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A UNIFIED APPROACH TO A CLASS OF BEST CHOICE
PROBLEMS WITH AN UNKNOWN NUMBER OF OPTIONS

By F. THoMAS BRUSS

Facultés Universitaires Notre-Dame de la Paix

This article tries to unify best choice problems under total ignorance of
both the candidates, quality distribution and the distribution of the number
of candidates. The result is what we shall call the e™'-law because of the
multiple role which is played by e, and this in a more general context as
only in the solution of the classical secretary problem. The unification is
possible whenever best choice problems can be redefined as continuous time
decision problems on conditionally independent arrivals. We shall also give
several examples to illustrate how the approach and its implications compare
with other models.

1. Introduction. We start by recalling the classical secretary problem
(CSP) or marriage problem, to which we shall frequently refer:

Suppose we want to appoint a secretary, knowing that there are n candidates.
We suppose that, if we knew them all in advance, then we would be able to
classify them in a unique order in accordance to our own criteria from the best,
(1), down to the worst, (n). Only the respective ranks count; the candidates’
qualities are neglected. We can interview the candidates one by one, but after
each interview we have to decide whether to accept or refuse. Recalls are
inadmissible. If each permutation of the arrival order is equally probable, what
is the strategy which maximizes the probability of accepting the best candidate?

The solution may be found in Lindley (1961) or, as a special case of a general
Markov chain stopping time problem, in Dynkin and Juschkewitsch (1969). The
optimal strategy is to pass over a certain number £*(n) of candidates and then
to accept the first candidate which is better than all preceding ones. k*(n)n™! —
e ! and the corresponding success probability tends to e™* as n — .

There are many interesting modifications of this problem. For a complete
review of the published work to date, see Freeman (1983). We confine our
attention to the case where the number of candidates N is a random variable,
and where the quality distribution is unknown.

Presman and Sonin (1972) seem to be the first to have published results on
this problem followed by Gianini and Samuels (1976), Stewart (1981) and others.
We shall refer to several of these papers in more detail since their results allow
for an interesting comparison to ours. Common to all these papers is that the
distribution g of the number N of candidates is supposed to be known, or that at
least the class of g is specified.

The essential difference in our approach is that we suppose g to be unknown.
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Maintaining all other CSP conditions, we want to maximize the probability of
accepting the best candidate. We consider the following model:

2. The model. Let F(2) be a distribution function on the real time interval
[0, t]; let Z,, Z,, - -- be independent random variables each having continuous
distribution function F and let N be a nonnegative integer-valued random variable
independent of all Z,’s. Z, is thought of as the arrival time of applicant k and N
represents the total number of applicants which will decide to show up. Associated
with each applicant is a different quality. We suppose that given N = n, each
arrival order of ranks (1), (2), -- -, (n) has the probability 1/n!

Motivation. The essential part of the model assumptions is the independence
condition for the Z)’s. Their identical distribution is then imposed by the last
assumption which comes from the CSP. However, the no-recall-condition is only
meaningful if simultaneous arrivals are prevented (a.s.) and so it is convenient
to suppose that F is continuous.

As examples which satisfy our hypotheses, we may think of Poisson processes
on [0, t] or nonhomogeneous Poisson arrival processes. However, our hypotheses
are more general since we cannot describe each experiment producing i.i.d.
random variables as a suitable Poisson process. The question whether the
proposed model is an interesting alternative to existing ones is discussed in
Section 6.

3. Waiting time policies. We want to maximize the probability of choos-
ing the best candidate, and so it only makes sense to accept a candidate which is
better than all preceding ones. Such a candidate is usually called leading candi-
date. For convention, we suppose that the first candidate to arrive is leading by
definition.

In order to decide whether a candidate is leading, all previous ones must have
been evaluated. In the continuous time case this implies that, if a candidate is
accepted at time 7, say, 7 € [0, t], then the interval [0, 7] has been continuously
observed on all its subintervals where F is strictly increasing. This together with
the fact that any accepted candidate must be leading leads us to consider the
following class of strategies:

DEFINITION. The (x, r)-strategy on [0, t] is a policy to act as follows:

1. To observe and rank all incoming candidates up to time x without accepting
a candidate.

2. To accept the rth leading candidate arriving after time x, i.e. the first to be
r ranks superior to the best of those which arrived in [0, x], if it exists, and to
refuse all candidates if not.

The time x will be called waiting time. For r = 1, we use the notation
x-Strategy.

THEOREM. For any distribution g with P(N > 0) > 0, there exists a waiting
time z* maximizing the success probability of the x-strategy. Moreover, for all
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e > 0, there exists m € N such that N = m implies z* € [eF' — ¢, eF'], where ez
=inf{z| F(z) = e}

ProoF. For the following, it is convenient to introduce a change of time
(1) x=F(2), z€[0,t]

such that, in the x time scale time runs from 0 to 1 and such that each X, =
F(Z,) is uniform on [0, 1].

If N = 0, then every strategy leads to a trivial success. If N = 1, then the
candidate will be accepted if he arrives after time x, thus x* = 0 and the
corresponding success probability equals 1. Suppose now N = 2. Given N = n,
the x-strategy yields a success if the best candidate, (1), arrives in ]x, 1] before
all other candidates arriving in ]x, 1] which are better than the best of those
which arrived in [0, x]. Consider the k& + 1 best candidates. According to the
model assumptions, (k + 1) arrives in [0, x] and the k best ones in ]x, 1] with
probability x(1 — x)*. Since (1) arrives before (2), - - -, (k) with probability 1/,
we obtain .

Pn(x) = P(success of x-strategy | N = n)
=x Yl (1/R)A —x)*+ (1 —x)"/n, for n=2,3, ...
We recognize the Taylor expansion of —In x in the sum term. Since
3) Pa(x) = puni(x) = (1 — 2)"/(n(n + 1)) = 0, for x € [0, 1],

we obtain

(2

(4) Pr(x) N p(x) =—xIlnx as n— o,
The function p(x) is maximized by x = e,
Furthermore,
(5) dpa(x)/dx = =1 + $i} (1 — 0)*/k
and
(6) d’pa(x)/dx® = —(1 — (1 — x)")/x <0, for x € [0, 1],
S0 pn(x) has a unique maximum x,. It is clear from (5) that
(7) T xS el
Now let
(8) Gn(x) = Zpzmpn(x)P(N = n).

It follows from (7) that, if there exists a value x* which maximizes G..(x), then
necessarily x* € [x,,, e”']. However, the convergence in (4) and (8) is uniform
and so G,(x) is continuous, i.e. x* exists. Using (1) and the continuity of F
completes the proof.

The theorem allows for two powerful corollaries which we want to call together
the e '-law.
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COROLLARY 1. The er'-strategy has success probability = e™ whatever the
distribution of N might be.

PROOF. According to (4), we have p,(x) \ p(x) = —x In x on [0, 1] and so,
by (1) and (8),

9) Goe™) = Ynop(e™)P(N =n) =ple) =e. O

COROLLARY 2. The er'-strategy is the only waiting time policy with the
property described in Corollary 1.

PrROOF. From (6) and (7), it is evident that it is the only x-strategy with this
property. If r > 1, then a necessary condition for a possible success is the
existence of at least r leading candidates. Thus, for any distribution g with
P(1 =N <r)>1- e}, the success probability of the (x, r)-strategy is smaller
than e™! for all x. In particular, if P(1 < N <r) = 1, then the latter equals 0.0

4. The best choice problem as a two person game. Let us consider the
following game. Given the arrival time distribution function F on [0, t], player A
wants to maximize the probability of accepting the best candidate and player B
plays the role of a sinister adversary by choosing g, the distribution of N, in the
most disadvantageous way possible. It is interesting to find a stopping time 7*
and a distribution g* which solve the minimax problem

(10) p(r*, g*) = infysup, p(7, g)

where p(7, g) denotes the success probability corresponding to the choice of 7
and g.
The game allows for three different interesting variants:

1. A is obliged to tell B what he will do, but not vice versa.
2. The case opposite to 1.
3. A and B take their decisions secretly.

If A wants to apply a waiting time policy with waiting time 7w, then, by the
theorem and by Corollary 2,
. e, if r=1
¥ g¥) — = ’ ’
(11) p(r¥, &*) = infgsup,,p((rw, 1), &) {0, i or> 1

It is not difficult to check that, in all three cases, A should apply the
er'-strategy and that B can do nothing else than reducing A’s success probability
to e by concentrating g on N = . It is conjectured that the ez'-strategy is even
the best of all conceivable strategies for A under the given assumptions, but the
proofs would require more machinery. The asymptotic optimality of the
er'-strategy is easy to show (see Section 5).

5. Upper bounds. For the problem as we posed it, the study of waiting
time policies was quickly confined to the one of x-strategies whereas (x, r = 2)-
strategies are not optimal (Corollary 2). This may change as soon as partial



886 T. BRUSS

information about g becomes available. To give an example, let us consider the
deterministic case N = 3. An analysis similar to (2) shows that the (0, 2)-strategy
is optimal with success probability 0.5. It coincides with the optimal stopping
time strategy for the CSP according to which one has to observe the first
candidate and then to choose, if possible, the next better one. Indeed, in our
model, this means to choose, if possible, the second leading candidate after
time 0.

The preceding example is extreme in the sense that g is completely specified
and, moreover, concentrated in one point. In addition, this example represents
the case where the difference between the success probabilities of the k*(n)
stopping time strategy (0.5) and the ez'-strategy (0.3902) is maximal (see Table
1). After all, knowing N = 3, we would of course directly apply the k*(3) stopping
time strategy since we know that it is optimal.

Still, the given example raises the following question: how much information
about g is needed such that it can be worth considering (x, r = 2)-strategies, i.e.
such that their success probabilities may exceed e™!?

To get an idea, we define L(N) = I(1) + I(2) + - .- + I(N) where I(k) = 1 if
the kth arrival is a leading candidate and 0 otherwise, and L(0) = 0.

A necessary condition for a (x, r = 2)-strategy to succeed with probability
> ¢! is evidently P(L(N) = r) > e . It is known (see e.g. [2], page 83) that
the I(k) are independent random variables with P(I(k) = 1) = k™. This implies
ELIN)IN=n) =142+ ... + n' ~In n and Var(L(N) |N = n) =
271—224+ ...+ n'=n?~Inn (=0if n <2). Using Chebychev’s inequality
with the above estimates leads to a necessary condition in terms of E(ln N).
Thus essential hypotheses about g would be needed, which we forewent for the
sake of applicability. This is why we concentrate on x-strategies, and according
to the corollaries, on the ez'-strategy.

Now, let p, denote the success probability of the k*(n) stopping time strategy
for the CSP. It is known that this strategy is optimal with p, = e™* + O(1/n),
where O(1/n) = 0 foralln =1, 2, --.. We may imbed the CSP in our model
associating the n candidates with independent arrival times-on [0, t] with
distribution function F. From (2), (6) and Corollary 1, we obtain

(12) e <pue™) =pux,) <P.=e'+0(1/n), n=1,2, .-,

and thus the er'-strategy is asymptotically optimal if N becomes large in

TABLE 1
N=n 1 2 3 5 10 15 -
Xn 0 0 0.2679 0.3489 0.3670 0.3678 e!
DPn(x5) 1 0.5 0.3987 0.3723 0.3680 0.3678 e’!
Daler) 0.6321 0.4323 0.3902 0.3718 0.3680 0.3678 e!
maximal <0.368 <0.068 <0.009 <1072 <107° <107®

loss

The first row gives the values x, maximizing pn(x). The second and third rows show the success
probabilities of the x,-strategy and the er'-strategy respectively. Their difference in the last row is the
maximal loss for P(N = n) = 1. The number e could be made to appear a fourth time, namely as the
probability of accepting no candidate at all.
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probability. On the other hand, p,(x,) converges very quickly to e™*. The rough
estimate p,(x,) — e™* < 0.68"/n for n > 3 can easily be derived from (2).

The convergence speed of (p,(x,) — pn(e™)) — 0 is truly surprisingly high (see
Table 1). This is central in the paper since it shows that e~ is an excellent
approximation of x* if P(IN < 2) is not large such that a g-dependent maximization
problem (Go(x)max!) still makes sense in our model.

6. Discussion and examples. The question whether the proposed model
is an interesting alternative to existing ones must be differentiated. From the
mathematical point of view, it is just an alternative. Whether g or F is easier to
estimate depends on the context of the practical problem.

For applications, the answer should be yes. Time intervenes in most real world
decision problems, and, if not, it often may be simulated (see Example 4).
Secondly, there are many situations where one may have absolutely no infor-
mation about the distribution of the number of candidates, but quite essential
indications about when they should appear more likely, if there are any. A simple
example of such a situation is the following problem:

Suppose we want to hire a secretary within the next ¢ weeks, because then we
urgently need one. We ordered a newspaper to advertise until recall in the
Saturday editions. Whatever g might be, we can expect any call more likely after
the weekends than during other days, and it is a fair guess that peaks will decrease
with the number of Saturdays.

The idea is to draw such a likelihood curve over [0, ¢], norm it to a density f,
say, and to use F(x) = [§ f(v) dr. Here we can also count on a smoothing effect
of the integral such that a bad estimate of f does not necessarily imply a bad
estimate of er' (see Example 4).

In the following, we shall give examples to display the unifying character of
our approach, under which different models may coincide.

EXAMPLE 1 (CSP). There is no loss of generality to associate candidates
with i.i.d. arrival times on [0, ¢]. Let N(7) be the number of arrivals up to time
7. Then the limit relation k*(n)/n — e~ follows from the law of large numbers
since N(er')/N(t) — e ! a.s. as N(t) — oo.

EXAMPLE 2. Presman and Sonin (1972) showed that, if N is Poisson distrib-
uted with parameter A\, then the optimal stopping time limit relation is £*(X\)/\
— e7L. Associate arrival times and note that N(r) is Poisson implies that the
unordered conditional arrival times are i.i.d. and uniform on [0, t]. Thus ez' =
e”'t for any A > 0, and this waiting time policy can be applied without knowing
\. To see the speed of convergence, suppose a young lady wants to find the best
husband within the next ¢ years. She assumes the arrival process to be Poisson
with At > 100, say, and so she applies the e 't-strategy. However N turns out to
be 3 only. Nevertheless, her strategy is excellent if the Poisson assumption is
correct. She only looses 0.009 of success probability compared with what she
could have attained at best (see Table 1).

EXAMPLE 3. Stewart (1981) (who pointed out the advantages of a continuous
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time model before) studied the exponential interarrival time process. But such
an arrival process is Poisson such that, with respect to our model, this is
equivalent to Example 2.

We can generalize the result: consider a nonhomogeneous Poisson process
with intensity A(s). The unordered arrival times are i.i.d. random variables with
conditional distribution function F(x) = m(x)/m(t), where m(x) = [§ \(s) ds.
Thus we solve m(x) = e 'm(t) and apply the x-strategy.

EXAMPLE 4. There are solutions to specific best choice problems which may
look incompatible with the e™'-law. Abdel-Hamid et al. (1982) say “if N is
unknown, then the best choice problem has many reasonable solutions”. This is
correct, but with respect to real world problems, it is more precise to say that it
may have different solutions according to different hidden restrictions. For
instance, Presman and Sonin proved that, if N is uniform on {1, 2, ..., n}, then
the optimal strategy is to pass over the first k*(n) ~ [e~?n] candidates and then
to choose the next leading one. The corresponding success probability tends to
2¢7? = 0.2707 as n — ®. As a secretary problem, this makes sense if the N
candidates do not appear simultaneously, since otherwise recalls would be pos-
sible. Thus time intervenes and we could make assumptions about the conditional
arrival times like in the discussion rather than about g. Indeed assumptions
would have to be rather wrong in order to do worse (probabilistically) with the
er'-strategy than with the k*(n)-strategy since —x In x = 2e72 for all x €
[e2, 0.6661]! :

One may argue that there are situations where time does not intervene.
However it is difficult to think of any practical situation where we would not be
able to simulate it. Indeed, suppose that your assistant tells you that n candidates
turned up for an interview. But he chose at random a ball from balls numbered
1,2, - - -, n and limited the number of candidates to the drawn number N. These
N candidates are waiting in front of your office and you have to find the best one
under the no-recall condition. Here we have indeed the mentioned problem in
purified form, since g is known and time is eliminated. However, you can do the
trick by saying “send them in alphabetic order”, because your phone book on the
table will give you at once an idea about the lexicographical family name
distribution and your waiting time will be the last family name in the first 37%
names. Similarly, if you have to choose the “best” ball in an urn with N < n
balls, you may add m > n blank balls, mix them, and choose the first leading
ball after the [e"'m]th draw. Of course, if any redefinition or simulation is
explicitly forbidden by definition of the problem, then the optimal strategy is the
k*(n) policy mentioned before. This is what was meant by hidden restrictions.
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