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AN EXAMPLE ON THE CENTRAL LIMIT THEOREM FOR
ASSOCIATED SEQUENCES

By NORBERT HERRNDORF

Mathematisches Institut der Universitit Koln

We construct a strictly stationary associated sequence (X,).eny with
EX, =0, 0 < EX2 < » such that K(R) = Cov(X1, X1) + 3%, Cov(Xi, X;) ~
log R as R — =, but 3%, X;/(nK(n))*? does not converge to .# (0, 1) in
distribution. This is a counterexample to a conjecture of Newman and Wright
(1981).

1. Introduction. In the last years there has been growing interest in
sequences of random variables which fulfill a condition of positive dependence
called association. A finite collection of random variables X;, - --, X,, is said to
be associated if for any two coordinatewise nondecreasing functions f;, f, on R™
such that fj(Xi, - - -, X,») has a finite variance for j = 1, 2, Cov(fi(X1, - - -, Xn),
fo(X1, -+ -, Xi»)) = 0; an infinite collection is said to be associated if every finite
subcollection is associated. This definition was introduced in Esary, Proschan
and Walkup (1967). The following central limit theorem for associated sequences
is contained in the invariance principle of Newman and Wright (1981).

THEOREM 0. Suppose (X,).ew is a strictly stationary associated sequence with
EX,=0,0< EX? < », and assume
(1.1) o? = Cov(X;, Xi1) +-2 ¥%s Cov(X), X)) < oo.
Then Y7, X;/(en'/?) converges in distribution to _# (0, 1).
At the end of their paper Newman and Wright state a conjecture, which
implies the following central limit theorem.
CONJECTURE. Assume all the hypotheses of Theorem 0 except (1.1). Let
(1.2) K(R) = Cov(X;, X)) + 2 X%, Cov(Xy, X)), REN,
and suppose
(1.3) ‘ K(R) —» o, K(R) is slowly varying as R — .
Then Y%, X;/(nK(n))'/* converges in distribution to _# (0, 1).

It is the purpose of this paper to construct a counterexample to the above
conjecture. We state the main result of our construction in a theorem.
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THEOREM 1. There exists a strictly stationary associated sequence (X,)nexn
with EX; = 0, 0 < EX? < » such that K(R) defined by (1.2) satisfies K(R) ~
log R as R — o, but Y7, X;/(K(n)n)? does not have a nondegenerate limit
distribution.

We note that the general idea of the construction in this paper is similar to
the method in [3], but the details are quite different.

2. The construction of the spectral density. A nonnegative integrable
function f on [—', %] is called a spectral density of the wide sense stationary
sequence (X,)new, if

1/2
Cov(X,, Xpnir) = f ) e’™Mf(t)dt, n€EN, kE N U {0}.
-1/2

In Lemma 2.1 a function f is constructed which can be written as a countable
sum of spectral densities of certain moving average sequences.

2.1 LEMMA. There exist functions fi: [, %] — [0, ®), k € N, with the
following properties:

(2.2) For each k € N, f;, can be written as

fut) = (aor + 2 TX% a, rcos(27nt))?

with
Nk ENUI{0}, a,x€[0,o) for n=0, .., N(k).
(2.3) fut) =1 forall REN, tE [, 4]
For f = Y-, fr holds
(2.4) f(t) = —log|t| forall t€ [, %]
(2.5) fit/n)/logn -1 as n— oo, tE[—-n/2 n/2].

PROOF. For k € N let gu(t) = (k + 1)7M1 — |t])**Y, hu(t) = gu(t)V? =
(B + 1)7V2(1 — |t])**V72 ¢t € [-, Y). h: can be developed as a uniformly
convergent Fourier series.

hi(t) = aor + 2 Yn=1 ankcos(2nmt)
with

1/2
(1) np = f , hy(t)cos(2wnt) dt.
-1/2

The uniform convergence of the Fourier series can be proved by an application
of Theorem 2.11 of Kufner and Kadlec (1971). Now we choose N(k) € N U {0}
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such that
(2) sup; | hi(t) — (aor + 2 AR a,rcos(2nnt)) | < e, = Y6 27,

Put f,(t) = (aox + 2 TP ankcos(2ant))® To prove (2.2), it remains to show a,,
= 0. Since h, is bounded, nonincreasing and convex on [0, %] and hy(t) = hi(—t),
anp = 0 follows from (1) by an easy computation, which is carried out in Lemma
2.6. From (2) we obtain for all t € [, 1]

3) 1 8(8) = fol®) | = | hlt) — ful(6)2 | (ha(t) + fu()/?)
= Bk(zhk(t) + ek) < 3eg.

Now (2.3) can be easily checked. (2.4) and (2.5) follow from (3) and X3, gu(t) =
—log|t| — (1 — | t|) by routine calculus.

2.6 LEMMA. Let h: [0, Y] — [0, ®) be bounded, nonincreasing and convex.
Then

1/2
f h(t)cos(27nt) dt = 0 for all n € N U {0}.
0
PROOF. The case n =0 is trivial. If n = 2n’, n’ € N, then

1/2 (m+1)/n
1) f h(t)cos(2nnt) dt = Y2} f ) h(t)cos(2wnt) dt.
0 m/n

Ifn=2n"+1,n" €N U {0}, then

1/2
f h(t)cos(2xnt) dt
0
(2)
(m+1)/n 1/2
= Y-l f h(t)cos(2wnt) dt + f y h(t)cos(2wnt) dt.

m/n

Using the convexity of h, we obtain

(m+1)/n
f h(t)cos(27nt) dt

m/n

fl/4n m m 1
@  =J ("(Z*t)_h(T’%'t)
_ h(ﬂ' + 1 + t> + h(m +1_ t))cos(21rnt) dt = 0.
n n n

For n even the assertion follows from (1) and (3). If n is odd, then we can use
the assumption that h is nonincreasing to estimate the last summand on the
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r.h.s. of (2). We obtain

1/2
f h(t)cos(2nnt) dt

g
1/4n n 1/2n n
= f h(— + t>cos(21rnt) dt + f h(— + t)cos(27rnt) dt
0 n 1/4n n

n 1 1/4n 1/2n
> h(— + —)( f cos(2wnt) dt + f cos(2wnt) dt)
n 4n/\Jo 1/4n

= 0.

In 2.7 we show that a positively correlated stationary sequence with spectral
density f satisfies the assumption (1.3).

2.7 LEMMA. Let f: [-%, %] — [0, ] be a nonnegative integrabie function
satisfying (2.4) and (2.5). Let (X,)n.ew be a mean zero, wide sense stationary
sequence with spectral density f. Then holds
(2.8) 0r=EQk X)>~nlogn as n— o,

If Cov(Xi, X)) = 0 for all n € N, then (2.8) implies
(2.9) K(R) ~logR as R— o,

where K(R) is defined in (1.2).

Proor. We use the formula

2 .
= [ g

12 sin?(wt)
and substitute s = nt. This yields

ot f "2 sin’(xs)  fls/n)

nlogn J-ne n?sin’(rs/n) log n

ds for n=2.

Using (2.4), (2.5) and applying Lebesgue’s theorem of dominated convergence,
we obtain

o oOsinz('/rs)d _
— » 23 s =1,

nlog n T°s



916 NORBERT HERRNDORF

which is (2.8). To prove (2.9) let m € N, m = 2 be arbitrary. We can estimate

2

% < K(n) = Cov(Xy, X1) + 2 Y= Cov(X;, X))

< Cov(X;, X3) + 2 m ¥y Cov(X,, )Q)(l - L___l)
m-—1 mn
= m <COV(X1y Xl) + 2 Z;n=n2 COV(le Xj)(l - l':_1>>
m-—1 mn
=" o2./(mn).
m-—1

Using (2.8), we obtain

- lim inf,enK(n) - lim sup,ewK(n) - m_
log n log n m-—1

Since m € N, m = 2 is arbitrary, (2.9) follows.
3. The example. Let fu(t) = (aox + 2 IX% a,rcos(2wnt))” be the functions
which have been constructed in 2.1. For k € N let
ar = 281 + exp(k?))(1 + 2N(k)).
Let £.4, n € Z, k € N, be independent random variables with
Pltn, = xa}/?} = 1/2ax, Plép =0} =1— 1/a.
Define
Xok = Dm0 @itkbiinss ko € N

For each k € N, (X,.)nen s a strictly stationary sequence with EX,,, = 0.
According to Doob (1953) page 499, f; is the spectral density of (X )ner. For
each n € IV, (X, x)rer is an independent sequence, and

1/2 1/2
Yo EXGr = Yia f fu(t) dt = f f(t) dt < co.
-1/2 -1/2
Hence the random series Y%, X,x is convergent a.s. and with respect to | |2,
and it is possible to define
Xn = 2;:=1 Xn,ky n€N.

Then (X,).c: is a strictly stationary sequence with EX,, = 0, and it is straight-
forward to check that f = Y5, fx is the spectral density of (X,)nen. We will prove
that (X,,) has the following properties.

(8.1) (X,)nern is associated.
(3.2) K(R) defined in (1.2) satisfies K(R) ~ log R as R — .
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(3.3) There exist positive integers n(1) < n(2) < - .. such that
"% Xi/(n(k)log n(k))V? — 0

Jj=1
in measure as k — .

To (3.1): Since a,; = 0 it follows from P4 of Esary, Proschan and Walkup
(1967) that {X,.: n, k € N} is associated. By the same argument, for each
meEN {Yi, X, n € N} is associated. Since for each n € N (X7t; Xjp)i<j<n —
(Xj)1<j<n in distribution as m — o, Theorem 3.3 of Esary et al. (1967) implies
that {X,: n € ¥} is associated.

(3.2) follows from Lemma 2.7.

To (3.3): We consider n(k) = min{j € N: j = exp(k?)}, kE N. For n, k EN let
o2r=E(Y% X;1)% One can estimate

2 —fms—irﬁ(—nlt—)f(t)dt<su fi®n < n
Ik = _12 sin®(wt) k = Sub:Jk -

Now we write 1% X; = V, + W, with V, = 32, 3790 X, Wi = g 200 X
and estimate V;, and W, separately.

1) EVI% — 2;’;1 Uz(k),r < k < k-1
n(k)log n(k) n(k)log n(k) ~ log n(k) — )
(2) P‘Wk # O} = 2:0=k+1 n(k)P{Xl,, # 0}

< Y2k n(EN() + Day' < Tp 27 < 275
(1) and (2) imply 37 X;/(n(k)log n(k))* — 0 in measure as k — .

REMARK. The above construction proves Theorem 1. It shows that in the
situation of Newman and Wright’s conjecture the “natural” standardization
oy}, which is equivalent to (nK(n))~"/?, does not lead to a nondegenerate limit
distribution of the partial sums. Possibly there exists a different standardization
which yields asymptotic normality.
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