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GITTINS INDICES IN THE DYNAMIC ALLOCATION PROBLEM
FOR DIFFUSION PROCESSES'

By I0ANNIS KARATZAS
Columbia University

We discuss the problem of allocating effort among several competing
projects, the states of which evolve according to one-dimensional diffusion
processes. It is shown that the “play-the-leader” policy of continuing the
project with the leading Gittins index is optimal, and very explicit computa-
tions of the index are offered. The question of constructing the diffusions
according to the above policy is also addressed.

1. Introduction. We consider d “projects” or “investigations”, the state of
the jth of them at time ¢ = 0 being denoted by x;(¢); 1 <j < d. At each instant
of time t, one is allowed to work only on a single project denoted by i(t), which
then evolves according to some Markovian rule; meanwhile, the states of all other
projects remain frozen. If i(t) = j, one acquires an instant reward equal to
h(j, x;(t)) per unit time, discounted by the factor ™. The stochastic control
problem is then to choose the “allocation policy” {i(t); t = 0} in such a way as to
maximize the expected discounted reward E [§ e~ **h(i(t), xie)(t)) dt.

Questions of this sort are often being referred to as “dynamic allocation”
problems. They bear a close relationship to a class of statistical questions known
as “multi-armed bandit” problems, which have a long history (see the references
and the discussion following [8]). The general, discrete-time problem started
yielding during the seventies, when Gittins and his collaborators made significant
advances in a series of papers (c.f. [7]-[10] and the references therein). Gittins
showed that one can associate to each project j an “index” function M;(x), defined
in terms of an optimization problem involving only this particular project and
none of the remaining d — 1, and such that the following policy is optimal: “at
time t, engage the project with the biggest index M;(x;(t))”. The index was first
introduced in [10] as the smallest value of a terminal reward which makes
immediate stopping profitable when the jth project is in state x, and was later
characterized in [9] by means of a “forwards induction” argument. The relatively
recent article [15] and book [16] by P. Whittle contain a concise, mathematically
rigorous account of the contributions of the Gittins school.

The present work attempts to provide a similar discussion of the dynamic
allocation problem in continuous time, when the state of affairs in each one of
the d projects can be modeled by a one-dimensional, time-homogeneous diffusion
process. Our purpose is to show that the Gittins index can be computed explicitly
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in this case (c.f. formulae (3.17) and (38.22) in the text), and that a relatively
simple argument can be provided for the “forwards induction” characterization
(Theorem 4.1). Explicit solutions are also offered for the nonlinear variational
inequalities attached to the dynamic allocation problem, which in turn yield the
optimality of the index policy as a corollary of It6’s rule.

2. The dynamic allocation problem. Let us assume that, on some prob-
ability space (2, % P) endowed with the increasing family of ¢ — fields { F }i»,,

we have a d-dimensional Brownian motion {w(t) = (wy(t), - - -, wa(t)), Fi; t =
0}, as well as an “allocation policy” o = {i(t), Z;; t = 0} which is supposed to
be a progressively measurable process with values in the set {1, - - -, d}. The value

of i(t) decides which project is to be engaged at time ¢, whereas
T;j(t) = meas{0 < s < t; i(s) = j}

measures the total time-to-date that project j has been in operation. Let us also
suppose that, on the same probability space, we have an R — valued process X
= {(x1(t), - -+, xa(t)), F:; t = 0} satisfying the system of stochastic differential
equations

(2.1) dx;(t) = pi(x;(t)) dT;(t) + oj(x;(t)) dw;(T;(t)); t=0
xj(O) = X

forj=1, ..., d. The process {x;(¢); ¢ = 0} models the “state of affairs” in project
j as a diffusion with local drift u;(x) and variance o7 (x) satisfying condition (3.2)
below, while the project is being engaged.

REMARK. With a given allocation policy &/ and a Brownian Motion
{B(t) = (By(t), - - -, Ba(t)), F:; t = 0} on (2, Z P), one can construct for each
1 =< j < d the solution of the stochastic differential equation with random
coefficients ’

(2.1)* dx,-(t) = u,-(xj(t))lli(t)=,~; dt + aj(x,-(t))lli(t)=j; dBj(t); t=0

as in [6], page 118. By virtue of a theorem of F. Knight ([11], page 86), the
process {w(t), Z:; t = 0} with components

T7A(t)
w;(t) = fo Liw=j) dBj(s); 1=j=d
is d-dimensional Brownian motion, and so (2.1) is satisfied. 0O

The reward received by engaging project j is measured by the function h(j, x);
x € R, which we assume to be strictly increasing with bounded, continuous first
and second derivatives, and to satisfy

(2.2) limyeh(j, x) = aK, lim,_oh(j, x) = ak, lim-h'(j, x) =0

for some numbers K > k, a > 0 and all 1 < j < d. Future payoff is discounted by
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the factor e™, so that the expected reward corresponding to an initial position
X = (xy, - - -, x4) and an allocation policy & is given by

(2.3) J(x; &) = Ex J; e~ **h(i(t), xie (t)) dt.

The allocation problem is then to find a policy <7 * so as to maximize expected

reward; i.e., with ®(x) & sup,J (x; o7 ), to achieve ®(x) = J (x; &7 *), Vx € R%
This problem can, at least in principle, be treated by methods of dynamic

programming. The relevant Bellman equation in R%:

2

A 1 ~
24) ad(x) = maxlsjsd[§ o3 (5) o B(x) + () ai, ®(x) + h(j, x,-)],
7

a 2
is an elliptic, strongly nonlinear partial differential equation of the second order.
In order to see its relevance to the allocation problem, let us suppose that a
solution ®(x) of (2.4) is, along with its first derivatives (9/dx;)®(x); 1 = j
=< d, bounded and continuous in R¢ with continuous second derivatives
(8%*/9x? )®(x); 1 <j < d. It can be checked by an application of Itd’s rule to the
process {ed(x(t)); t = 0} that &(x) is an upper bound on the achievable
expected reward:

(2.5) <i>(x) > J(x; &), for any allocation policy &/ and any x € R4

It is now reasonable to try to construct an allocation policy 27 * in such a way
as to achieve equality in relation (2.5); that would in turn entail the optimality
of o7 *, along with ®(x) = &(x); Vx € R Evidently, any such attempt hinges
on the possibility of solving equation (2.4) explicitly enough to allow the disclosure
of the form of the optimal allocation policy from the properties of the solution.
In view of the work required to establish even the existence of a classical solution
to strongly nonlinear equations (c.f. [3], [4]), and of “the notorious difficulty of
obtaining general results in optimal stochastic control theory” as Gittins [7] puts
it, it is rather remarkable that such a program is feasible and yields very explicit
results.

To make headway, let us consider with P. Whittle [15], [16] the same problem
as above, but with the extra option of “retirement”, i.e., of abandoning all projects,
with an associated fixed payoff M. The expected total reward corresponding to
an allocation policy 2/ and a retirement time 7 (stopping time with respect to
the family { Z;}:-0) becomes

(2.6) J(x, M; &, 7) = Ex [ J; e h(i(t), xi(t)) dt + Me_""],

and the allocation problem is to choose o *, 7* so that J(x, M; &/ *, 7*) =
F(x, M) for all x € R? and M € R, where F(x, M) = sup,J (x, M; <7, 7).

As before, in order to reduce the global optimization problem into a pointwise
maximization, one has to introduce an appropriate analytical tool, in this case a
nonlinear variational inequality: to construct, for any fixed M, a function
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F(x, M): R? - R which is bounded and continuous in R* along with its gradient,
with second partial derivatives (9%/0x?)F (x, M) which are continuous off the
hyperplanes S; & {x € R% x; = bj}; 1 =j < d, and such that

(2.7)(a) F(x,M)=M; in RS

62

. d A .
axjg F(X’ M) + ”’j(xj) Ex_JF(x, M) + h(]’ xJ):I

(2.7)(b) maxlsjsd[ % o} (%)

< oF(x, M); in RN\ UL S
@27() [F(x, M) — M]

1 * 4 0 4 .
[maxlsjsd{§ o?(x;) Py F(x, M) + p;(x) o F(x, M) + h(j, xj)}

- aF(x, M)} =0;in RN\ UL, S;.

Here,b = (b, - - -, by) is a fixed vector in R¢, with components depending on M.

We shall see in Section 5 that an explicit solution to the variational inequality
(2.7) is available in terms of what we call the “Whittle reduction” (relation (5.1)).
This device reduces essentially the dynamic allocation problem to d problems of
optimal stopping for the component processes viewed independently of one
another. It discerns also the form of the optimal allocation policy by assigning
an index function M;(-) to the state of each project, and proceeding as follows:
“at time t, engage the project with the leading index M;(x;(t)) as long as the
latter exceeds M; otherwise, retire”. This reduction also yields the vector b in
the form: b;= M7 (M); 1 <j<d.

In Section 3 we study in detail a generic optimal stopping problem, in terms
of which one can introduce the Dynamic Allocation (or Gittins) Index functions
M;(-). Various properties and interpretations of the index are discussed in Section
4. We conclude in Section 6 by showing how to construct the R? — valued process
X as in (2.1) on an appropriate probability space, according to our “play-the-
leader-index” rule. We discuss this question in the realm of the Stroock-Varadhan
theory for diffusion processes; no such problem arises in discrete time.

3. A problem of optimal stopping. Let us consider on a probability space
(Q, & P; %) the one-dimensional diffusion process X = {x;; ¢ = 0} which
satisfies Itd’s stochastic differential equation

(3'1) dxt = [L(xt) dt + O'(xt) dwt; t=0
Xo = x €E R.
The local drift and diffusion coefficients u and ¢ are assumed to be C'(R), with

B.2) |o'(x)]<e¢ o(x)>0, 0<ap=<a-—p'(x)<p; all xER,
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for some positive constants ap, 8 and c. The process W = {w,; t = 0} is Brownian
and adapted to the family { #; };»o. With h(x) a strictly increasing, C3(R) function
satisfying conditions (2.2), we consider the following Optimal Stopping Problem:
to find an {#,}-stopping time 7, so as to maximize the expected discounted

reward
Ex[ f e *h(x,) dt + me""].
0

The standard way to attack such problems (see [1] for general theory) is by
seeking, for any given m € R, the C}(R) function ¥(x, m) with piecewise
continuous second derivative (9%/9x%)®(x, m), which solves the variational ine-
quality:

(3.3a) P(x, m) =2m; inR,
2
3 %) 5 Plx, m) + (x) = Plx, m) + h(x)
(3.3b)
< a¥(x, m); a.e.in R,
1, . & 3
(3.30 3¢ (x) e P(x, m) + u(x) Ew P(x, m) + h(x) — a P(x, m)

[P(x, m) — m] =0; ae. in R.

It can then be shown by an application of Itd’s rule that ¥(x, m) is the optimal
expected reward, and that the optimal stopping time is given by

(3.4) ™ =7* (x, m) & inf{t = 0; @(x;, m) = m}.

We shall seek in this section to solve the variational inequality (3.3) as explicitly
as possible.

The increasing nature of the payoff function h suggests that the continuation
region for the stopping problem should be an open interval (b, ©). We look,
therefore, for a real constant b = b(m) and a bounded, C'(R) function ¢ (x) =
¥?(x, m) satisfying the following conditions:

(3.5a) Y o (x)P"(x) + u(x)?’'(x) — aP(x) = —h(x); x>b
(3.5b) < —-h(x); x<b
(3.5¢) P(x)=m; x<b and P(x)>m; x>b.

Obviously, conditions (3.5) imply (3.3).
Solving equation (3.5a) amounts to obtaining two linearly independent solu-
tions of the corresponding homogeneous equation

(3.6) Y o®(x)u”(x) + u(x)u’'(x) — aul(x) = 0,

as well as a particular solution of the non-homogeneous. For the former, it
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suffices to recall the pair of functions
g(x) = E.[exp(—arg); x>0
1

e " Bdew(-ar] * ="
and

gi1(x) = E.[exp(—aro)]; x<0
(3.8) 1 £>0,

" Edexp(~ar,)]’

with the convention 7, = inf{t = 0; x, = y}; see It6 — McKean [12]. These
functions satisfy equation (3.6), are strictly monotone:

limyog(x) =0, limy-og(x) = ®, limg.gi(x) = ®, lim. g (x) =0,

and also linearly independent, with Wronskian

(3.9) B(x) £ gi(x)g(x) — g'(x)&1(x) = B (O)GXP{—2 J; uu) du} > 0.

a*(u)
Besides, for any real numbers a > b, we have the composition rules
_ _8(a) _ _ &i(b)

Let us now introduce the diffusion process Z = {z;; t = 0} obeying the stochastic
differential equation

(3.11) dz, = [u(z:) + o(2:)0'(2:)] dt + o(2;) duw,

and consider the hitting times T, = inf{t = 0; z; = x} for the process Z. With 2z,
= 2> 0, an application of It0’s rule to the process

{g’(zt)exp<— J; (a — u'(2)) dS>; 0=<t=< To}

yields, in conjunction with equation (3.6) for g,

To

lg'(2)| = Ig’(O)IEz[exp (— (a — u'(25)) d8>]

= Ig,(O) I Ez [eXp(—'aoTo)] 21 03
while with z < 0 we obtain in a similar manner

8'(2)] = 0] N 40T N———

T, > —
Bje( [ @ wi a)| BT
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Accordingly, one can conclude that:

limy.gi(x) = o, lim,-.gi(x) =0

and

. *u(u) d
(3.12) hmﬂw[g(x)exp{Z J; ”al;()u)u}]= 0,
since

" ww) du] _ BO)g(x) _ B(O)
g(")e"pjlzfo ) }‘ Bx) g

On the other hand, given g one can obtain a linearly independent solution of
(3.6) in the form

j(x) & g(x) J; g'z(y)eXp{—2 J; £ f’z()u‘;u} dy;

J is of course a positive multiple of g, and inherits its growth. It is not hard then
to conclude that

. , " u(w) d
(3.13) hmm[|g(x)|exp{2 J; “g‘;()u)“”w.

A particular solution of the (non-homogeneous) equation (3.5a) is given by
the expected reward of continuing forever:

p(x) = E, J; e *h(x,) dt.

This is again a strictly increasing, C}(R) function, with £ < p(x) < K and
limop(x) = K, lim,|—»p(x) = k; its derivative p’ admits the stochastic represen-

tation
p'(2) =Ezj; exp(—J; (a = u'(2)) ds>h’(zt) dt

= E,J; exp(—aopt)h’(2) dt,

whence lim,_..p’(z) = 0, by continuity of solutions of stochastic differential
equations on their initial conditions (c.f. Friedman [6]).

We can express now the general solution of equation (3.5a) as: ¥(x) = Ag(x)
+ Bgi(x) + p(x). Boundedness of ¢ on (b, ) implies B = 0, while elimination of
Ain (b +) =mand ¢’'(b +) = 0 yields the determining equation for b:

(3.14) M) = m,
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where

"(x)g(x) — g’ (x)p(x) _ W(x)

aP =
M) £ () =@

LEMMA 3.1. Given any m in (k, K), b is uniquely determined by (3.14).

ProOF. The Wronskian W(x) =p’(x)g(x) — g’(x)p(x) is positive, converges
to zero as x — o, and besides satisfies the limiting relationship

. * u(u) du _
(3.15) hmﬁw[W(x)exp{2 J; () H =
(a consequence of (3.12) and (3.13)), as well as the differential equation
(3.16) Y o2(x) W' (x) + u(x) W(x) = —h(x)g(x).

The solution of the latter subject to the condition (3.15) is

" 2h 7
Wi(x) = f ————if()f)(y ; exp{z f “i‘i()u”)l“} dy,

which yields in turn the following expression for M(x):
-2 (" h(»)eW) { f Y pw) du}
3.17 M(x) = f exp 2 dy.
(817) (=) g'(x) o%(y) P x  o2(u) 4
It is not hard to derive the equation:

a*(x) g'(x)
2 g

M’ (x) + aM(x) = h(x)

and the expression

_ 1 P Y w(u) du
(3.18) aM(x) = h(x) +m J; h'(y)g (y)exp{2 J; o2(0) }dy'

Together, these two yield the formula
: =;2g;<_xz_f°° e { fmu)du}
(819)  M'(®) =5y J, Mg exp 2 | =50 dy

for the derivative. Clearly then, M (x) is a strictly increasing function, and it can
be checked that

M(x)} K (M(x)}k), as x1 o (x| — ).
The assertion of the lemma is verified.

With b uniquely determined through (3.14) for £ < m < K, we have

_p'®

(p —3
(3.20) ) g'(b)
= m; x=<b

g(x) + p(x); x>b
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In order to complete the construction of the solution to the stopping problem,
we shall verify (3.5b) in the (slightly stronger) form h(b) < am, as well as: ?(x)
> m; x > b. The former is a direct consequence of (3.18), since h(x) < aM(x), for
all x € R. For the latter, let us note that #”(b +) = N(b)/g’(b), where N(x) &
p”"(x)g’(x) — p’(x)g”(x) satisfies the relation

%JQ N(x) + aW(x) = —h(x)g’(x); x €E R,

and observe that (3.18) implies: a« W(x) > —h(x)g’(x), for all x € R. We conclude
that N(x) < 0 on R, and therefore ¢”(b +) > 0; a fortiori, there exists an ¢ > 0
so that ¢’(x) > 0 in (b, b + ¢). On the other hand, lim,;»%’(x) = 0; we deduce
then that, if ¢’ were to take a negative value somewhere in (b, ), it should also
attain a negative minimum in this interval. However, this is impossible by the
maximum principle [5], because

Yo ¢%(x)(P'(x))” + (u(x) + o(x)o’(x))(P’(x))" — (@ — p’'(x))P’(x)
= —h'(x) <0

and a — p’(x) = ap > 0, for all x € R. Consequently, ¢’(x) =0, forallx = b + ¢,
whence it follows that ¥(x) > m, all x > b.

We have proved the following result:

THEOREM 3.1. For each m € R, there exists a unique number b(m) in R, so
that the optimal stopping time for the problem discussed in this section is given by

™ = 7*(x, m) = inf{t = 0; x, < b(m)}
(3.21)
=+ oo, lf {...}=®.

If R < m < K, the number b(m) and the corresponding optimal expected reward
?(x, m) are given by (3.14) and (3.20), respectively. If m = K, then b(m) = +x, *

= 0 and P(x, m) = m; for m < k, we have b(m) = —, * = +w, and P(x, m) =
p(x) > k.

REMARK. In the special case of Brownian motion with drift (u(x) = u, o(x)
= ¢), standard computations [12] can show that:

g(x) = e, gi(x) = e”

where

Vu? + 2a0® —p Vu? + 2a0? +u
= 2 y ‘Y=_—T———_o

o o

B
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Besides,

p(x)=E f e “h(x + ut + ow,) dt
0

2 * z
= m [e“’" J:w h(y)e™ dy + e®* J; h(y)e™® dy]

and

(3.22) M(x) = 1 f h<x + E)e" dz.
a Jo B8

4. The Gittins index and its characterizations. The discussion of the
properties of the function M(x) in Lemma 3.1 points to the fact that

(4.1) M(x) = min{m > k; ¢(x, m) = m}.

In other words, M (x) is the smallest value of the terminal reward m which makes
immediate stopping profitable, if the diffusion is in state x. This is precisely the
Dynamic Allocation Index introduced by Gittins [7], [8], [10] (see also Whittle
[15], [16]).

In [9], Gittins and Glazebrook offer yet another interpretation of this index,
in terms of a “forwards induction” rule (for a problem in discrete time). We
present here a simple derivation of the forwards induction principle for the
diffusion case.

LEMMA 4.1. For all real numbers m and x, we have

9
2 — = E e ™™,
(4.2) 3 (x, m) = E,[e 1

PROOF. Form =<k, x€ER:P(x,m)=p(x),*=0.Ifm=zK,xER,0rk<
m < K, x = b(x), we have #(x, m) = m, * = 0. In either case, there is nothing to
be proven. It remains to discuss the case k < m < K, x > b(m).

From (3.20) one can check that then

: L N(bm)
om P(x, m) = —g(x)b’(m) (g'(b(m)))z

However, it can be shown that
(g’ (x))*M’(x) = —g(x)N(x)

whence, by recalling (3.14), we obtain: (3/dm)-¥P(x, m) = (g(x)/g(b(m))). The
assertion of the Lemma follows from (3.10). 0O
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THEOREM 4.1. “Forwards Induction” interpretation of the index.
For any x € R, the Gittins index admits the representation

E, f e “h(x,) dt
0
1—E.e™™ ’

where the supremum is being taken over all { % }-stopping times t, such that
P(r>0)=1.

(4.3) M(x) = sup.>o

PROOF. For any such stopping time, we have from our optimal stopping
problem:

Ex[ L‘I e"“‘h(x,) dt + M(x)e—ar:| < ‘P(x, M(x)) = M(x).

Therefore,

T

Exf e “*h(x,) dt
0

M)z — g

for any a.s. positive stopping time 7. In order to obtain a maximizing family of
stopping times, let us consider 7*(x, m) with m 1 M(x). Recalling that for m <
M(x) we have
*(x,m)
¢(x,m) =E, [ f e “h(x.) dt + me™*"* ’")],
0
we obtain, in conjunction with (4.2):
*(x,m) 6
E, f e “'h(x:) dt  @(x, m) — m — P(x, m)
0 _ am

1—-E e—n'r"(x,m)
X

(4.4) 3
1—-——@(x, m)
om

A first attempt to pass to the limit as m 1 M (x) leads to an indeterminate form,
since P(x, M(x)) = M(x) and (3/dm)¥(x, M(x)) = 1. However, let us note

2
45) 5‘-3)? P(x,m) = 0; m = M(x)
_ —g(bim)g(x)
= Fom)M (bmy)’ ™ <M,
so that
_6_2_ P(x, M(x) =) = __—_g'_(_x_)__ >0

am? gX)M'(x) =
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Using I’'Hépital’s rule in (4.4) we thus obtain

7*(x,m)
E, f e “h(x,) dt
0

limmTM(x) 1-E e_("*(x’ m) = M(x). 0

5. The Whittle reduction. We return now to the dynamic allocation
problem of Section 2. Let us assume that each pair of drift and diffusion
coefficients (u;, 0;); 1 < j < d satisfies condition (3.2). We consider also the
optimal expected reward functions ¥;(x, m) and the index functions M;(x),
constructed on the basis of the stopping problem in Section 3 for each diffusion
X separately, with running payoff function h(j, -), 1 <j < d. Following Whittle
[15], we introduce the function

' K
(5.1) F(x, M) A K — f < 4, 9 @.(x;, m)) dm
M om

on R X R; we shall prove that F (x, M) is a solution of the variational inequality
2.7).

First, from Lemma 4.1 we have that 0 < (3/dm)®Pi(x, m) < L;allx ER, m €
R, 1 =i = d. Consequently,

(5.2) F(x,M)=M; for MER, x€ R
so (a) in (2.7) is satisfied. Secondly, if we denote by x'” the vector (x;, - - -, %i_y,
Xi+1, - - +5 %g) in R4 and introduce the functions

. 9
Pi(x?”, m) & ] »:i om b (x;, m),

we observe (integrating by parts in (5.1) and recalling ®;(x;, K) = K, P;(x?, K)
=1) that

K
F(x, M) = ¢:(x;, M)- Pi(x, M) + f ®i(x;, m) dn, Pi(x¥, m),

M

whence

SF(x, M)
(5.3)

K
= $¢i(xi, M)'Pi(x(i)’ M) + f %soi(xi’ m).dei(x(i), m)9
M

if we denote by .Zu the differential operator

ou

1, . d0u
5 0i (%) — + pilx;
2a(x)ax% u(x)axi

+ h(i, x;) — au.
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Recalling (3.5) in the form:
Lbi(xi, M) < 0; M > Mi(x:)
=0; M < Mx)
we obtain in pérticular
(5.4) LF(x,M)=<0; forall M € Rand x €R% such that Mi(x;) # M,

for all 1 < i < d, because P; is non-decreasing in m (see (4.5)). This verifies (b)
of (2.7). Finally, in order to check (c), we start by noting that

(5.5) F(x, M) = M; for M = M*(x) & max,<;<aM;(x;).
The proof will be complete if we establish
(5.6) SF(x, M) =0; for M< M*(x) = M(x).

In this case, <P;(x:, m) = 0; M < m < Mi(x;) and P;(x"”, m) = 1; M*(x") &
max; »;M;(x;) = m < K. Since M*(x"’) < M*(x), (5.6) follows from (5.3).

Consequently, the function F(x, M) introduced in (5.1) solves the nonlinear
variational inequality (2.7). It is similarly checked that the function d(x) =
F(x, k) is a classical solution of the Bellman equation (2.4).

Let us now suppose that we can construct, on an appropriate probability space,
the allocation rule o7 * = {i*(t), F; t = 0} and the d-dimensional diffusion X*,
so that (2.1) is satisfied with

(5.7) i*(¢) = min{l < 7= d; M, (x¥(t)) = max;j=aM;(x} (t))}.

Then it is not hard to see that this “play the leader” policy of continuing the
project with the leading index is indeed optimal for the allocation problem with
no retirement option:

J(x; /%) = d(x) = &(x); VxER’
Similarly, one can show that, with M > k and
™ = inf{t = 0; max,<j=aM; (X} (t)) = M},
we have
J(x, M; o/* %) = F(x, M) = F(x, M); x €R"

6. Construction of the optimal process. This section is devoted to the
construction of the optimal state process X (we omit the stars) corresponding to
the dynamic allocation policy (5.7) of continuing the project with the biggest
index. Let us start by partitioning R? into the regions

Q@ = {x € R% My(x)) = maxssi<a—1 Mi(x:)}

Q; = {x € RY% M;(x;) > maxi<isj-1 Mi(x;) and
M;(x;) = maxj.i<i=aMi(x))}; 2=j=d-1

Q4 = {x € R% Ma(x4) > maxi<isa- Mi(x)}.
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We take as our sample space @ = C([0, «); R?) the space of continuous
functions w on [0, ®) with values in R? and with w(0) = 0, and define #, =
olw(s); 0 = s < t} for every t = 0. F = g{w(s); s = 0} is the smallest o-field
which makes all projections measurable, and coincides with the Borel o-field
generated by the topology of uniform convergence on compact subsets. The value
of the function w at time ¢ will be denoted by x(t, w) = (x:(¢t, ), - - -, x4(t, w)) =
(x1(t), - -+, xq(t)). We shall seek to construct a probability measure P on (2, %)
and a Brownian motion {B(t) = (By(t), - -+, Ba(t)), Z:; t = 0} on (Q, &, P), so
that the system of stochastic equations

61) dx; (t)
' = uj(xj(t))le(X(t)) dt + O'j(xj(t))lqj(X(t)) dBj(t); t=0,1=j=d
is satisfied, in accordance with (2.1)*. In the Stroock-Varadhan formulation [13],

[14], solving (6.1) amounts to constructing a probability measure P on (2, %)
such that, with a given point x € R*:

(6.2) (i) P[x(0) =x] =1,

and
(6.2) (ii) {f(x(t)) - J; Lf(x(s)) ds, F; t = 0}~ is a P-martingale,

for any real-valued function f € C§5(R“) (infinitely continuously differentiable
with compact support). Here,

A 1 oy
ox, + 5 9 (x;) P 1g,(x).

Lf & 2}1=1 [#j (%)
This is the so-called martingale problem for the diffusion operator L. Because the
diffusion matrix for this problem is degenerate, questions of existence and
uniqueness to the martingale problem are not immediately covered by the extant
theory.
In this section we shall establish the following result:

THEOREM 6.1. There exists a solution to the martingale problem (6.2). Besides,
if d = 2, this solution is unique.

PROOF OF EXISTENCE. We can remove the degeneracy by considering the
sequence of differential operators, indexed by n = 1:
1 *f
(n)f A — e 21 .
L"WfALf+ ™ Y 22 ¢ (x)

The new diffusion matrix: diag{a{”(x)}<j<d,

1
af (x) = o} (x)1q,(x) + - 1g5(x),
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is uniformly positive definite on compact subsets of R, with elements admit-
ting—along with the squares of the drift terms—a quadratic growth condition in
the space variable. By virtue of Exercise 7.3.2 and Theorem 10.2.2 in [14], there
exists for each n = 1 a probability measure P on (Q, %), such that

(6.3) (i) P"[x(0) =x] =1, and
(6.3) (ii) '{f (x(t)) — J; L™f(x(s)) ds, F; t = 0} is a P""-martingale,

for all real-valued functions f € C§(R?). Now for any T > 0, there exists a
constant C(T') depending on T and on the various parameters in (3.2), but not
on n, such that forall0 =t <t+h =<T,n =1 we have,

E™|x(t + h) — x(t)|* = C(T)A + | x|*)h%

c.f. [6], page 107. By Prokhorov’s theorem (Billingsley [2], pages 37 and 95), the
sequence {P‘™}%_; is weakly relatively compact. We may assume, therefore, by
relabeling indices if necessary, that the sequence {P™}x_, converges weakly to a
probability measure P on (2, % ). From the “portmanteau” theorem of weak
convergence ([2], page 12) we see that (6.2) (i) is satisfied.

In order to check (6.2) (ii) it suffices to verify

(6.4) E[‘If‘{f(x(t))—f(x(s))— f Lf (x(w)) duH=0

with 0 < s <t, for any bounded, #,-measurable function ¥: Q@ — R. It is easily
seen, in view of (6.3) (ii), that relation (6.4) is implied by

E"‘)[\Ilf L™ (x(u)) du] e E[\I/f Lf (x(u)) du],

or by the convergence to zero as n — o of the sum

E""[I V| f [(L™=L)f(x(u))| du]

(6.5)
E‘"’[\I/fo(x(u))du] —E[\I/f Lf(x(u))du]

The first term in (6.5) is dominated by const/n, where the constant depends only
on the bounds for ¥ and for the second derivatives of f. In order to deal with the
second term, we introduce the family of operators {L;f; 6 > 0} given by

L;f 4 2}1=1 [Mj(xj) o 82f

+

1
L+ 22 (x) == | 4@
axj 2 0] (x]) axjg] Xl (x)’

where x{®: R? — [0, 1] are continuous functions, such that
x{(x) =1, on {x €RY% M;(x;) > 6 + max;.;Mi(x;)} C Q;
=0, on Qf
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forj=1,..-,d. For each 6 > 0,

lim,_.E™ [ v f Lsf (x(u)) du] = E[ v f Lsf (x(u)) du].

Therefore, since f has compact support and, for eachj=1, --., d:
| (%) —1g,(X) | = T, nj Limym-mozi=sin@uan (X),

we shall have established (6.4) as soon as we prove that

T
(6.6) lim; osup,->1maxi<j.<sE"™ J; L Mn-Ma=siniguaeans(X(2)) dt = 0
holds for any compact subset S of R and any T > 0.
Towards this end, we introduce the “index processes”
£(t) A M(%(0); t=0, 1=j=<d

which, by the nature of the index functions M;(-), are bijections of x;(t); t = 0
pointwise in time, for each j = 1, ..., d, and have natural boundaries at the
points k, K. We introduce also the function

V(z) = 2% 0<z=<$
0z2—1%8% z>6
= ¥ (—2); z2>0,

for which we have: ¥(2) = é|z|, |¢’(2)] = 6 and ¢"(2) = 1;,4(2), for all
2z € R. An application of the martingale property (6.3) (ii) to the function f(x)
= Y(M;(x;) — M ,(x,)), for any fixed integers j # 4 1 < j, / < d, gives

E™Y(E(T) = £.(T)) — ¢(£;(0) — £.(0))

= E® f V0 - £
: [u,(xj(t»M;-(xj(t)) +3 6;2(xj(t))Mf'(xj(t))]lq,-(x(t)) dt
6n  *ao E” f VG0 - EOM ) gx0) di
~E® f V60 - )
: [u/(x/(t))M’/(x/(t)) +3 a%(x/(t))Mﬁ(x/(t))]lo,Q/(X(t)) dt

T
- —21; E™ J; YI(E() — E(0)M2(x,(8))1es(x(2)) dt
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1 T
+ 5 E™ J; Liigsor-gan19)
: [(oj(xj(t))M} %(6)) 1o (x(t)) + (o, (x )M (x,(£)))*1q,(x(t))

(M’(x,(t)))zlqc(X(t)) + - (M (x/(t)))zlqs(X(t))] dt
for all n = 1. With S any compact subset of R? there exists a positive number
a(S) such that
min, <j<ginfyes(o; (%) M (x;))*> = 2 (S) > 0.

Applied to the last term on the right-hand side of (6.7), this gives

T
20K - k) + C(T
E™ J; L me-MAsdi=ainiguaans (X(t)) =< ( )+ (D) ;

a(S)
foralln=1andj # 41 <1,/< d, and (6.6) follows.

PRrOOF OF UNIQUENESS (d = 2). It is enough to show that, for any positive
constant A and any real-valued function g which is infinitely continuously
differentiable and with compact support in @ & (k, K)? off the diagonal {(£,, £.);
k< £ = £, < K}, the function

u(éy, &) = E J; e™g(£1(¢), £x(t)) dt

is uniquely determined, with £ = &) = M;(x;(0)); j = 1, 2 (see [14], page 148).
To this end, it suffices to show that the resolvent equation

1

\u = [bl(él) a; 3 s s3(£1) T ] Ligzta

(6.8)

+ [bz(fz) g—; = s3(£&2) 3Es ] lig<gy + 8(&1, &2)

admits a solution u(¢;, £;) which is continuous on [k, K]? continuously differ-
entiable in @ and twice continuously differentiable in {(£1, £2) € Q; &1 # &9},
subject to

u(K, £&)=0;, k=<t <K and u(é,K)=0; k<é§ <K
The functions (b;, s;); j = 1, 2 are given by
bj(§) = M (M;H(£)w (M7H(8)) + % M](M;(£))e}(M;(£))
8i(§) = Mj(M;'(£))o; (M (£)).
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In Q" & {(£, &) € Q’ 1> 52} and with g* = g 14+, equation (6.8) becomes

852 + bl(gl) g_:; - Au= _g+(£l’ 52)

If o, B85 are two linearly independent solutions of
Yo s1 (£)u”(£) + bu(E)u’(§) — Au(§) =0
3?(23 e’;;sl, £2) is a particular solution of (6.8)*, the general solution of the latter
(6.9)" u*(£y, £2) = co(Eas(ér) + di(E2)B4(£1) + pT (&, £2).
Similarly, in @~ & {(£4, &) € Q; &1 < &2} and with g~ =g 1¢-,
(6.9)" u= (£, &) = c-(&1)a—(&2) + d-(£1)B-(£2) + p (&1, £2)

is the general solution of equation (6.8) in the form

(6.8)* = 31(51)

(6.8)" - 32(52) + b2($2) — —Au=—g(&, &),

13 61;'
where a_, B- are two linearly independent solutions of the homogeneous
Yo s3(E)u” (&) + ba(E)u’'(£) — Au(€) = 0, and p~(&,, &) is a particular solution of
(6.8)". The unknown functions c., d. will have to be determined by the continuity
and boundary conditions.

By imposing conditions u*(K, £) =0 and u~ (¢, K) = 0 for k < £ < K, relations
(6.9)* are transformed into

(6.10)* ut (&1, £2) = co(E)v+(E) + g7 (&g, &); in Q"
(6.10)~ u-(§1, £2) = c-(§)v-(§2) + ¢7(£1, &2); in Q7
where
as(®) , _
'Y:(E) ax(§) — B+(£) ﬁ:(K) k=t=K,
. R e o Ba®)
q (819 EZ) ép (819 52) (K £2) B+(K)
and
- - - B-(£2)
q (Eb £2) A Db (El’ EZ) - D (‘El’ K) B—(K) .

Continuity of u and its gradient across the diagonal are tantamount to the
conditions

c+(E)v+(8) + ¥ (&, &) = c_(&)v-(§) + q7(§, &)

ci(&)v+(8) + ? q*(& &) = c()v(E) + — E q (& &)
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in k < £ < K, which yield, with q(£,, &) £ ¢* (&1, &) — g7 (£, &), the first-order
differential equation

cH(E)y-(8) — e (E)vL(8) = 6(¢) & [vi(E)Q(E, §) —2-a8) - 7-(8)]

1
v+(§) E

for ¢, (-). The latter is thus given by

_ =0 f o)
c+(§) = co(k) — 5 _(k) v-(§) T du; k<E(<K,

and it is readily seen, by reversing the steps of this analysis, that equation (6.8)
admits a solution with the desired properties. O
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