — 3 and we need
(B-1)/8=(+2=pBaln—1).
As these cases are exhaugtive, and in each case equation A4 is true, Step 4 is

complete.

Step5. Nowa=0""1°0""azsp1, - -, Gm. Let @’ = 0" "agnsp-s, - - -, 30" 1%
Since a’ is just a rotation of a, T(1, m) = T’(1, m’), so equation A.4 will hold.
Now, return to step 2 unless

(A.11) a = 0"11807 118 ... 0" 115,

At every return to Step 2, some elements of the original sequence are deleted
or reordered into blocks of 0'1%. Since no new disordered elements are created
at any step, the procedure must stop after a finite number of steps. Since at each
step equation A.4 was verified, for the final a of equation A.11 we must have

T(1, m)/m> a(n—1)
yet simply computing,
TA, m)/m=(@n-1+pB)" XL 1/i=an -1)

providing the contradiction which proves the theorem. 0

PROOF OF THEOREM 2b. Let nbeodd, k= (n + 1)/2,anda=ay, - - -, am. As
notation, define
SG,j) =Sl @, Ti=—=rh T, i) =S T
’ = SG+1,i+n)’ ’ =i

so that equation 3 can be written as
Ep, (Xi/ i1 X;) = T(1, m)/m.
For any loop a,
T(1, k) = Y&y air/SG + 1,0 + n)
=Y au/Sk+1,n+1) =1

As this holds for all loops, it will also hold for the 100p (@hr+1, Qrrtas - - 5 Ghken)
for any integer h. Thus

T(hhk +1,(h+ 1)k) <1 for h=0,1,, ---
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Adding these up for h=0,1, .--,m — 1,

(A12) m > Yt T((hk + 1), (b + 1)k) = T(1, mk) = kT(1, m),
because a is periodic with period m. Rewriting A.12 gives

(A.13) T, m)/m<1/k=2/(n+1)

for any loop a. On the other hand, it is straightforward to verify that the loop
a = 011 achieves the upper bound in equation A.13, thus proving Theorem 2b
and Corollary 3b simultaneously. 0

REFERENCES

DAYKIN, D. E. (1970). Inequalities for certain cyclic sums. Proc. Edin. Math. Soc. (Ser. 2) 17 257-
262.

HoBBY, C. and YLVASAKER, D. (1964). Some structure theorems for stationary probability measures
on finite state sequences. Ann. Math. Statist. 35 550-556.

ZAMAN, A. (1983). Stationarity on finite strings and shift register sequences. Ann. Probab. 11 678~
684.

DEPARTMENT OF STATISTICS
FLORIDA STATE UNIVERSITY
TALLAHASSEE, FLORIDA 32306



