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CONVEXITY AND LARGE DEVIATIONS

By PETER NEY
University of Wisconsin, Madison

A convexity argument is used to establish a representation formula from
which one can derive the asymptotics of large deviations of sums of i.i.d.
random variables on IR?. This simplifies a proof in [4] which relied on fixed
point and probabilistic arguments.

The purpose of this addendum to [4] is to observe that the theorem of that
paper on the existence of a “dominating point” is really a result in convexity
theory, having little direct dependence on its probabilistic origin. The role of
convex duality in large deviation theory is well known, (see e.g. [1], [2], [3]), but
one can take more direct advantage of the properties of conjugate functions than
has been done heretofore. This yields a substantial simplification in the “domi-
nating point” construction, and some slight improvement in hypotheses. The
fixed point proof in [4] is now replaced by a simple compactness argument, and
more importantly, the fact that the infimum of the Cramér functional is achieved
at an interior point of its domain is now almost immediate. This technical point,
which is essential in deriving the representation formula from which the large
deviation asymptotics follow, required considerable space and effort in [4].
Another advantage of the present approach is that due to its lesser dependence
on the properties of random walk, it is more suitable for application to other
processes.

The following lemma gathers together the facts we will need on convexity,
mostly taken from the book of Rockafellar [5]. Some of the material is also
available in the excellent survey paper of Azencott [1].

Let f: R¢ — R be a proper, strictly convex function, and Z(f) = {x € R: f(x)
< ). Write 4, 4, and 9A for the interior, closure, and boundary of a set A. Let
Hao(f) = {x: f(x) = a}, (@ < ) denote the level sets of f, and let f*(y) =
supf{(x, ¥) — f(x)}, y € R?, be the convex conjugate of f. ({, ) is inner product.)
Call f essentially smooth ([5], page 251) if D (f) # (), f is differentiable in Z (f),
and if | Vf(x;) | — o whenever x; — x,, for x; € 9 X EID

LEMMA. Assume that: (I) f is essentially smooth, (II) #4(f*) is compact for all
a <, (iii) B is a convex set with [BN Z(f*)]° # @. Then

(i) (a) V£ Q(f) - Q(f*) isa homeomorphtsm,
(b) Vf*(y) = (Vf)(y) for all y € F(f*), and
(©) f*(y) =<y, (VOH(¥) = (V) .
(ii) Inf{f*(y): y € B} = F*(B) is achieved at a (unique) point y, € BN Z(f*);
(i) ((y = ¥0), (V/)7(30)) = 0 for all y € B. If (Vf)™(y0) # 0 then y, € 6B.
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PROOF. (i) is a consequence of [5], Theorem 26.5.

(ii) Take v € [B N Z(f*)]°. Then f*(v) < , and B, = S,)(f*) N B is
compact. Also clearly F*(B) = F*(B,). By definition of F* there is a sequence
{y¥.} C B, such that f*(y,) - F*(B,), a subsequence {n’} C {n}, and a y, € B,
such that y,, — y,. By the lower semicontinuity of f* (true for all convex
conjugates): lim inf f*(y, ) = F*(B) = f*(yo).

Now take any point w € [B N 2(f*)]° and let z, = yw + (1 — )y, for
0 < v < 1. The essential smoothness of f implies that of f* ([5] Theorem 26.5),
and hence one can infer from Lemma 26.2 of [5] that if y, € d Z(f*), then there
exists a sequence v, \u 0 such that f*(z,)) is strictly increasing. On the other
hand f*(y0) < inf{f*(y); y € B} < f*(2,,), and hence by the strict convexity of
f* ([5], Corollary 26.4.1) we see that forany 0 < a <1

f*(z,,) = of*(z,) + (1 — &)f*(y0) > f*(az,, + (1 — a)yo).

But we can now choose « so that az,, + (1 — a)yo = 2,,,,, implying f*(z,) >
f*(z,,,,). This is a contradiction, and hence we must have y, € Z(f*). Thus f*
is also continuous at y, and f*(y,) = F*(B).

(iii) We claim that B,, = {yo} (the one point set). Clearly, y, € By0 Suppose
also y; € By, for some y; # yo. Now y, € H+(,,)(f*) implies f*(1) =< f*(0), and
the strict convexity of f* implies that f*(Y2(yo + ¥1)) < f*(yo). But since Y(y, +
¥1) € B, this contradicts f*(o) = F*(B). Thus #+,,»(f*) N B = {yo} and hence
there exists a separating hyperplane H of #+(,,(f*) and B.

Since yo € D(f*), f* is differentiable at yo. If Vf*(y) = 0, then (iii) is trivially
satisfied. If Vf*(y,) # 0, then Vf*(y,) is the unique normal to #«,,(f*) at yo;
and hence the separating hyperplane H must be the unique hyperplane through
yo and orthogonal to Vf*(y,). Thus y, € dB and (iii) follows. O

We now apply the lemma to the estimation of large deviation probabilities.
Let u be a probability measure on R¢;

‘P(a)=fe<“"‘>u(dx), a € R4, m=fxu(dx);

& = closure of the convex hull of the support of u; B a Borel set in R“.

DEFINITION. A point vp is called a dominating point for (B, u) if
1) vp €N LN 2(Vlog ¥), and
(I1) B C {x: (x, ag) > (vs, ap)}, ap= (V log #)7}(vg).
THEOREM. If 2 (®P) contains a neighborhood of the origin, log ¥ is essentially

smooth, B is convex, [BN & 1°# @, and m & B, then a unique dominating point
for (B, u) exists.

PrROOF. We apply the lemma with f = log ¥. The compactness of #,(f*)
follows from the convergence of ¢ in a neighborhood of 0 (Azencott, [1]). By
Proposition 9.7 of [1] one can also identify 9 f* = R (Thesé are the only
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places where any probabilistic arguments enter.) The hypotheses of the lemma
are thus satisfied, and the point y, = v of the lemma is the dominating point.
Namely vz € 0B N & follows from (ii) of the lemma; also vg € #Z(V log ¥) (i.e.
V log Y(«) = vp has a solution a(vg) € Z(log ¥)), since by (i) (Vf) (vs) € 2 (log
#). This implies (I) in the definition, and (II) is just a translation of (iii) in the
lemma. 0

One can now easily derive the formula (see [4]):

(1) p**(nB) = p" j;(B_v | exp(—(ap, x))u*"(dx),

where

(i) p = exp(—f*(vp)) = exp(—(asg, vp))P(ap)
(ii) (ap,x) =0 for x € B — vp, and
(iii) & is a probability measure with mean 0, which is a centering of the
conjugate distribution of u. From (1) there follow a variety of estimates of
w**(nB), the easiest of which is

(2) c1p'n™? < p**(nB) < ¢c1p"n V%, n =0,

for some 0 < ¢; < ¢, < 0. This in turn of course implies the known “logarithmic”
limit law ([2], [3])

(3) lim(1/n)log u*"(nB) = log p,

but much sharper results can also be obtained (see [4]).

REMARKS ON HYPOTHESES. (i) Instead of assuming that log ¢ is ess. smooth
(in the theorem) we could take it to be closed, since with its strict convexity this
also implies (log ¥)* is ess. smooth ([5], 26.3); and this is what is needed in the
proof. Either conditions is weaker than “ 2 (¥) open,” as assumed in [4].

(ii) The inequality (2) was proved in [4] under the additional hypothesis ()
that u was either lattice or strongly nonlattice, which was used to obtain an
estimate *"(A) = cn~%? for a sufficiently large set A, where i is the measure in
(1). This inequality is in fact true without (), as can be seen from a local limit
theorem of Stone [6]. This fact, as well as an independent proof of the inequality,
was shown to me by H. Carlsson. Thus (3) also follows from the “stronger”
estimate (2) without extraneous “lattice” conditions (as was known).

Acknowledgment. I would like to thank Professors H. Carlsson and
A. de Acosta for several helpful conversations on this subject. Professor de Acosta
has communicated to me another “convexity” proof of the dominating point
theorem.

ADDED IN PROOF. A recent paper by R. Ellis in The Annals of Probability
12 1-12 exploits convexity arguments along similar lines to this note.
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