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EXTRAPOLATION AND MOVING AVERAGE REPRESENTATION
FOR STATIONARY RANDOM FIELDS
AND BEURLING’S THEOREM'

By A. REZA SOLTANI
University of North Carolina at Chapel Hill*

Strong regularity for stationary discrete random fields is discussed. An
extension of the classical Beurling’s Theorem to functions of several variables
is given. Necessary and sufficient conditions for the moving average represen-
tation of stationary random fields are obtained. A recipe formula for the best
linear extrapolator is also given.

0. Introduction. In this article we consider a set of real or complex random
variables X(t), t € Z", over a probability space (Q, %, P), where Z" = the
Cartesian product of Z (set of integers) with itself n-times. Such a family is called
a (discrete) univariate random field. Let E denote the expectation with respect
to P. We assume that EX(t) = 0 and E | X(¢) |®> < » as elements of a Hilbert
space L%(Q, %, P) of random variables Y with E| Y| 2 < 0. A random field X(¢),
t € Z", is called stationary if the corresponding covariance function R(s, t) =
EX(s)X(t) depends only on t — s.

The theory of extrapolation which refers to analyzing the behavior of a process
up to a certain point (present) and predicting its behavior from that point on
(future), has achieved a great success in the case that the parameter ¢ runs
through integers. This is because of the elegant theory of functions in the unit
circle. Indeed with Szegd’s theorem an application of Beurling’s theorem is the
key to the moving average representation and ultimately prediction problems.

The theory of extrapolation for random fields i.e., t € Z", is not well developed.
Some of the important results in this area are included in the work of Helson
and Lowdenslager [2], where a generalization of Szegé’s theorem is given; Chiang
Tse-Pei [1], where the regularity problem for half spaces is discussed; and
Kallianpur and Mandrekar [3], where a generalization of the Wold-Halmos
theorem in the time domain is given. In none of the work in this topic, to our
best knowledge, has the theory of Hardy functions in polydiscs been employed.
This (might be) is because some important theorems in the theory of harmonic
analysis for the unit disc U which play the main role in the prediction theory
(such as Beurling’s theorem) fail for the case of U", n > 1.

Our aim in this article is to employ the function theory in polydiscs in order
to develop the theory of extrapolation for random fields. For this we need a
version of Beurling’s theorem. Indeed Beurling’s theorem gives the characteri-
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zation of every invariant subspace of H*(U), the Hardy functions of class H?,
and also states that S(h) = H%(U) if and only if h is outer, where S(h) is the
invariant subspace of H*(U) generated by h € H?(U). One part of this theorem
holds if n > 1 (h is outer if S(h) = H%U")) and the other part (the useful one)
fails. Section 2 is devoted to obtaining necessary and sufficient conditions for
which S(h) = H*(U"). In Section 1 we state some of the known results of the
function theory in polydiscs and give some preliminary lemmas for later use.
Section 3 deals with the regularity problem. We define four notions of regularity:
Strong regularity, regularity for the half spaces (vertical or horizontal) and weak
regularity. Szegd’s alternative theorem and the Wold-Cramer concordance theo-
rem are given for strong regularity in this section. For different types of regularity
in interpolation theory such as Jy, J. and J, regularity see [5], [9]. In Section 4
we give necessary and sufficient conditions for the moving average representation
of a stationary random field. In this paper, for simplicity, we consider random
fields X(t) with parameter t € Z2 This is of course no restriction and the results
can be stated for the case of ¢ € Z" in a similar way.

1. Preliminaries. Following [7] let C be the complex field, U the open unit
disc in C with boundary T and C?, U?, T? be the Cartesian product of two copies
of C, U, T respectively. The complex conjugate of a complex-valued function f is
denoted by f.

The Hardy space of functions H?(U?), p > 0, is the class of all complex-valued
analytic functions f in U? for which

SUPo<r<1 J; L W) [P dmy < oo,

where f.(w) = f(rw), w = (w;, w;) € T? and m, is the Lebesgue measure on T2

Here we state some known results of the H?(U?) theory. We refer the readers
to [7] and [10]. Throughout this paper L”(T?) stands for L”(T?, m,) and
for g € L (T?), g" stands for the inverse Fourier transform of g, i.e., g¥(t) =
[ w'g(w) dm,, t € Z2.

1.1 THEOREM. Letf€ HP(U?),1<p <. Then

(a) f has a nontangential limit f*(w) in each variable at almost every w € T2,
In particular f*(w) = lim,_,, f(rw) exists for almost every w € T2 Also f, tends to
f*inLP normasr—1,ie., 72| f, — f*|? dmy — 0 as r — 1. Moreover log | f*|
€ LN(T?).

(b) F*V(t) = [r2 0'f*(w) dmy = 0 for t & Z** and f(2) = Tiez f*V(£)2", where
W= whwd t= (4, t), Z* ={t €Z% t; = 0,i =1, 2} and the convergence of the
summation is in L? norm. Moreover if g € LP(T?) with g¥(t) = 0, t & Z**, the
function g(2) = Yiez2+ 8V (t)2", 2 € U?, is well defined and belongs to H”.

(¢) f = P[f*] = C[f*], where

P[f*](2) = j; , Pz, w)f*(w) dmy
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and

Clf*1(z) = L C(z, w)f*(w) dmy, 2z € U?

are the Poisson integral and Cauchy integral of f* respectively, with P(z, w) =
P, (8, — ¢1)P,,(0: — ¢2) the Poisson kernel, where z = (2,, 2,), 2; = re™, w; = '
j=1,2and P0) = (1 — r*)/(1 — 2r cos 0 + r?), and C(z, w) = 1/(1 — 1i,2,) -
1/(1 — wy2,) the Cauchy kernel.

It is well known that every real-valued function u € LP(T') is the real part of
the boundary value of an f = u + iv € HP(U). Such property is no more satisfied
for the case that n > 1. The following theorem gives the details. This theorem is
stated in [10] page 129 for p = 2. With the help of the above theorem, the proof
can be carried out similarly for any 1 < p < o,

1.2 THEOREM. Let f € HP(U?), 1 < p < o, with f(2) = u(z) + iv(z). Then
[*(w) = u(w) + v(w) exists almost everywhere and

(@) f(z) = [r2 2C(2, wu(w) dm,

(b) v(2) = [ Q(z, wu(w) dm,
the boundary values u and v satisfying the condition that v"(t) = (—i sign*t)u"(t),
where sign*t = 1if t € Z** and —1 if t & Z**, where Q(z, w) is the imaginary part
of C(z, w).

(c) A real-valued function u € LP(T?) is the real part of the boundary value f*
of an f € HP(U?) if and only if u¥(t) = 0 for t & Z>* U (=Z?*), where —Z** =
{—t:t € Z%}.

Recall from [7] page 73 that a function h of class H? is said to be outer if
log| k| = Pllog| h*[].
The following lemma gives some of the properties of outer functions. For more
on outer functions see [7] page 72.
1.3 LEMMA. Let h be an outer function. Then

(a) h has no zero on U2

(b) log| h| is the real part of an analyic function,

(c) (log| h*|)V(t) =0 for t & Z** U (-Z°"),

(d) if a real-valued function ¢(w), w € T?, satisfies the condition that ¢"(t) =
0 for t & Z** U (—Z?*), then the function

(1.4) h(z) = exp{‘f;2 2C (2, w)¢(w) dmz}

is an outer function with log | h| = P[¢] and log | h* | = ¢, a.e. m,.
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(e) If h*(w), w = (w1, we) € T? is the boundary-value of an outer function,
then the functions h (-) = h*(w,, -), hi,(-) = h*(-, wy) which are defined on T
are outer for almost all w, and w, respectively.

ProOOF. (a)-(c) are self-evident. (d) follows from Theorem 1.2 and the defi-
nition of outer function. For (e) let

hwz(zl) = f Prl(al = ¢1)h*(w, wy) dmy(wy).
Then for w, & A,,, hy,(21) = lim,,_,,h(21, 2;), where A, C T, depending on 2z,

with zero Lebesgue measure. This implies that log | h,,(21) | = lim,, ., log | h(z1,
25) |, ws & A,,. Since h is outer

log| h(z1, 22) | = LPr2(02 - ¢2) J;Prl(al — ¢1)log | h*(wy, we) | dms.

Therefore for w, & B,,

lim,, ,,,log | h(zy, 25) | = J; P, (6, — ¢1)log | h* (w1, wy) | dmy,

where B, is a set of measure zero depending on z;. Thus for w, & D, =
A, UB,,

log | hWQ(zl) | = J;Pr,(ol — ¢)log | h*(wy, wy) | dm,.

Now let {2} be a dense set in U and let D = U; D... Then D has Lebesgue measure
zero and for w, & D

log | hu,(21) | = J;Pr,(ol — ¢1)log | h*(wy, we) | dm; for Vz € U,
giving the proof.
The following theorem gives one part of the Beurling’s theorem [7] page 74.

1.5 THEOREM. If f € HP(U?) and V{z'f: t € Z**} = H”(U?) then f is outer,
where V{z'f: t € Z**} is the smallest invariant subspace of HP containing f.

2. Canonical representation and Beurling’s Theorem.

NOTATIONS. Let X(t), t € Z2, be a stationary random field. Define _#x(S) =
Vies X(t), the span closure of X(t), t € S, in LXQ, B, P). 4%, #52, #5>,
M3, My stand for #x(S) whenever Sis (s € Z%: s, < t, 8. €EZ},{s€Z% s, €
Z,sy3<t},{sEZ% s, <tand sy < ty}, {s EZ%: s; < t; or s, < t,} or Z? respectively.

It is well known [6] that corresponding to a stationary random field X(¢), t €
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72, there exists a random measure & on T and with values in .#x such that

Sy

dF(w)
S,
for S;, S, C T?, and

2.2) X(@) = J;z w' dd(w),

where F is a positive finite measure on 7. F is called the spectral measure of the
process X(t). Conversely corresponding to each positive finite measure F on T*
there is a stationary random field X(t), t € Z? and a random measure & satisfying
(2.1) and (2.2) [6]. Whenever the spectral measure F is absolutely continuous
with respect to the Lebesgue measure, the corresponding process is said to have
a spectral density f(w) = (dF/dm,)(w). Clearly

(2.3) EX(t)X(s) = J; L w'™ dF(w).

(2.3) defines the so called Kolmogorov isomorphism between time domain .#x
and spectral domain &x = L%(T? F). Define &x(S) = V.es w', the span closure
of w', t € S, in LXT? F). &x(S) is isomorphic to .#x(S) for any S C Z% &'",
&5, &Y%, &4V are defined in a similar way.

Let h € H2(U?). Then the function f(w) = | h*(w) |? is a positive function of
class L(T?). Let X(t), t € Z?, be a stationary random field with density f, and
let ® be the corresponding random measure. Define

(2.4) £4(S) = J; h*'(w) d®(w), SC T

Then it is easy to verify that

(a) £*(S) is a random variable for each set S C T?,

(b) £%(S1 + S») = £*(S1) + £*(S2), where Sy, S; C T? with 815, = &,

(c) E£*(S1)£E*(S2) = [s,s, dme (which, in particular, implies that £* has
independent increments), and

(d)
(2.5) X(t) = J; . wh*(w) de*(w).

NOTE. Since the set of finite linear combination of indicator functions is
dense in L?(T?), the identity (c) given above establishes an isomorphism between
L = V{£*(S), S C T?} and L*(T?) which corresponds to each /€ ;- a unique
f € LX(T?) with /= [ fdt*. Also for 4, 4 € &+, (A, 4) & = {f1, f2) 12> Where
f; € L¥(T?) corresponds to £ € -, i =1, 2. Now (2.5) implies that X(t) €
and X(t) corresponds to w'h* in L*(T?).
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Based on £*, define three random measures & on T'X Z, £, on Z X T'and £ on
Z? by

1 t *
£(A) = Lz {:/_é_; ZtEAwl wz} d&*(w),

(2.6)
1 ¢ *
£&(B) = J;z {E ZteB,,,2 wl} dt*(w)
and
(2.7 ¢(D) = J;z 15(w) d&*(w),

where ACT X ZwithA, ={t€Z: (w,t) EA.. BCZ X TwithB,,={t€ Z:
(t, w;) € B} and D C Z2 with 15(w) = Yiep w', w = (w1, wy). It is easy to see that
the random measures £, £, and £ have independent increments and for any f €
L*(T?) the following holds:

f f(w) de*(w) = f Yeez f(wa, ) &1(dwy, t)
T2 T

= L Yiez f(v, ws) ()E2(t, dwe) = Yeeze fY(D)E().
This in particular implies that

X(t) = J; Pk wﬁlﬁ(wl’ Y)(S — ty)&(dw;, 8)

(2.8)
X(t) = J; Tk o w?ﬁ(\{, wa)(s — t1)&a(s, dws),
and
V
(2.9) X(t) = Yoo Yo h* (81 = t1, 2 = t3)&(s1, 82).

Similarly to the Note given above &, &;, and & are defined and are isomorphic
to LT X Z, my X ¢), L\Z X T, ¢ X m;) and L*Z? ¢ X c), where c is counting
measure. Because of these isomorphisms we make no distinction between ;-,
t,, i,, % and the corresponding L* spaces.

Let

LT = {f(w, s) € LAT X Z): f(w,, s) = 0 for s > ¢ and any w, € T},
&= {f(s, ws) € LXAZ X T): f(s, we) = 0 for s > t, wy € T}
and
& ={f(s’, t') € LAZ?): f(s’,t’) =0 for s’ >sort’ >t}
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&, 4, and & ¢ can be identified as subspaces of L*(T?) as
= {f € LXT?): f(ws, *)(s) = 0 for s > ¢ and a.e. w1},
& = {f € LAT*): £, wy)(s) = 0 for s > ¢ and a.e. w,}

and
L ={f € LXT?):f'(s’,t') =0 fors’ >sort >t}

where f(ws, Y), f(Y, w,), f¥ are the inverse Fourier transform of f, (w;) =
f(wi, ws), fu,(w1) = f(wy, we) and f(w;, wy) respectively. By using a Fourier
transform argument it is easy to check that

(2.10) =7 and &f =7, VEEZ
as a subspace of L*(T?).
2.11 DEFINITION. The representations (2.8) and (2.9) are said to be canonical

if 9% =&, %= forallt €Z and &3? = 3" forall t € Z°
respectively.

2.12 THEOREM. The representation (2.9) is canonical if and only if the rep-
resentations (2.8) are canonical and
(2.13) L= N &Y foradl t=(b,t)EZ%
PROOF. Suppose the representations of X in (2.8) are canonical and (2.13) is
satisfied. Then &% = &} and &% = &§;. But
LY=L LY =AN AT = A

where the first equality is by the assumption, the second equality comes from
(2.10) and the fact that &x e V.w'h* and the fact that £ has independent
increments gives the third equality. Therefore the representation (2.9) is canon-
ical. Now suppose that representation (2.9) is canonical, i.e. & %* = & for all
t € Z*. But

L=V, L4 =lim, el §? = lim,_ &2 = L7
Also by the same argument we obtain that & %* = & *. But
Y= = S0 L= YO LT

giving the result.

The following lemmas give the necessary and sufficient conditions in terms of
h in order that the representations (2.8) be canonical. The proofs can be carried
out similarly to the proofs of corresponding propositions given by Karhunen [4]
page 155.
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2.14 LEMMA. The first representation in (2.8) is canonical if and only if there
does not exist a function k € L*(T X Z*) satisfying
(2.15) Yo h(wy, tMk(wy, t +5) =0
for almost every w, € T and all s = 0.

2.16 LEMMA. (2.15) is satisfied if and only if

h*(w1, we) = limo<r<y 1 A* (w1, rws),

where

w+z
w—2z

log | h(w;, w) | dml}’ ,
2

1
h*(w,, rwy) = a(wl)exp{— J;
with z = rw, and a(w,) is some complex measurable function with | a(w,) | = 1.

From Lemmas (2.14) and (2.16) it follows that the representation (2.8) is
canonical if and only if b} (-) = h*(w,, -) and h},(-) = h*(-, w;) -are the outer
functions on T for almost all w;, and w, respectively. Now by using Theorem 2.12
we arrive at the following theorem.

2.17 THEOREM. The representation (2.9) is canonical if and only if h*(w,, -),
h*(-, wy) are outer functions for almost all w,, w, respectively and &% = &'%”
NZ%foralt=(t,t) € Z>

As we observed earlier &7 %" is isomorphic to V{w*h*: s, < t,, sy < t,} in L*(T?,
dm,). Since &2 = U, &%, where U, is the shift operator corresponding to w’, t
= (t;, ty). The representation (2.8) being canonical is equivalent to saying that
Vi{wth*: t € Z**} coincides with {f € L*(T?): f¥(t) = 0 for t & Z>*}. The second
class defines the space of Hardy functions of class H2 Thus, combining this with
Theorem 2.17 and Lemma 1.3(¢) and Theorem 1.5 we obtain the following
theorem which is an extension of Beurling’s Theorem to the functions of several
variables.

2.18 THEOREM. Let h € H? Then Vi{z'h: t € Z**} = H? if and only if h is
outer and &' = &% N A%, where X(t) is a stationary random field corre-
sponding to h* through (2.5).

3. Regular stationary random fields. With the same notations as in
Section 2, a stationary random field X(t), t € Z?, is called

Vg _

(a) strongly regular (s-regular) if Nie—z2+) & x ~ = {0}, where t = (¢, t,)
(b) horizontally regular (h-regular) if N,,<o & %2 = {0}

(c) vertically regular (v-regular) if N, <o %" = {0}

(d) hv-regular if it is h-regular and v-regular

(e) weakly regular (w-regular) if Ne_z2+) &' %2 = {0}, t = (1, to).
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Obviously s-regular fields are hv-regular and hv-regular fields are w-regular. h-
regular fields (so v-regular fields) are discussed in [1] where necessary and
sufficient conditions for h-regularity in terms of the spectral measure are given,
namely a stationary random field with spectral measure F is h-regular if and only
if F is absolutely continuous with respect to F(dw,, w) dm; and for almost all w,
(relative to the measure F(dw,, w))

Our aim in this section is to obtain necessary conditions and sufficient
conditions for s-regularity in terms of the spectral measure F. We start with the
following lemma.

dF(w,, w,)
F(dwl, 1l') dm1

log dm(w;) < ©, where F(A, n) = F(A XT), ACT.

3.1 LEMMA. & xV~' is isomorphic to {g € H': [ (|g|*/F;) dm, < o}, where
L stands for the orthogonal complement in LX(F), F; for the derivative of the
absolutely continuous part of F and H' = H*(U?).

PROOF. Let k€ & x*V™"". Then k L w'in L*(F) for all t = (t,, t,) € Z? with
t < —lort, < —1,ie [r2 wkdF =0 for t € Z**. This by the extension of
Bochner’s theorem [2] page 184 implies that k(w) dF(w) is absolutely continuous
with respect to Lebesgue measure ms, giving k dF = kF,; dm, which implies that
k is zero on the singular part of F. Now [ @' kF; dm, = 0 for ¢t & Z** which by
Theorem 1.1(b) implies that kF, € H'. Let ¢ = kF,. Then g € H' and
[ (1g|%/F%) dmy= [ | k|*F; dm; = [ | k|* dF < co. The rest is self-evident.

3.2 LEMMA. Let & V™" # {0). Then &w = Nig(—z2+) &3 = LA(F,) and
log F, € L*(T?), where F, is the singular part of F.

PROOF. Note that &x = (Ne_z2+) L 12) ® (Nig—z2+) & 3'2)* and also Lx

= LXF) = LXF,) ® LX(F,). So the result follows by showing that V,& 4" =
L(F,). Since the elements of &% are zero on F, we obtain that V, &% vt
L2(F,). Now let k € LX(F,) with k L V& 4'%. Since &% = w'&' " we have
[ w'kgF, =0forall t € Z? and g € &¥'" which gives that kgF. =0 a.e. m,. But
wgF. € H' giving k = 0 a.e. m,. To show log F, € L*(T?) note that wgF; € H'.
Therefore, by Theorem 1.1(a), log| gF.| € LY(T?) and [2 log[|g|*F¢:] dm, <
| & Il 2. Now the result follows from the identity that log F; = log[|g| F.]* —
log[| g |°F2].

3.3 LEMMA. If (}) log F, € LY(T?) and (ii) (log F;)V(t) = 0 for t & Z** U
(—Z?%) then Z'XV™" # {0}.

PROOF. Let ¢ be log F; in (1.4). Then the corresponding function A belongs
to H* with | h*| = F; a.e. my. Now [ (| h*|%/F;) dm, = [ F; dm, < . Apply
Lemma 3.1.
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Let us summarize the lemmas given above in the following theorem.

3.4 THEOREM. Let X(t), t € Z2, be a stationary random field with spectral
measure F. Then: -~

(a) If X(t), t € Z%, is s-regular, then F is absolutely continuous with respect to
Lebesgue measure and log F’ € L*(T?).

(b) If F is absolutely continuous with respect to Lebesgue measure and log F’
€ LY(T?) with (log F’)V(t) = 0 for t & Z** U (—Z**), then X(t) is s-regular.

(c) If 3.3(i), (ii) are satisfied, then &Z_., = L*(F).

3.5 DEFINITION. A random field X(¢), t € Z2, is called singular if &4 =
Hx for all t = (t, t,) € Z*

From Part (c) of Theorem 3.4 and the fact that %" = &% forall t = (¢,
t,) € Z2% where X,(t), t € Z2, is a stationary random field with spectral measure
F,, we arrive at the following theorem which gives the so-called Wold-Cramér
concordance theorem for the stationary random fields in the theory of extrapo-
lation.

3.6 THEOREM (Wold-Cramér concordance). Let X(t), t € Z2, be a stationary
random field with spectral measure F. Let F, and F, denote the absolutely contin-
uous part and the singular part of F respectively with respect to Lebesgue measure.
Suppose the density of F, satisfies the conditions (i) and (ii) of Lemma 3.3. Then
X(t), t € Z2, can be uniquely decomposed in the form X(t) = Xi(t) ® X,(t), t €
Z2, where the field X,(t) is s-regular, X,(t) is singular and &x, 1L &x,. Moreover
Y= 5}:”2 /4 5}‘2”2 and Fx, = F, and Fx, = F;.

PrROOF. X(t) = [ w'd®, where ® is the random spectral measure of X(¢). Let
Xi(t) = [ w'la d®, X,(t) = [ w'l4 d®, where A is the support of F;. Clearly X(t)
= X;(t) @ X,(t). The rest is plain.

REMARK. The following problem is left open by this section: whether the
condition that log F’ € L'(T?) is sufficient for s-regularity, (which amounts to
proving or disproving that if f is positive function satisfying the conditions that
f € L\(T?) and log f € L*(T?), then there exists a function h € H'(T?) with

Jr2 (LR I%/f) dmy < ).

4. Moving average representations. The problem of obtaining a moving
average representation for a process X(t), t € Z?, is to present X(t) as a filtered
white noise. Such a representation is extremely important and useful in dealing
with the prediction and filtering problems. In this section, by combining the
results of the previous sections, we give necessary and sufficient conditions for a
random field X(t), t € Z?, to admit such a representation which leads to a recipe
formula for the best linear extrapolator. For the best linear interpolator see [8].
We start with the definition of a moving average representation.
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4.1 DEFINITION. A random field X(t), t € Z? is said to have a moving
average representation if it has a canonical representation of the form (2.9).
Namely, there is a sequence of scalars a;, t = (¢, t) € Z**, with Yez2+ | @, |2 < ®
and

X() = Dliewo Do Gy, o £1, 52)
(4.2)
LY =" foral t=(t,1t) €2Z°

where £ is a random measure on Z? with E£(A)£(B) = (14, 15)1222exc) -

4.3 THEOREM. Let X(t), t € Z2, be a stationary random field with spectral
measure F. Then X(t) has a moving average representation if and only if X(t) has
a density f = (dF/dm,) and

(i) log fEe L,
(ii) (log f)V(t) =0 fort & Z** U (—Z?*), and
(ili) Y2=LL N LE, fort=(t, t,) € Z2

PrOOF. Sufficiency: Let h(z) = exp{ [r2 C(z, w)log f(w) dm.}. Then by Theo-
rem 1.2 and Lemma 1.3(d), h is an outer function of class H2 Because of
condition 4.4(iii), Theorem 2.18 or 2.17 can be applied to h, giving that the
representation (2.9) is canonical. This proves that X(¢) has a moving average

representation. Note that in this case, in (4.2), a, = h*V(¢), t € Z*.

Necessity: Suppose X(t), t € Z? is given by (4.2). Let h*(w) = Ztezz a;w'. Then
h* defines an H? function and X(t) = [r2 wh* d £*(w), where £* is a random
measure on T? given by £*(A) = Y.ez2 14 ()E(t), A C T? 1% = (1/v27) [ w'l,

- dm,. Clearly.| h*|* = f a.e. my. Now by Theorem 2.18 &} = & 2 implies
that h* is outer and 4.3(iii) is satisfied. (i) is trivial and (ii) follows from Lemma
1.3(c). Proof of the theorem is complete.

4.4 COROLLARY. Every random field which admits a moving average repre-
sentation is s-regular.

PROOF. Use Theorems 4.3 and 3.4(b).

The condition that &' %2 = & %" N & %2 which appeared in Theorems 2.18
and 4.3 plays an important role in these theorems. In the following theorem we
give a family of spectral densities for which the corresponding processes satisfy
this condition.

4.5 THEOREM. Let X(t), t € Z? be a stationary random field with density f.
If 0 < ¢, = f =< c; a.e. my, where ¢, and ¢, are positive constants, then

Zx(S1 N Sz) = Zx(S1) N &x(S;) forany S:, S, C Z2
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PROOF. Note that for S C Z2, &x(S)* = {g€ L} (T?);g"(t) =0 for t € S and
[ (181%/f) dmy < . Let &%(S) = V{w’, t € S} in L¥(f™). Clearly &%(S°) C
x(S)*, where S¢ is the complement of S in Z2 Now let g € #x(S)*. Then

flglzdmz=f¥fdm2502f|gf|

giving that g € L2(dm,). Thus g = Yies- g¥(t)w' in L*(dm,). Since f' < ci', g =
Yeese gV()w! in L2(f~'), which implies that g € & *(S°). Therefore &Z%(S)* =
*(S8°¢). Now

x(S1 N S)t = LX((S: N 8o)) = L %(STU 8% = L XSV £ %(S9)
= Zx(S1)t V Lx(Se)t = (&x(S1) N Zx(S,))™*
Thus &x(S: N Sz) = Zx(S;) N #x(S:) finishing the proof.

As mentioned, the representation (4.2) is extremely important in prediction
problems. Consider a Gaussian stationary random field X(¢), t € Z?, i.e. X(t) and
all finite linear combinations of X(t), t € Z?, are Gaussian random variables. It
is desirable to obtain the distribution of X(T'), conditional on the X(t), t € {t €
Z% t; < s; and t, < 8.}, where s = (sy, s;) is a fixed point in Z? and T & {t € Z*:
t1 < s1, ts < s5}. The conditional law is Gaussian with mean m = E{X(T') | X(t);
t1 < 1, ts < 55} and variance o2 = E[(X(T) — m)?| X(t); t, < s1, t2 < s3]. Now by
using (4.2)

m = E[Yftw YTt w @ry—r, 1-rp (1, 12) | L %]
= E[Zzé—w S oo Q(Ty=ry, Ty E(F1, T2) | L 37
and
o* = 2;11‘1=sl+1 Yo | Q(Ty=r,, Tyry) |2

< T 2 T T 2
+ E:1=—oo 2r22;32+1 | a(Tl—rl,Tz—rz) I + 2r11=sl+l 2r2:’=sz+l I a(Tl—rl,T2~r2) I .
From this it follows that

1
P//"’r“zX(T) = L w Zt—T—s atw df*(w) L H_ T 2?;7‘—3 a’twt} dq)’

where Y27, stands for Y-r o, Yi-1s,-
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